1
|
Dan Cosnita AR, Raica M, Sava MP, Cimpean AM. Gene Expression Profile of Vascular Endothelial Growth Factors (VEGFs) and Platelet-derived Growth Factors (PDGFs) in the Normal Cornea. In Vivo 2021; 35:805-813. [PMID: 33622873 DOI: 10.21873/invivo.12321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 11/26/2020] [Accepted: 12/03/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM Angiogenic growth factors expression is not known in the normal cornea. The aim was to study corneal gene expression profile of VEGF and PDGF pathways influencing the avascular state of cornea. MATERIALS AND METHODS cDNA synthesis was performed from mRNA extracted from five fresh pig corneas followed by cDNA synthesis and analysis of VEGF and PDGF pathways by TaqMan Array gene expression profile. RESULTS Normal pig cornea lacks VEGFR2 and VEGFR3 gene expression. MK2 and AKT1 genes were significantly overexpressed (p=0.000684, p=0.050995, respectively). Six PDGF pathway genes were overexpressed: TIAM1 (p=0.047), PIK3CA (p=0.00005), IKBKG (p=0.000006), PAK4 (p=0.034), RAC1 (p=0.000006 and PTGS2, p=0.00375). PDGF A was up-regulated, but not with a statistical significance (p=0.79911), while PDGFRα was down-regulated and PDGFRβ was not expressed. CONCLUSION Normal cornea avascularity is given by growth factor receptors down-regulation. Rapid corneal neovascularisation is induced by activation of the main angiogenic growth factors that induce angiogenic cascade and vessel recruitment.
Collapse
Affiliation(s)
- Andrei Radu Dan Cosnita
- Department IX, Surgery I/Ophthalmology, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Marius Raica
- Department of Microscopic Morphology/Histology, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania.,Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Mihai Poenaru Sava
- Department IX, Surgery I/Ophthalmology, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Anca Maria Cimpean
- Department of Microscopic Morphology/Histology, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania; .,Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| |
Collapse
|
2
|
Park H, Lee S, Shrestha P, Kim J, Park JA, Ko Y, Ban YH, Park DY, Ha SJ, Koh GY, Hong VS, Mochizuki N, Kim YM, Lee W, Kwon YG. AMIGO2, a novel membrane anchor of PDK1, controls cell survival and angiogenesis via Akt activation. J Cell Biol 2016; 211:619-37. [PMID: 26553931 PMCID: PMC4639856 DOI: 10.1083/jcb.201503113] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
AMIGO2 is a novel scaffold protein that regulates PDK1 membrane localization and Akt activation in endothelial cells, and inhibition of the interaction between PDK1–AMIGO2 results in impaired neovascularization, pathological angiogenesis, and tumor angiogenesis. The phosphoinositide 3-kinase–Akt signaling pathway is essential to many biological processes, including cell proliferation, survival, metabolism, and angiogenesis, under pathophysiological conditions. Although 3-phosphoinositide–dependent kinase 1 (PDK1) is a primary activator of Akt at the plasma membrane, the optimal activation mechanism remains unclear. We report that adhesion molecule with IgG-like domain 2 (AMIGO2) is a novel scaffold protein that regulates PDK1 membrane localization and Akt activation. Loss of AMIGO2 in endothelial cells (ECs) led to apoptosis and inhibition of angiogenesis with Akt inactivation. Amino acid residues 465–474 in AMIGO2 directly bind to the PDK1 pleckstrin homology domain. A synthetic peptide containing the AMIGO2 465–474 residues abrogated the AMIGO2–PDK1 interaction and Akt activation. Moreover, it effectively suppressed pathological angiogenesis in murine tumor and oxygen-induced retinopathy models. These results demonstrate that AMIGO2 is an important regulator of the PDK1–Akt pathway in ECs and suggest that interference of the PDK1–AMIGO2 interaction might be a novel pharmaceutical target for designing an Akt pathway inhibitor.
Collapse
Affiliation(s)
- Hyojin Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Sungwoon Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Pravesh Shrestha
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Jihye Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Jeong Ae Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Yeongrim Ko
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Young Ho Ban
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Dae-Young Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Gou Young Koh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Victor Sukbong Hong
- College of Natural Sciences, Keimyung University, Daegu 42601, Republic of Korea
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan
| | - Young-Myeong Kim
- Vascular System Research Center, Kangwon National University, Chuncheon, Kangwon 24341, Republic of Korea
| | - Weontae Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
3
|
Hellesøy M, Lorens JB. Cellular context-mediated Akt dynamics regulates MAP kinase signaling thresholds during angiogenesis. Mol Biol Cell 2015; 26:2698-711. [PMID: 26023089 PMCID: PMC4501366 DOI: 10.1091/mbc.e14-09-1378] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 05/18/2015] [Indexed: 01/01/2023] Open
Abstract
This study examines the temporal regulation of Akt in endothelial cells during formation of capillary-like networks induced by cell–cell contact with vascular smooth muscle cells (vSMCs) and vSMC-associated VEGF. Heterotypic cell–cell interaction between mural and endothelial cells alters Akt kinase protein dynamics, which regulates angiogenesis. The formation of new blood vessels by sprouting angiogenesis is tightly regulated by contextual cues that affect angiogeneic growth factor signaling. Both constitutive activation and loss of Akt kinase activity in endothelial cells impair angiogenesis, suggesting that Akt dynamics mediates contextual microenvironmental regulation. We explored the temporal regulation of Akt in endothelial cells during formation of capillary-like networks induced by cell–cell contact with vascular smooth muscle cells (vSMCs) and vSMC-associated VEGF. Expression of constitutively active Akt1 strongly inhibited network formation, whereas hemiphosphorylated Akt1 epi-alleles with reduced kinase activity had an intermediate inhibitory effect. Conversely, inhibition of Akt signaling did not affect endothelial cell migration or morphogenesis in vSMC cocultures that generate capillary-like structures. We found that endothelial Akt activity is transiently blocked by proteasomal degradation in the presence of SMCs during the initial phase of capillary-like structure formation. Suppressed Akt activity corresponded to the increased endothelial MAP kinase signaling that was required for angiogenic endothelial morphogenesis. These results reveal a regulatory principle by which cellular context regulates Akt protein dynamics, which determines MAP kinase signaling thresholds necessary drive a morphogenetic program during angiogenesis.
Collapse
Affiliation(s)
- Monica Hellesøy
- Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway
| | - James B Lorens
- Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway Center for Cancer Biomarkers, University of Bergen, N-5009 Bergen, Norway
| |
Collapse
|