1
|
Kandhola G, Park S, Lim JW, Chivers C, Song YH, Chung JH, Kim J, Kim JW. Nanomaterial-Based Scaffolds for Tissue Engineering Applications: A Review on Graphene, Carbon Nanotubes and Nanocellulose. Tissue Eng Regen Med 2023; 20:411-433. [PMID: 37060487 PMCID: PMC10219911 DOI: 10.1007/s13770-023-00530-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 04/16/2023] Open
Abstract
Nanoscale biomaterials have garnered immense interest in the scientific community in the recent decade. This review specifically focuses on the application of three nanomaterials, i.e., graphene and its derivatives (graphene oxide, reduced graphene oxide), carbon nanotubes (CNTs) and nanocellulose (cellulose nanocrystals or CNCs and cellulose nanofibers or CNFs), in regenerating different types of tissues, including skin, cartilage, nerve, muscle and bone. Their excellent inherent (and tunable) physical, chemical, mechanical, electrical, thermal and optical properties make them suitable for a wide range of biomedical applications, including but not limited to diagnostics, therapeutics, biosensing, bioimaging, drug and gene delivery, tissue engineering and regenerative medicine. A state-of-the-art literature review of composite tissue scaffolds fabricated using these nanomaterials is provided, including the unique physicochemical properties and mechanisms that induce cell adhesion, growth, and differentiation into specific tissues. In addition, in vitro and in vivo cytotoxic effects and biodegradation behavior of these nanomaterials are presented. We also discuss challenges and gaps that still exist and need to be addressed in future research before clinical translation of these promising nanomaterials can be realized in a safe, efficacious, and economical manner.
Collapse
Affiliation(s)
- Gurshagan Kandhola
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, USA
- Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Sunho Park
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jae-Woon Lim
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Cody Chivers
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, USA
- Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Young Hye Song
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Jong Hoon Chung
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jangho Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Jin-Woo Kim
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, USA.
- Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, AR, USA.
- Materials Science and Engineering Program, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
2
|
Kandhola G, Park S, Lim JW, Chivers C, Song YH, Chung JH, Kim J, Kim JW. Nanomaterial-Based Scaffolds for Tissue Engineering Applications: A Review on Graphene, Carbon Nanotubes and Nanocellulose. Tissue Eng Regen Med 2023. [PMID: 37060487 DOI: 10.1007/s13770-023-0054*-*] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Nanoscale biomaterials have garnered immense interest in the scientific community in the recent decade. This review specifically focuses on the application of three nanomaterials, i.e., graphene and its derivatives (graphene oxide, reduced graphene oxide), carbon nanotubes (CNTs) and nanocellulose (cellulose nanocrystals or CNCs and cellulose nanofibers or CNFs), in regenerating different types of tissues, including skin, cartilage, nerve, muscle and bone. Their excellent inherent (and tunable) physical, chemical, mechanical, electrical, thermal and optical properties make them suitable for a wide range of biomedical applications, including but not limited to diagnostics, therapeutics, biosensing, bioimaging, drug and gene delivery, tissue engineering and regenerative medicine. A state-of-the-art literature review of composite tissue scaffolds fabricated using these nanomaterials is provided, including the unique physicochemical properties and mechanisms that induce cell adhesion, growth, and differentiation into specific tissues. In addition, in vitro and in vivo cytotoxic effects and biodegradation behavior of these nanomaterials are presented. We also discuss challenges and gaps that still exist and need to be addressed in future research before clinical translation of these promising nanomaterials can be realized in a safe, efficacious, and economical manner.
Collapse
Affiliation(s)
- Gurshagan Kandhola
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, USA
- Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Sunho Park
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jae-Woon Lim
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Cody Chivers
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, USA
- Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Young Hye Song
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Jong Hoon Chung
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jangho Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Jin-Woo Kim
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, USA.
- Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, AR, USA.
- Materials Science and Engineering Program, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
3
|
Kim W, Gwon Y, Kim YK, Park S, Kang SJ, Park HK, Kim MS, Kim J. Plasma-assisted multiscale topographic scaffolds for soft and hard tissue regeneration. NPJ Regen Med 2021; 6:52. [PMID: 34504097 PMCID: PMC8429553 DOI: 10.1038/s41536-021-00162-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 08/04/2021] [Indexed: 02/08/2023] Open
Abstract
The design of transplantable scaffolds for tissue regeneration requires gaining precise control of topographical properties. Here, we propose a methodology to fabricate hierarchical multiscale scaffolds with controlled hydrophilic and hydrophobic properties by employing capillary force lithography in combination with plasma modification. Using our method, we fabricated biodegradable biomaterial (i.e., polycaprolactone (PCL))-based nitrogen gas (N-FN) and oxygen gas plasma-assisted flexible multiscale nanotopographic (O-FMN) patches with natural extracellular matrix-like hierarchical structures along with flexible and controlled hydrophilic properties. In response to multiscale nanotopographic and chemically modified surface cues, the proliferation and osteogenic mineralization of cells were significantly promoted. Furthermore, the O-FMN patch enhanced regeneration of the mineralized fibrocartilage tissue of the tendon-bone interface and the calvarial bone tissue in vivo in rat models. Overall, the PCL-based O-FMN patches could accelerate soft- and hard-tissue regeneration. Thus, our proposed methodology was confirmed as an efficient approach for the design and manipulation of scaffolds having a multiscale topography with controlled hydrophilic property.
Collapse
Affiliation(s)
- Woochan Kim
- grid.14005.300000 0001 0356 9399Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea ,grid.14005.300000 0001 0356 9399Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, Republic of Korea
| | - Yonghyun Gwon
- grid.14005.300000 0001 0356 9399Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea ,grid.14005.300000 0001 0356 9399Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, Republic of Korea
| | - Yang-Kyung Kim
- grid.411597.f0000 0004 0647 2471Department of Orthopedics, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Sunho Park
- grid.14005.300000 0001 0356 9399Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea ,grid.14005.300000 0001 0356 9399Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, Republic of Korea
| | - Sung-Ju Kang
- grid.411597.f0000 0004 0647 2471Department of Orthopedics, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Hyeng-Kyu Park
- grid.411597.f0000 0004 0647 2471Department of Physical and Rehabilitation Medicine, Chonnam National University Medical School & Hospital, Gwangju, Republic of Korea
| | - Myung-Sun Kim
- grid.411597.f0000 0004 0647 2471Department of Orthopedics, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Jangho Kim
- grid.14005.300000 0001 0356 9399Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea ,grid.14005.300000 0001 0356 9399Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, Republic of Korea ,Institute of Nano-Stem Cells Therapeutics, NANOBIOSYSTEM Co., Ltd, Gwangju, 61008 Republic of Korea
| |
Collapse
|
4
|
Kyriakides TR, Raj A, Tseng TH, Xiao H, Nguyen R, Mohammed FS, Halder S, Xu M, Wu MJ, Bao S, Sheu WC. Biocompatibility of nanomaterials and their immunological properties. Biomed Mater 2021; 16:10.1088/1748-605X/abe5fa. [PMID: 33578402 PMCID: PMC8357854 DOI: 10.1088/1748-605x/abe5fa] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 02/12/2021] [Indexed: 12/16/2022]
Abstract
Nanomaterials (NMs) have revolutionized multiple aspects of medicine by enabling novel sensing, diagnostic, and therapeutic approaches. Advancements in processing and fabrication have also allowed significant expansion in the applications of the major classes of NMs based on polymer, metal/metal oxide, carbon, liposome, or multi-scale macro-nano bulk materials. Concomitantly, concerns regarding the nanotoxicity and overall biocompatibility of NMs have been raised. These involve putative negative effects on both patients and those subjected to occupational exposure during manufacturing. In this review, we describe the current state of testing of NMs including those that are in clinical use, in clinical trials, or under development. We also discuss the cellular and molecular interactions that dictate their toxicity and biocompatibility. Specifically, we focus on the reciprocal interactions between NMs and host proteins, lipids, and sugars and how these induce responses in immune and other cell types leading to topical and/or systemic effects.
Collapse
Affiliation(s)
- Themis R Kyriakides
- Department of Biomedical Engineering, Yale University, New Haven, CT 06405, United States of America
- Department of Pathology, Yale University, New Haven, CT 06405, United States of America
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06405, United States of America
| | - Arindam Raj
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06405, United States of America
| | - Tiffany H Tseng
- Department of Pathology, Yale University, New Haven, CT 06405, United States of America
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06405, United States of America
| | - Hugh Xiao
- Department of Biomedical Engineering, Yale University, New Haven, CT 06405, United States of America
| | - Ryan Nguyen
- Department of Biomedical Engineering, Yale University, New Haven, CT 06405, United States of America
| | - Farrah S Mohammed
- Department of Biomedical Engineering, Yale University, New Haven, CT 06405, United States of America
| | - Saiti Halder
- Department of Biomedical Engineering, Yale University, New Haven, CT 06405, United States of America
| | - Mengqing Xu
- Department of Biomedical Engineering, Yale University, New Haven, CT 06405, United States of America
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06405, United States of America
| | - Michelle J Wu
- Department of Biomedical Engineering, Yale University, New Haven, CT 06405, United States of America
| | - Shuozhen Bao
- Department of Biomedical Engineering, Yale University, New Haven, CT 06405, United States of America
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06405, United States of America
| | - Wendy C Sheu
- Department of Biomedical Engineering, Yale University, New Haven, CT 06405, United States of America
| |
Collapse
|
5
|
Surrao DC, Greferath U, Chau YQ, Skabo SJ, Huynh M, Shelat KJ, Limnios IJ, Fletcher EL, Liu Q. Design, development and characterization of synthetic Bruch's membranes. Acta Biomater 2017; 64:357-376. [PMID: 28951331 DOI: 10.1016/j.actbio.2017.09.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 09/13/2017] [Accepted: 09/22/2017] [Indexed: 12/30/2022]
Abstract
Age-related macular degeneration (AMD) is a leading cause of blindness, and dry AMD has no effective treatment. Retinal constructs comprising retinal pigment epithelium (RPE) cells supported by electrospun scaffolds have been investigated to treat dry AMD. However, electrospun scaffolds studied to-date do not mimic the structural microenvironment of human Bruch's membrane (BM), essential for native-like RPE monolayers. The aim of this study was to develop a structurally biomimetic scaffold designed to support a functional RPE monolayer, comprising porous, electrospun nanofibrous membranes (ENMs), coated with laminin, mimicking the inner collagenous layer (ICL) and basal RPE lamina respectively, the cell supporting layers of the BM. In vitro evaluation showed 70nm PLLA ENMs adsorbed high amounts of laminin and supported functional RPE monolayers, exhibiting 3D polygonal-cobblestone morphology, apical microvilli, basal infoldings, high transepithelial resistance (TER), phagocytic activity and expression of signature RPE markers. 70nm PLLA ENMs were successfully implanted into the subretinal space of RCS-rdy+p+/LAV rats, also commonly know as rdy rats. At week 4, in the absence of immunosuppressants, implanted PLLA ENMs were surrounded by a significantly low number of activated microglial cells, compared to week 1, indicating no adverse long-term immune response. In conclusion, we successfully designed and tested ENMs emulating the RPE cell supporting layers of the BM, and found 70nm PLLA ENMs to be best suited as scaffolds for fabricating retinal constructs. STATEMENT OF SIGNIFICANCE Age related macular degeneration (AMD) is a leading cause of vision loss in the developed world, with an increasing number of people suffering from blindness or severe visual impairment. Transplantation of retinal pigment epithelium (RPE) cells supported on a synthetic, biomimetic-like Bruch's membrane (BM) is considered a promising treatment. However, the synthetic scaffolds used do not mimic the microenvironment of the RPE cell supporting layers, required for the development of a functional RPE monolayer. This study indicated that porous, laminin coated, 70nm PLLA ENMs supported functional RPE monolayers, exhibiting 3D polygonal-cobblestone morphology, apical microvilli, basal infoldings, high transepithelial resistance (TER), phagocytic activity and expression of signature RPE markers. These findings indicate the potential clinical use of porous, laminin coated, 70nm PLLA ENMs in fabricating retinal constructs aimed at treating dry AMD.
Collapse
Affiliation(s)
- Denver C Surrao
- Clem Jones Research Centre for Regenerative Medicine, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD 4229, Australia.
| | - Ursula Greferath
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Yu-Qian Chau
- Clem Jones Research Centre for Regenerative Medicine, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD 4229, Australia
| | - Stuart J Skabo
- Clem Jones Research Centre for Regenerative Medicine, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD 4229, Australia
| | - Mario Huynh
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Kinnari J Shelat
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia; Australian National Fabrication Facility (ANFF), Queensland Node, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ioannis J Limnios
- Clem Jones Research Centre for Regenerative Medicine, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD 4229, Australia
| | - Erica L Fletcher
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Qin Liu
- Clem Jones Research Centre for Regenerative Medicine, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD 4229, Australia
| |
Collapse
|
6
|
Hierarchically Micro- and Nanopatterned Topographical Cues for Modulation of Cellular Structure and Function. IEEE Trans Nanobioscience 2016; 15:835-842. [PMID: 28026780 DOI: 10.1109/tnb.2016.2631641] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Living cells receive biochemical and physical information from the surrounding microenvironment and respond to this information. Multiscale hierarchical substrates with micro- and nanogrooves have been shown to mimic the native extracellular matrix (ECM) better than conventional nanopatterned substrates; therefore, substrates with hierarchical topographical cues are considered suitable for investigating the role of physical factors in tissue functions. In this study, precisely controllable, multiscale hierarchical substrates that could mimic the micro- and nanotopography of complex ECMs were fabricated and used to culture various cell types, including fibroblasts, endothelial cells, osteoblasts, and human mesenchymal stem cells. These substrates had both microscale wrinkles and nanoscale patterns and enhanced the alignment and elongation of all the cells tested. In particular, the nanotopography on the microscale wrinkles promoted not only the adhesion, but also the functions of the cells. These findings suggest that the hierarchical multiscale substrates effectively regulated cellular structure and functions and that they can be used as a platform for tissue engineering and regenerative medicine.
Collapse
|
7
|
Bae WG, Kim J, Choung YH, Chung Y, Suh KY, Pang C, Chung JH, Jeong HE. Guided extracellular matrix formation from fibroblast cells cultured on bio-inspired configurable multiscale substrata. Data Brief 2015; 5:203-7. [PMID: 26543882 PMCID: PMC4589828 DOI: 10.1016/j.dib.2015.08.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 08/24/2015] [Indexed: 11/30/2022] Open
Abstract
Engineering complex extracellular matrix (ECM) is an important challenge for cell and tissue engineering applications as well as for understanding fundamental cell biology. We developed the methodology for fabrication of precisely controllable multiscale hierarchical structures using capillary force lithography in combination with original wrinkling technique for the generation of well-defined native ECM-like platforms by culturing fibroblast cells on the multiscale substrata [1]. This paper provides information on detailed characteristics of polyethylene glycol-diacrylate multiscale substrata. In addition, a possible model for guided extracellular matrix formation from fibroblast cells cultured on bio-inspired configurable multiscale substrata is proposed.
Collapse
Affiliation(s)
- Won-Gyu Bae
- Interdisciplinary Program of Bioengineering, Seoul National University, Seoul 151-742, Republic of Korea
| | - Jangho Kim
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Yun-Hoon Choung
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 443-721, Republic of Korea
| | - Yesol Chung
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul 440-746, Republic of Korea
| | - Kahp Y Suh
- Interdisciplinary Program of Bioengineering, Seoul National University, Seoul 151-742, Republic of Korea
| | - Changhyun Pang
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 440-746, Republic of Korea
| | - Jong Hoon Chung
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul 440-746, Republic of Korea
| | - Hoon Eui Jeong
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Republic of Korea
| |
Collapse
|
8
|
Kim J, Kim YJ, Bae WG, Jang KJ, Lim KT, Choung PH, Choung YH, Chung JH. Topographical extracellular matrix cues on anticancer drug-induced cytotoxicity in stem cells. J Biomed Mater Res B Appl Biomater 2014; 103:1320-7. [PMID: 25377936 DOI: 10.1002/jbm.b.33316] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 09/01/2014] [Accepted: 10/10/2014] [Indexed: 12/22/2022]
Abstract
In recent years, cell chip-based platforms have begun to show promise as a means of corroborating the findings of in vivo animal tests for cytotoxicity, and perhaps in the future partially replacing the need for such animal models. In contrast to the conventional culture methods, micro- and nanofabrication techniques can be utilized to provide a set of mechanostimulatory signals to the cells that mimic the context of extracellular matrix (ECM) of the tissue in which a particular cell line resides. Here, we report periodic lateral topographic striations, with a pitch ranging approximately from 200 to 800 nm with an intention to mimic a common geometry of fibrils in the ECM such as collagen or elastin, as a platform for investigating anticancer drug-induced cytotoxicity in stem cells. The ECM cues could facilitate perimeter, elongation, and gap junction formation of mesenchymal stem cells (MSCs), which eventually influenced the fate of cells in terms of death and survival against the common chemotherapeutic agent cisplatin. Interestingly, the appropriate inhibition of gap junctions of MSCs on the ECM mimicking substrates could prevent the cisplatin-induced cytotoxicity through the inhibition of the cisplatin-induced 'death signal communication' as compared to that on the flat substrates. Our results imply that nanoscale topography is an important consideration for chip-based cytotoxicity assays, which uniquely enable the consideration and rational design of ECM-like topographic features, and furthermore, that the natural topography of the ECM in the context of stem cell niches may serve as an important indicator for chemotherapeutic agent sensitivity.
Collapse
Affiliation(s)
- Jangho Kim
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul, 151-742, Republic of Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 151-742, Republic of Korea
| | - Yeon Ju Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, 443-721, Republic of Korea
| | - Won-Gyu Bae
- School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, 301-1202, Republic of Korea
| | - Kyung-Jin Jang
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, 02115
| | - Ki Taek Lim
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul, 151-742, Republic of Korea
| | - Pill-Hoon Choung
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul, 110-749, Republic of Korea
| | - Yun-Hoon Choung
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, 443-721, Republic of Korea
| | - Jong Hoon Chung
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul, 151-742, Republic of Korea.,Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul, 110-749, Republic of Korea
| |
Collapse
|
9
|
Kim J, Bae WG, Choung HW, Lim KT, Seonwoo H, Jeong HE, Suh KY, Jeon NL, Choung PH, Chung JH. Multiscale patterned transplantable stem cell patches for bone tissue regeneration. Biomaterials 2014; 35:9058-67. [DOI: 10.1016/j.biomaterials.2014.07.036] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 07/22/2014] [Indexed: 01/08/2023]
|
10
|
Lima M, Correlo V, Reis R. Micro/nano replication and 3D assembling techniques for scaffold fabrication. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 42:615-21. [DOI: 10.1016/j.msec.2014.05.064] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 05/19/2014] [Accepted: 05/30/2014] [Indexed: 10/25/2022]
|
11
|
Oh S, Kim J, Ryu HR, Lim KT, Chung JH, Jeon NL. Design, Fabrication, and Application of a Microfluidic Device for Investigating Physical Stress-Induced Behavior in Yeast and Microalgae. ACTA ACUST UNITED AC 2014. [DOI: 10.5307/jbe.2014.39.3.244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|