1
|
Kaboodkhani R, Mehrabani D, Moghaddam A, Salahshoori I, Khonakdar HA. Tissue engineering in otology: a review of achievements. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1105-1153. [PMID: 38386362 DOI: 10.1080/09205063.2024.2318822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Tissue engineering application in otology spans a distance from the pinna to auditory nerve covered with specialized tissues and functions such as sense of hearing and aesthetics. It holds the potential to address the barriers of lack of donor tissue, poor tissue match, and transplant rejection through provision of new and healthy tissues similar to the host and possesses the capacity to renew, to regenerate, and to repair in-vivo and was shown to be a bypasses for any need to immunosuppression. This review aims to investigate the application of tissue engineering in otology and to evaluate the achievements and challenges in external, middle and inner ear sections. Since gaining the recent knowledge and training on use of different scaffolds is essential for otology specialists and who look for the recovery of ear function and aesthetics of patients, it is shown in this review how utilizing tissue engineering and cell transplantation, regenerative medicine can provide advancements in hearing and ear aesthetics to fit different patients' needs.
Collapse
Affiliation(s)
- Reza Kaboodkhani
- Otorhinolaryngology Research Center, Department of Otorhinolaryngology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Davood Mehrabani
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | | | | | - Hossein Ali Khonakdar
- Iran Polymer and Petrochemical Institute (IPPI), Tehran, Iran
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
2
|
Topical Application of bFGF Alone for the Regeneration of Chronic Tympanic Membrane Perforations: A Preliminary Case Series. Stem Cells Int 2021; 2021:5583046. [PMID: 34054968 PMCID: PMC8143876 DOI: 10.1155/2021/5583046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/07/2021] [Accepted: 05/08/2021] [Indexed: 11/23/2022] Open
Abstract
Results A total of 29 patients consisting 13 in the bFGF alone group and 16 in the myringoplasty group were finally included in the analysis. Of the 13 patients in the bFGF alone group, the perforations were small in 6 and medium in 7; the etiology was secondary to COM in 11 and to trauma in 2. One patient with an unhealed perforation continued bFGF treatment until 6 months, while the others stopped at 3 months. Of the seven medium-sized perforations, none of the five COM perforations closed, while the two traumatic perforations achieved complete closure within 2 and 4 weeks, respectively. The successful closure rate was 28.6% (2/7). Successful closure was achieved in 66.7% (4/6) of the six small perforations with COM, with a mean closure time of 4.75 weeks. Of the 16 patients in the myringoplasty group, all perforations were medium-sized and were secondary to COM in 15 cases and traumatic in 1 case; all achieved complete closure. Conclusions bFGF alone facilitated the repair of chronic traumatic perforations and small perforations with COM, but not medium-sized perforations with COM. These observations indicated that the regenerative conditions of traumatic perforations are better than those of COM perforations when using bFGF alone, and that graft materials could play a critical role in the regeneration of larger-sized chronic perforations with COM.
Collapse
|
3
|
Wang AY, Liew LJ, Shen Y, Wang JT, von Unge M, Atlas MD, Dilley RJ. Rat model of chronic tympanic membrane perforation: A longitudinal histological evaluation of underlying mechanisms. Int J Pediatr Otorhinolaryngol 2017; 93:88-96. [PMID: 28109506 DOI: 10.1016/j.ijporl.2016.12.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/15/2016] [Accepted: 12/18/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To evaluate histologically the progressive development and underlying mechanisms of chronic tympanic membrane perforation (TMP) in a rat model using a two-weeks ventilation tube (VT) treatment combined with topical application of mitomycin C/dexamethasone (VT-M/D), compared with normal tympanic membrane and acute TMPs. METHODS Fifty male Sprague-Dawley rats were divided into three experimental groups: a normal control group (n = 5), an acute TMP group (n = 5) (i.e. 3 days post-myringotomy) and a VT-M/D group (n = 40). The TMs were regularly assessed by otoscopy. The normal control animals were sacrificed on day 0 and the acute TMP group was sacrificed 3 days post-myringotomy for histological and immunohistochemical evaluations. The VT-M/D group was sacrificed at various time points - 14 and 17 days, 3, 4, 6, 8 and 10 weeks. RESULTS On longitudinal histological examination, compared with normal TM and acute TMP, the perforation edges at the later time points illustrated thickened stratified squamous epithelium rimming around the edges, significant increase in keratin and collagen deposition, increased macrophage infiltration as well as reduced cellular proliferation. Three phases of TMP healing process were identified - the acute healing phase (3-17 days), the transition phase (3-4 weeks) and the chronic phase (6-10 weeks). CONCLUSION Based on the histological results of this study, the progressive development of chronic TMPs appeared to be associated with increased epidermal thickening, collagen and keratin deposition, macrophage infiltration and reduced cellular proliferation. After the 3-4 weeks of transition phase, the TMPs seemed to have transformed into a non-healing chronic TMP between 6 and 10 weeks.
Collapse
Affiliation(s)
- Allen Y Wang
- Ear Sciences Centre, School of Surgery, The University of Western Australia, Perth, Western Australia, Australia; Ear Science Institute Australia, Perth, Western Australia, Australia; Department of Otolaryngology, Head and Neck, Skull Base Surgery, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia.
| | - Lawrence J Liew
- Ear Sciences Centre, School of Surgery, The University of Western Australia, Perth, Western Australia, Australia; Ear Science Institute Australia, Perth, Western Australia, Australia
| | - Yi Shen
- Ear Sciences Centre, School of Surgery, The University of Western Australia, Perth, Western Australia, Australia; Ear Science Institute Australia, Perth, Western Australia, Australia; Department of Otolaryngology, Head and Neck Surgery, Ningbo Lihuili Hospital (Ningbo Medical Centre), Ningbo, Zhejiang, China
| | - Jeffrey T Wang
- Ear Sciences Centre, School of Surgery, The University of Western Australia, Perth, Western Australia, Australia
| | - Magnus von Unge
- Akershus University Hospital and University of Oslo, Norway; Center for Clinical Research Västerås, University of Uppsala, Sweden
| | - Marcus D Atlas
- Ear Sciences Centre, School of Surgery, The University of Western Australia, Perth, Western Australia, Australia; Ear Science Institute Australia, Perth, Western Australia, Australia; Department of Otolaryngology, Head and Neck, Skull Base Surgery, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Rodney J Dilley
- Ear Sciences Centre, School of Surgery, The University of Western Australia, Perth, Western Australia, Australia; Ear Science Institute Australia, Perth, Western Australia, Australia
| |
Collapse
|
4
|
Direct application of bFGF without edge trimming on human subacute tympanic membrane perforation. Am J Otolaryngol 2016; 37:156-61. [PMID: 26954874 DOI: 10.1016/j.amjoto.2015.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/01/2015] [Accepted: 11/11/2015] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To investigate the feasibility of direct application of basic fibroblast growth factor (bFGF) without edge trimming on human subacute traumatic tympanic membrane perforation (TMP). METHODS A total of 29 patients with traumatic TMPs beyond 1 month after trauma were enrolled. Patients were placed into two groups: an observation group (n=17) and a bFGF-treated group (n=12). The bFGF-treated group was treated by direct application of bFGF, in which the margin of the perforation was not trimmed. All patients were followed at least once per week until the perforation was completely closed or for up to 6 months. The closure rate and closure time were estimated. RESULTS At 6 months, 11/12 (91.7%) perforations achieved complete closure after bFGF treatment. The mean closure time was 18.1 ± 11.4 days (range=3-65 days). Purulent otorrhea was found after treatment in five patients, but resolved after oral amoxicillin and ofloxacin ear drops. Of these five patients, four achieved complete closure. However, only 9/17 (52.9%) perforations achieved complete spontaneous closure in the observation group. FGF-treated groups had significantly improved closure rates compared to the observation group (91.7% vs. 52.9%, respectively, P=0.03). CONCLUSIONS Although the margin of the perforation was not trimmed, direct application of bFGF on human subacute TMP was feasible, and it could significantly improve the closure rate of the subacute TMPs. The technique was simple and convenient. Thus, direct application of bFGF should be recommended pre-myringoplasty.
Collapse
|
5
|
Santa Maria PL, Kim S, Varsak YK, Yang YP. In Response to the Letter to the Editor Regarding: Heparin Binding-Epidermal Growth Factor-Like Growth Factor for the Regeneration of Chronic Tympanic Membrane Perforations in Mice. Tissue Eng Part A 2016; 22:570-1. [PMID: 26908042 DOI: 10.1089/ten.tea.2016.0059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Peter Luke Santa Maria
- 1 Department of Otolaryngology, Head and Neck Surgery, Stanford University , Stanford, California
| | - Sungwoo Kim
- 2 Department of Orthopedic Surgery, Stanford University , Stanford, California
| | - Yasin Kursad Varsak
- 1 Department of Otolaryngology, Head and Neck Surgery, Stanford University , Stanford, California
| | - Yunzhi Peter Yang
- 2 Department of Orthopedic Surgery, Stanford University , Stanford, California.,3 Materials Science and Engineering, Stanford University , Stanford, California
| |
Collapse
|
6
|
Wang AY, Shen Y, Liew LJ, Wang JT, von Unge M, Atlas MD, Dilley RJ. Rat model of chronic tympanic membrane perforation: Ventilation tube with mitomycin C and dexamethasone. Int J Pediatr Otorhinolaryngol 2016; 80:61-8. [PMID: 26746614 DOI: 10.1016/j.ijporl.2015.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/12/2015] [Accepted: 11/13/2015] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Chronic tympanic membrane perforation (TMP) in a clinical setting may attract surgical intervention. With the advent of modern biomaterials, new options are available for myringoplasty but safety and efficacy need evaluation in a chronic TMP animal model. The aim of this study was to evaluate the efficacy of ventilation tube (VT) insertion in conjunction with topical application of mitomycin C/dexamethasone (M/D) for the creation of chronic TMP in rats. METHODS Thirty male Sprague-Dawley rats underwent myringotomy of the right tympanic membrane (TM) and were divided into three experimental groups: spontaneous healing (myringotomy control), VT insertion for 2 weeks and VT insertion for 2 weeks in conjunction with topical application of M/D (VT-M/D). All TMs were regularly assessed by otoscopy for 10 weeks and then animals were sacrificed for histological evaluation. RESULTS In the VT-M/D group, seven out of ten (70%) perforations were patent at 10 weeks (mean patency, 57.9 days; P<0.01). The VT group had two out of ten (20%) perforations patent at 10 weeks (mean patency, 26.5 days; P<0.01), while all TMPs from the myringotomy control group were closed by day 9 (mean patency, 7.2 days). Histologically, the TMPs patent at week 10 had a stratified squamous epithelialized rim, keratinocyte layer thickening around the perforation edge as well as increased collagen deposition and macrophage infiltration. CONCLUSION Chronic TMP in a rat model was successfully created by VT insertion and the efficacy was increased in combination with topical application of M/D.
Collapse
Affiliation(s)
- Allen Y Wang
- Ear Sciences Centre, School of Surgery, The University of Western Australia, Perth, Western Australia, Australia; Ear Science Institute Australia, Perth, Western Australia, Australia; Department of Otolaryngology, Head and Neck, Skull Base Surgery, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia.
| | - Yi Shen
- Ear Sciences Centre, School of Surgery, The University of Western Australia, Perth, Western Australia, Australia; Ear Science Institute Australia, Perth, Western Australia, Australia; Department of Otolaryngology, Head and Neck Surgery, Ningbo Lihuili Hospital (Ningbo Medical Centre), Ningbo, Zhejiang, China
| | - Lawrence J Liew
- Ear Sciences Centre, School of Surgery, The University of Western Australia, Perth, Western Australia, Australia; Ear Science Institute Australia, Perth, Western Australia, Australia
| | - Jeffrey T Wang
- Ear Sciences Centre, School of Surgery, The University of Western Australia, Perth, Western Australia, Australia
| | - Magnus von Unge
- Akershus University Hospital and University of Oslo, Norway; Center for Clinical Research Västerås, University of Uppsala, Sweden
| | - Marcus D Atlas
- Ear Sciences Centre, School of Surgery, The University of Western Australia, Perth, Western Australia, Australia; Ear Science Institute Australia, Perth, Western Australia, Australia; Department of Otolaryngology, Head and Neck, Skull Base Surgery, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Rodney J Dilley
- Ear Sciences Centre, School of Surgery, The University of Western Australia, Perth, Western Australia, Australia; Ear Science Institute Australia, Perth, Western Australia, Australia
| |
Collapse
|
7
|
Searching for a rat model of chronic tympanic membrane perforation: Healing delayed by mitomycin C/dexamethasone but not paper implantation or iterative myringotomy. Int J Pediatr Otorhinolaryngol 2015; 79:1240-7. [PMID: 26060147 DOI: 10.1016/j.ijporl.2015.05.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/14/2015] [Accepted: 05/16/2015] [Indexed: 01/31/2023]
Abstract
OBJECTIVES Surgical intervention such as myringoplasty or tympanoplasty is an option in the current clinical management of chronic tympanic membrane perforation (TMP). Animal models of chronic TMP are needed for pre-clinical testing of new materials and to improve existing techniques. We evaluated several reported animal model techniques from the literature for the creation of chronic TMPs. The aim of this study was to evaluate production of chronic TMPs in a rat model using topical mitomycin C/dexamethasone, paper insertion into middle ear cavity (MEC) or re-myringotomy. METHODS Forty male Sprague-Dawley rats underwent myringotomy of the right tympanic membrane (TM) and were randomly divided into 3 experimental groups: application of topical mitomycin C/dexamethasone, paper insertion into middle ear cavity, or re-myringotomy. Control perforations were allowed to close spontaneously. TMs were assessed regularly with otoscopy for 8 weeks. At the end of 8 weeks, animals were sacrificed for histology. RESULTS The closure of TMPs was significantly delayed by mitomycin C/dexamethasone (mean patency, 18.9 days; P≤0.01) compared with the control (mean patency, 7 days), but was not significantly delayed in the paper insertion group (mean patency, 9.4 days; P=0.74). Repeated myringotomy of closed perforations (mean number of myringotomies, 8.9 per ear) stimulated acceleration of closure rather than delay. Histologically, the mitomycin C/dexamethasone group had almost normal TM morphology, while the paper insertion group revealed inflammatory and granulomatous responses. The re-myringotomy group had a thickened TM fibrous layer with collagen deposition. CONCLUSIONS Mitomycin C/dexamethasone delayed TMP closure in rats but the effect was not sufficiently long-lasting to be defined as a chronic TMP. Neither paper insertion into middle ear cavity nor re-myringotomy created chronic TMP in rats.
Collapse
|
8
|
Santa Maria PL, Kim S, Varsak YK, Yang YP. Heparin binding-epidermal growth factor-like growth factor for the regeneration of chronic tympanic membrane perforations in mice. Tissue Eng Part A 2015; 21:1483-94. [PMID: 25567607 DOI: 10.1089/ten.tea.2014.0474] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We aim to explore the role of epidermal growth factor (EGF) ligand shedding in tympanic membrane wound healing and to investigate the translation of its modulation in tissue engineering of chronic tympanic membrane perforations. Chronic suppurative otitis media (CSOM) is an infected chronic tympanic membrane perforation. Up to 200 million suffer from its associated hearing loss and it is the most common cause of pediatric hearing loss in developing countries. There is a need for nonsurgical treatment due to a worldwide lack of resources. In this study, we show that EGF ligand shedding is essential for tympanic membrane healing as it's inhibition, with KB-R7785, leads to chronic perforation in 87.9% (n=58) compared with 0% (n=20) of controls. We then show that heparin binding-EGF-like growth factor (5 μg/mL), which acts to shed EGF ligands, can regenerate chronic perforations in mouse models with 92% (22 of 24) compared with 38% (10 of 26), also with eustachian tube occlusion with 94% (18 of 19) compared with 9% (2 of 23) and with CSOM 100% (16 of 16) compared with 41% (7 of 17). We also show the nonototoxicity of this treatment and its hydrogel delivery vehicle. This provides preliminary data for a clinical trial where it could be delivered by nonspecialist trained healthcare workers and fulfill the clinical need for a nonsurgical treatment for chronic tympanic membrane perforation and CSOM.
Collapse
Affiliation(s)
- Peter Luke Santa Maria
- 1 Department of Otolaryngology, Head and Neck Surgery, Stanford University , Stanford, California
| | | | | | | |
Collapse
|
9
|
Wang AY, Shen Y, Wang JT, Friedland PL, Atlas MD, Dilley RJ. Animal models of chronic tympanic membrane perforation: a 'time-out' to review evidence and standardize design. Int J Pediatr Otorhinolaryngol 2014; 78:2048-55. [PMID: 25455522 DOI: 10.1016/j.ijporl.2014.10.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/01/2014] [Accepted: 10/04/2014] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To review the literature on techniques for creation of chronic tympanic membrane perforations (TMP) in animal models. Establishing such models in a laboratory setting will have value if they replicate many of the properties of the human clinical condition and can thus be used for investigation of novel grafting materials or other interventions. METHODS A literature search of the PubMed database (1950-August 2014) was performed. The search included all English-language literature published attempts on chronic or delayed TMP in animal models. Studies of non English-language or acute TMP were excluded. RESULTS Thirty-seven studies were identified. Various methods to create TMP in animals have been used including infolding technique, thermal injury, re-myringotomy, and topical agents including chemicals and growth factor receptor inhibitors. The most common type of animal utilized was chinchilla, followed by rat and guinea pig. Twenty three of the 37 studies reported success in achieving chronic TMP animal model while 14 studies solely delayed the healing of TMP. Numerous experimental limitations were identified including TMP patency duration of <8 weeks, lack of documentation of total number of animals attempted and absence of proof for chronicity with otoscopic and histologic evidence. CONCLUSION The existing literature demonstrates the need for an ideal chronic TMP animal model to allow the development of new treatments and evaluate the risk of their clinical application. Various identified techniques seem promising, however, a need was identified for standardization of experimental design and evidence to address multiple limitations.
Collapse
Affiliation(s)
- Allen Y Wang
- Ear Sciences Centre, School of Surgery, the University of Western Australia, Perth, Western Australia, Australia; Ear Science Institute Australia, Perth, Western Australia, Australia; Department of Otolaryngology, Head and Neck, Skull Base Surgery, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia.
| | - Yi Shen
- Ear Sciences Centre, School of Surgery, the University of Western Australia, Perth, Western Australia, Australia; Ear Science Institute Australia, Perth, Western Australia, Australia; Department of Otolaryngology, Head and Neck Surgery, Ningbo Lihuili Hospital (Ningbo Medical Centre) , Ningbo, Zhejiang, China
| | - Jeffrey T Wang
- Ear Sciences Centre, School of Surgery, the University of Western Australia, Perth, Western Australia, Australia
| | - Peter L Friedland
- Ear Sciences Centre, School of Surgery, the University of Western Australia, Perth, Western Australia, Australia; Ear Science Institute Australia, Perth, Western Australia, Australia; Department of Otolaryngology, Head and Neck, Skull Base Surgery, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Marcus D Atlas
- Ear Sciences Centre, School of Surgery, the University of Western Australia, Perth, Western Australia, Australia; Ear Science Institute Australia, Perth, Western Australia, Australia; Department of Otolaryngology, Head and Neck, Skull Base Surgery, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Rodney J Dilley
- Ear Sciences Centre, School of Surgery, the University of Western Australia, Perth, Western Australia, Australia; Ear Science Institute Australia, Perth, Western Australia, Australia
| |
Collapse
|
10
|
Wang AY, Shen Y, Wang JT, Eikelboom RH, Dilley RJ. Animal models of chronic tympanic membrane perforation: in response to plasminogen initiates and potentiates the healing of acute and chronic tympanic membrane perforations in mice. Clin Transl Med 2014; 3:5. [PMID: 24669846 PMCID: PMC3987050 DOI: 10.1186/2001-1326-3-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 03/10/2014] [Indexed: 11/10/2022] Open
Abstract
Tympanic membrane perforations (TMP) are relatively common but are typically not treated in their acute stage, as most will heal spontaneously in 7–10 days. Those cases which fail to heal within 3 months are called chronic TMP which attract surgical intervention (e.g. myringoplasty), typically with a temporalis fascia autograft. New materials for the repair of chronic TMP are being developed to address deficiencies in the performance of autografts by undergoing evaluation in animal models prior to clinical study. However, there is currently a lack of ideal chronic TMP animal models available, hindering the development of new treatments. Various techniques and animal species have been investigated for the creation of chronic TMP with varied success. In the present commentary, we bring to the attention of readers the recent report by Shen et al. in Journal of Translational Medicine. The study reported the creation of a chronic TMP animal model in plasminogen gene deficient mice. However, the short observation time (9, 19 days), lack of success rate and the scarcity of solid evidence (e.g. otoscopic & histologic images) to confirm the chronicity of TMP warrant a more thorough discussion.
Collapse
Affiliation(s)
- Allen Y Wang
- Ear Sciences Centre, School of Surgery, The University of Western Australia, 35 Stirling Highway, Nedlands, WA 6009, Australia.
| | | | | | | | | |
Collapse
|