1
|
Zhou P, Zhou H, Shu J, Fu S, Yang Z. Skin wound healing promoted by novel curcumin-loaded micelle hydrogel. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1152. [PMID: 34430593 PMCID: PMC8350667 DOI: 10.21037/atm-21-2872] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/02/2021] [Indexed: 02/05/2023]
Abstract
Background The development of biomaterials with the ability to promote skin wound healing is an important topic in the field of biomedical science. In this study, a topical curcumin (Cur) gel [Cur/hyaluronic acid (HA)] was prepared by combining curcumin-loaded PCL-b-PEG-b-PCL (PECE) nanomicelles (PCEC/Cur) and HA to effectively promote skin wound healing. Continuous drug release from PCEC/Cur can provide long-term protection and treatment of skin wounds. Methods The study was completed in two stages. The first stage (in vitro): PCEC/Cur were prepared by thin film hydration method. The second stage (in vivo): 36 anesthetized rats were used to prepare a round full-thickness skin defect wound with a diameter of 23 mm on the dorsal side of the spine, and the rats were randomly divided into 4 groups with 9 rats in each group. Results The results showed that wounds in the Cur/HA group were restored to normal after 14 days after operation, representing 96%±3% wound healing. Hematoxylin and eosin (HE) staining showed that hair follicles in the Cur/HA group were visible and that the re-epithelialization time was earlier. Masson staining showed that Cur/HA promoted the formation of collagen fibers. Immunohistochemical observation showed that angiogenesis and subsequent healing of the wound surface was enhanced in the Cur/HA group. Conclusions The injectable hyaluronic acid gel complex Cur/HA is a promising candidate material for a wound dressing to promote healing.
Collapse
Affiliation(s)
- Ping Zhou
- Department of Radiology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hao Zhou
- Post Graduation Training Department, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Shu
- Department of Radiology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shaozhi Fu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhu Yang
- Nursing Department, People's Hospital of Luxian County, Luzhou, China
| |
Collapse
|
2
|
Dai W, Wu T, Leng X, Yan W, Hu X, Ao Y. Advances in biomechanical and biochemical engineering methods to stimulate meniscus tissue. Am J Transl Res 2021; 13:8540-8560. [PMID: 34539978 PMCID: PMC8430175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
Meniscal injuries can cause cartilage degeneration, which usually leads to the development of osteoarthritis (OA) and results in progressive destruction of the knee joint. Therefore, it is important to identify methods to stop or slow the development of OA after the onset of meniscal defects. The current surgical techniques for meniscal injuries are insufficient to prevent the progression of knee OA, which has accelerated the development of alternative tissue engineering strategies. Much progress has been made in the use of biomechanical and biochemical stimuli in the past decades to engineer neotissue akin to native meniscus. In this review, we focus on the current progress in biomechanical and biochemical stimuli-based strategies applied to meniscal tissue engineering, and explore how these factors influence meniscal regeneration. By understanding the functional mechanism that can stimulate regeneration in the meniscus, we hope that this review will provide a theoretical basis and strategies for meniscus tissue engineering.
Collapse
Affiliation(s)
- Wenli Dai
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital49 North Garden Road, Haidian District, Beijing 100191, China
| | - Tong Wu
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital49 North Garden Road, Haidian District, Beijing 100191, China
| | - Xi Leng
- Medical Imaging Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine16 Jichang Road, Baiyun District, Guangzhou 510405, Guangdong, China
| | - Wenqiang Yan
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital49 North Garden Road, Haidian District, Beijing 100191, China
| | - Xiaoqing Hu
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital49 North Garden Road, Haidian District, Beijing 100191, China
| | - Yingfang Ao
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital49 North Garden Road, Haidian District, Beijing 100191, China
| |
Collapse
|
3
|
Wang C, Wang Y, Wang C, Shi J, Wang H. Research progress on tissue engineering in repairing tempomandibular joint. Zhejiang Da Xue Xue Bao Yi Xue Ban 2021; 50:212-221. [PMID: 34137227 PMCID: PMC8710277 DOI: 10.3724/zdxbyxb-2021-0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Temporomandibular joint osteoarthritis (TMJOA) is mainly manifested as perforation of temporomandibular joint disc (TMJD) and destruction of condylar osteochondral complex (COCC). In recent years, tissue engineering technology has become one of the effective strategies in repairing this damage. With the development of scaffold material technology, composite scaffolds have become an important means to optimize the performance of scaffolds with the combined advantages of natural materials and synthetic materials. The gelling method with the minimally invasive concept can greatly solve the problems of surgical trauma and material anastomosis, which is beneficial to the clinical transformation of temporomandibular joint tissue engineering. Extracellular matrix scaffolds technology can solve the problem of scaffold source and maximize the simulation of the extracellular environment, which provides an important means for the transformation of temporo joint tissue engineering to animal level. Due to the limitation of the source and amplification of costal chondrocytes, the use of mesenchymal stem cells from different sources has been widely used for temporomandibular joint tissue engineering. The fibrochondral stem cells isolated from surface layer of articular cartilage may provide one more suitable cell source. Transforming growth factor β superfamily, due to its osteochondrogenesis activity has been widely used in tissue engineering, and platelet-rich derivative as a convenient preparation of compound biological factor, gradually get used in temporomandibular joint tissue engineering. With the deepening of research on extracellular microenvironment and mechanical stimulation, mesenchymal stem cells, exosomes and stress stimulation are increasingly being used to regulate the extracellular microenvironment. In the future, the combination of complex bioactive factors and certain stress stimulation may become a trend in the temporomandibular joint tissue engineering research. In this article, the progress on tissue engineering in repairing COCC and TMJD, especially in scaffold materials, seed cells and bioactive factors, are reviewed, so as to provide information for future research design and clinical intervention.
Collapse
|
4
|
Vapniarsky N, Huwe LW, Arzi B, Houghton MK, Wong ME, Wilson JW, Hatcher DC, Hu JC, Athanasiou KA. Tissue engineering toward temporomandibular joint disc regeneration. Sci Transl Med 2019; 10:10/446/eaaq1802. [PMID: 29925634 DOI: 10.1126/scitranslmed.aaq1802] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 05/25/2018] [Indexed: 12/11/2022]
Abstract
Treatments for temporomandibular joint (TMJ) disc thinning and perforation, conditions prevalent in TMJ pathologies, are palliative but not reparative. To address this, scaffold-free tissue-engineered implants were created using allogeneic, passaged costal chondrocytes. A combination of compressive and bioactive stimulation regimens produced implants with mechanical properties akin to those of the native disc. Efficacy in repairing disc thinning was examined in minipigs. Compared to empty controls, treatment with tissue-engineered implants restored disc integrity by inducing 4.4 times more complete defect closure, formed 3.4-fold stiffer repair tissue, and promoted 3.2-fold stiffer intralaminar fusion. The osteoarthritis score (indicative of degenerative changes) of the untreated group was 3.0-fold of the implant-treated group. This tissue engineering strategy paves the way for developing tissue-engineered implants as clinical treatments for TMJ disc thinning.
Collapse
Affiliation(s)
- Natalia Vapniarsky
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, Davis, CA 95616, USA
| | - Le W Huwe
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | - Boaz Arzi
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Meghan K Houghton
- Directorate for Computer and Information Science and Engineering, National Science Foundation, Alexandria, VA 22314, USA
| | - Mark E Wong
- Department of Oral and Maxillofacial Surgery, University of Texas School of Dentistry, Houston, TX 77054, USA
| | - James W Wilson
- Department of Oral and Maxillofacial Surgery, University of Texas School of Dentistry, Houston, TX 77054, USA
| | - David C Hatcher
- Diagnostic Digital Imaging Center, Sacramento, CA 95825, USA
| | - Jerry C Hu
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Kyriacos A Athanasiou
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
5
|
Donahue RP, Gonzalez-Leon EA, Hu JC, Athanasiou KA. Considerations for translation of tissue engineered fibrocartilage from bench to bedside. J Biomech Eng 2018; 141:2718210. [PMID: 30516244 PMCID: PMC6611470 DOI: 10.1115/1.4042201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/27/2018] [Indexed: 12/25/2022]
Abstract
Fibrocartilage is found in the knee meniscus, the temporomandibular joint (TMJ) disc, the pubic symphysis, the annulus fibrosus of intervertebral disc, tendons, and ligaments. These tissues are notoriously difficult to repair due to their avascularity, and limited clinical repair and replacement options exist. Tissue engineering has been proposed as a route to repair and replace fibrocartilages. Using the knee meniscus and TMJ disc as examples, this review describes how fibrocartilages can be engineered toward translation to clinical use. Presented are fibrocartilage anatomy, function, epidemiology, pathology, and current clinical treatments because they inform design criteria for tissue engineered fibrocartilages. Methods for how native tissues are characterized histomorphologically, biochemically, and mechanically to set gold standards are described. Then, provided is a review of fibrocartilage-specific tissue engineering strategies, including the selection of cell sources, scaffold or scaffold-free methods, and biochemical and mechanical stimuli. In closing, the Food and Drug Administration paradigm is discussed to inform researchers of both the guidance that exists and the questions that remain to be answered with regard to bringing a tissue engineered fibrocartilage product to the clinic.
Collapse
Affiliation(s)
- Ryan P. Donahue
- Department of Biomedical Engineering,
University of California, Irvine,
Irvine, CA 92697
e-mail:
| | - Erik A. Gonzalez-Leon
- Department of Biomedical Engineering,
University of California, Irvine,
Irvine, CA 92697
e-mail:
| | - Jerry C. Hu
- Department of Biomedical Engineering,
University of California, Irvine,
Irvine, CA 92697
e-mail:
| | - Kyriacos A. Athanasiou
- Fellow ASME
Department of Biomedical Engineering,
University of California, Irvine
Irvine, CA 92697
e-mail:
| |
Collapse
|
6
|
Salinas EY, Hu JC, Athanasiou K. A Guide for Using Mechanical Stimulation to Enhance Tissue-Engineered Articular Cartilage Properties. TISSUE ENGINEERING PART B-REVIEWS 2018; 24:345-358. [PMID: 29562835 DOI: 10.1089/ten.teb.2018.0006] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The use of tissue-engineered articular cartilage (TEAC) constructs has the potential to become a powerful treatment option for cartilage lesions resulting from trauma or early stages of pathology. Although fundamental tissue-engineering strategies based on the use of scaffolds, cells, and signals have been developed, techniques that lead to biomimetic AC constructs that can be translated to in vivo use are yet to be fully confirmed. Mechanical stimulation during tissue culture can be an effective strategy to enhance the mechanical, structural, and cellular properties of tissue-engineered constructs toward mimicking those of native AC. This review focuses on the use of mechanical stimulation to attain and enhance the properties of AC constructs needed to translate these implants to the clinic. In vivo, mechanical loading at maximal and supramaximal physiological levels has been shown to be detrimental to AC through the development of degenerative changes. In contrast, multiple studies have revealed that during culture, mechanical stimulation within narrow ranges of magnitude and duration can produce anisotropic, mechanically robust AC constructs with high cellular viability. Significant progress has been made in evaluating a variety of mechanical stimulation techniques on TEAC, either alone or in combination with other stimuli. These advancements include determining and optimizing efficacious loading parameters (e.g., duration and frequency) to yield improvements in construct design criteria, such as collagen II content, compressive stiffness, cell viability, and fiber organization. With the advancement of mechanical stimulation as a potent strategy in AC tissue engineering, a compendium detailing the results achievable by various stimulus regimens would be of great use for researchers in academia and industry. The objective is to list the qualitative and quantitative effects that can be attained when direct compression, hydrostatic pressure, shear, and tensile loading are used to tissue-engineer AC. Our goal is to provide a practical guide to their use and optimization of loading parameters. For each loading condition, we will also present and discuss benefits and limitations of bioreactor configurations that have been used. The intent is for this review to serve as a reference for including mechanical stimulation strategies as part of AC construct culture regimens.
Collapse
Affiliation(s)
- Evelia Y Salinas
- Biomedical Engineering Department, University of California , Irvine, California
| | - Jerry C Hu
- Biomedical Engineering Department, University of California , Irvine, California
| | - Kyriacos Athanasiou
- Biomedical Engineering Department, University of California , Irvine, California
| |
Collapse
|
7
|
White JL, Walker NJ, Hu JC, Borjesson DL, Athanasiou KA. A Comparison of Bone Marrow and Cord Blood Mesenchymal Stem Cells for Cartilage Self-Assembly. Tissue Eng Part A 2018; 24:1262-1272. [PMID: 29478385 DOI: 10.1089/ten.tea.2017.0424] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Joint injury is a common cause of premature retirement for the human and equine athlete alike. Implantation of engineered cartilage offers the potential to increase the success rate of surgical intervention and hasten recovery times. Mesenchymal stem cells (MSCs) are a particularly attractive cell source for cartilage engineering. While bone marrow-derived MSCs (BM-MSCs) have been most extensively characterized for musculoskeletal tissue engineering, studies suggest that cord blood MSCs (CB-MSCs) may elicit a more robust chondrogenic phenotype. The objective of this study was to determine a superior equine MSC source for cartilage engineering. MSCs derived from bone marrow or cord blood were stimulated to undergo chondrogenesis through aggregate redifferentiation and used to generate cartilage through the self-assembling process. The resulting neocartilage produced from either BM-MSCs or CB-MSCs was compared by measuring mechanical, biochemical, and histological properties. We found that while BM constructs possessed higher tensile properties and collagen content, CB constructs had superior compressive properties comparable to that of native tissue and higher GAG content. Moreover, CB constructs had alkaline phosphatase activity, collagen type X, and collagen type II on par with native tissue suggesting a more hyaline cartilage-like phenotype. In conclusion, while both BM-MSCs and CB-MSCs were able to form neocartilage, CB-MSCs resulted in tissue more closely resembling native equine articular cartilage as determined by a quantitative functionality index. Therefore, CB-MSCs are deemed a superior source for the purpose of articular cartilage self-assembly.
Collapse
Affiliation(s)
- Jamie L White
- 1 Department of Pathology, Microbiology and Immunology, Integrative Pathobiology Graduate Group, University of California , Davis, Davis, California
| | - Naomi J Walker
- 2 Department of Pathology, Microbiology and Immunology, University of California , Davis, Davis, California
| | - Jerry C Hu
- 3 Department of Biomedical Engineering, Henry Samueli School of Engineering, University of California , Irvine, Irvine, California
| | - Dori L Borjesson
- 2 Department of Pathology, Microbiology and Immunology, University of California , Davis, Davis, California.,4 School of Veterinary Medicine, Veterinary Institute for Regenerative Cures, University of California , Davis, Davis, California
| | - Kyriacos A Athanasiou
- 3 Department of Biomedical Engineering, Henry Samueli School of Engineering, University of California , Irvine, Irvine, California
| |
Collapse
|
8
|
Van Bellinghen X, Idoux-Gillet Y, Pugliano M, Strub M, Bornert F, Clauss F, Schwinté P, Keller L, Benkirane-Jessel N, Kuchler-Bopp S, Lutz JC, Fioretti F. Temporomandibular Joint Regenerative Medicine. Int J Mol Sci 2018; 19:E446. [PMID: 29393880 PMCID: PMC5855668 DOI: 10.3390/ijms19020446] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/19/2018] [Accepted: 01/29/2018] [Indexed: 01/09/2023] Open
Abstract
The temporomandibular joint (TMJ) is an articulation formed between the temporal bone and the mandibular condyle which is commonly affected. These affections are often so painful during fundamental oral activities that patients have lower quality of life. Limitations of therapeutics for severe TMJ diseases have led to increased interest in regenerative strategies combining stem cells, implantable scaffolds and well-targeting bioactive molecules. To succeed in functional and structural regeneration of TMJ is very challenging. Innovative strategies and biomaterials are absolutely crucial because TMJ can be considered as one of the most difficult tissues to regenerate due to its limited healing capacity, its unique histological and structural properties and the necessity for long-term prevention of its ossified or fibrous adhesions. The ideal approach for TMJ regeneration is a unique scaffold functionalized with an osteochondral molecular gradient containing a single stem cell population able to undergo osteogenic and chondrogenic differentiation such as BMSCs, ADSCs or DPSCs. The key for this complex regeneration is the functionalization with active molecules such as IGF-1, TGF-β1 or bFGF. This regeneration can be optimized by nano/micro-assisted functionalization and by spatiotemporal drug delivery systems orchestrating the 3D formation of TMJ tissues.
Collapse
Affiliation(s)
- Xavier Van Bellinghen
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 rue Humann, 67000 Strasbourg, France.
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Ste Elisabeth, 67000 Strasbourg, France.
- Médecine et Chirurgie Bucco-Dentaires & Chirurgie Maxillo-Facial, Hôpitaux Universitaires de Strasbourg (HUS), 1 place de l'Hôpital, 67000 Strasbourg, France.
| | - Ysia Idoux-Gillet
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 rue Humann, 67000 Strasbourg, France.
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Ste Elisabeth, 67000 Strasbourg, France.
| | - Marion Pugliano
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 rue Humann, 67000 Strasbourg, France.
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Ste Elisabeth, 67000 Strasbourg, France.
| | - Marion Strub
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 rue Humann, 67000 Strasbourg, France.
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Ste Elisabeth, 67000 Strasbourg, France.
- Médecine et Chirurgie Bucco-Dentaires & Chirurgie Maxillo-Facial, Hôpitaux Universitaires de Strasbourg (HUS), 1 place de l'Hôpital, 67000 Strasbourg, France.
| | - Fabien Bornert
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 rue Humann, 67000 Strasbourg, France.
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Ste Elisabeth, 67000 Strasbourg, France.
- Médecine et Chirurgie Bucco-Dentaires & Chirurgie Maxillo-Facial, Hôpitaux Universitaires de Strasbourg (HUS), 1 place de l'Hôpital, 67000 Strasbourg, France.
| | - Francois Clauss
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 rue Humann, 67000 Strasbourg, France.
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Ste Elisabeth, 67000 Strasbourg, France.
- Médecine et Chirurgie Bucco-Dentaires & Chirurgie Maxillo-Facial, Hôpitaux Universitaires de Strasbourg (HUS), 1 place de l'Hôpital, 67000 Strasbourg, France.
| | - Pascale Schwinté
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 rue Humann, 67000 Strasbourg, France.
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Ste Elisabeth, 67000 Strasbourg, France.
| | - Laetitia Keller
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 rue Humann, 67000 Strasbourg, France.
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Ste Elisabeth, 67000 Strasbourg, France.
| | - Nadia Benkirane-Jessel
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 rue Humann, 67000 Strasbourg, France.
| | - Sabine Kuchler-Bopp
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 rue Humann, 67000 Strasbourg, France.
| | - Jean Christophe Lutz
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 rue Humann, 67000 Strasbourg, France.
- Médecine et Chirurgie Bucco-Dentaires & Chirurgie Maxillo-Facial, Hôpitaux Universitaires de Strasbourg (HUS), 1 place de l'Hôpital, 67000 Strasbourg, France.
- Faculté de Médecine, Université de Strasbourg, 11 rue Humann, 67000 Strasbourg, France.
| | - Florence Fioretti
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 rue Humann, 67000 Strasbourg, France.
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Ste Elisabeth, 67000 Strasbourg, France.
- Médecine et Chirurgie Bucco-Dentaires & Chirurgie Maxillo-Facial, Hôpitaux Universitaires de Strasbourg (HUS), 1 place de l'Hôpital, 67000 Strasbourg, France.
| |
Collapse
|
9
|
Huwe LW, Sullan GK, Hu JC, Athanasiou KA. Using Costal Chondrocytes to Engineer Articular Cartilage with Applications of Passive Axial Compression and Bioactive Stimuli. Tissue Eng Part A 2017; 24:516-526. [PMID: 28683690 DOI: 10.1089/ten.tea.2017.0136] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Generating neocartilage with suitable mechanical integrity from a cell source that can circumvent chondrocyte scarcity is indispensable for articular cartilage regeneration strategies. Costal chondrocytes of the rib eliminate donor site morbidity in the articular joint, but it remains unclear how neocartilage formed from these cells responds to mechanical loading, especially if the intent is to use it in a load-bearing joint. In a series of three experiments, this study sought to determine efficacious parameters of passive axial compressive stimulation that would enable costal chondrocytes to synthesize mechanically robust cartilage. Experiment 1 determined a suitable time window for stimulation by its application during either the matrix synthesis phase, the maturation phase, or during both phases of the self-assembling process. The results showed that compressive stimulation at either time was effective in increasing instantaneous moduli by 92% and 87% in the synthesis and maturation phases, respectively. Compressive stimulation during both phases did not further improve properties beyond a one-time stimulation. The magnitude of passive axial compression was examined in Experiment 2 by applying 0, 3.3, 5.0, or 6.7 kPa stresses to the neocartilage. Unlike 6.7 kPa, both 3.3 and 5.0 kPa significantly increased neocartilage compressive properties by 42% and 48% over untreated controls, respectively. Experiment 3 examined how the passive axial compression regimen developed from the previous phases interacted with a bioactive regimen (transforming growth factor [TGF]-β1, chondroitinase ABC, and lysyl oxidase-like 2). Passive axial compression significantly improved the relaxation modulus compared with bioactive treatment alone. Furthermore, a combined treatment of compressive and bioactive stimulation improved the tensile properties of neocartilage 2.6-fold compared with untreated control. The ability to create robust articular cartilage from passaged costal chondrocytes through appropriate mechanical and bioactive stimuli will greatly extend the clinical applicability of tissue-engineered products to a wider patient population.
Collapse
Affiliation(s)
- Le W Huwe
- 1 Department of Biomedical Engineering, University of California , Davis, One Shields Avenue, Davis, California
| | - Gurdeep K Sullan
- 1 Department of Biomedical Engineering, University of California , Davis, One Shields Avenue, Davis, California
| | - Jerry C Hu
- 1 Department of Biomedical Engineering, University of California , Davis, One Shields Avenue, Davis, California
| | - Kyriacos A Athanasiou
- 1 Department of Biomedical Engineering, University of California , Davis, One Shields Avenue, Davis, California.,2 Department of Orthopaedic Surgery, University of California , Davis, One Shields Avenue, Davis, California
| |
Collapse
|
10
|
Aryaei A, Vapniarsky N, Hu JC, Athanasiou KA. Recent Tissue Engineering Advances for the Treatment of Temporomandibular Joint Disorders. Curr Osteoporos Rep 2016; 14:269-279. [PMID: 27704395 PMCID: PMC5106310 DOI: 10.1007/s11914-016-0327-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Temporomandibular disorders (TMDs) are among the most common maxillofacial complaints and a major cause of orofacial pain. Although current treatments provide short- and long-term relief, alternative tissue engineering solutions are in great demand. Particularly, the development of strategies, providing long-term resolution of TMD to help patients regain normal function, is a high priority. An absolute prerequisite of tissue engineering is to understand normal structure and function. The current knowledge of anatomical, mechanical, and biochemical characteristics of the temporomandibular joint (TMJ) and associated tissues will be discussed, followed by a brief description of current TMD treatments. The main focus is on recent tissue engineering developments for regenerating TMJ tissue components, with or without a scaffold. The expectation for effectively managing TMD is that tissue engineering will produce biomimetic TMJ tissues that recapitulate the normal structure and function of the TMJ.
Collapse
Affiliation(s)
- Ashkan Aryaei
- Department of Biomedical Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Natalia Vapniarsky
- Department of Biomedical Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Jerry C Hu
- Department of Biomedical Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Kyriacos A Athanasiou
- Department of Biomedical Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
- Department of Orthopedic Surgery, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| |
Collapse
|
11
|
Rowland CR, Colucci LA, Guilak F. Fabrication of anatomically-shaped cartilage constructs using decellularized cartilage-derived matrix scaffolds. Biomaterials 2016; 91:57-72. [PMID: 26999455 DOI: 10.1016/j.biomaterials.2016.03.012] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/02/2016] [Accepted: 03/06/2016] [Indexed: 12/29/2022]
Abstract
The native extracellular matrix of cartilage contains entrapped growth factors as well as tissue-specific epitopes for cell-matrix interactions, which make it a potentially attractive biomaterial for cartilage tissue engineering. A limitation to this approach is that the native cartilage extracellular matrix possesses a pore size of only a few nanometers, which inhibits cellular infiltration. Efforts to increase the pore size of cartilage-derived matrix (CDM) scaffolds dramatically attenuate their mechanical properties, which makes them susceptible to cell-mediated contraction. In previous studies, we have demonstrated that collagen crosslinking techniques are capable of preventing cell-mediated contraction in CDM disks. In the current study, we investigated the effects of CDM concentration and pore architecture on the ability of CDM scaffolds to resist cell-mediated contraction. Increasing CDM concentration significantly increased scaffold mechanical properties, which played an important role in preventing contraction, and only the highest CDM concentration (11% w/w) was able to retain the original scaffold dimensions. However, the increase in CDM concentration led to a concomitant decrease in porosity and pore size. Generating a temperature gradient during the freezing process resulted in unidirectional freezing, which aligned the formation of ice crystals during the freezing process and in turn produced aligned pores in CDM scaffolds. These aligned pores increased the pore size of CDM scaffolds at all CDM concentrations, and greatly facilitated infiltration by mesenchymal stem cells (MSCs). These methods were used to fabricate of anatomically-relevant CDM hemispheres. CDM hemispheres with aligned pores supported uniform MSC infiltration and matrix deposition. Furthermore, these CDM hemispheres retained their original architecture and did not contract, warp, curl, or splay throughout the entire 28-day culture period. These findings demonstrate that given the appropriate fabrication parameters, CDM scaffolds are capable of maintaining complex structures that support MSC chondrogenesis.
Collapse
Affiliation(s)
- Christopher R Rowland
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, 63110, United States; Department of Developmental Biology, Washington University, St. Louis, MO, 63110, United States; Department of Biomedical Engineering, Washington University, St. Louis, MO, 63110, United States; Shriners Hospitals for Children - St. Louis Hospital, 3210 McKinley Research Building, St. Louis, MO, 63110, United States
| | - Lina A Colucci
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, 63110, United States; Department of Developmental Biology, Washington University, St. Louis, MO, 63110, United States; Department of Biomedical Engineering, Washington University, St. Louis, MO, 63110, United States; Shriners Hospitals for Children - St. Louis Hospital, 3210 McKinley Research Building, St. Louis, MO, 63110, United States
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, 63110, United States; Department of Developmental Biology, Washington University, St. Louis, MO, 63110, United States; Department of Biomedical Engineering, Washington University, St. Louis, MO, 63110, United States; Shriners Hospitals for Children - St. Louis Hospital, 3210 McKinley Research Building, St. Louis, MO, 63110, United States.
| |
Collapse
|