1
|
Mestres G, Carter SSD, Hailer NP, Diez-Escudero A. A practical guide for evaluating the osteoimmunomodulatory properties of biomaterials. Acta Biomater 2021; 130:115-137. [PMID: 34087437 DOI: 10.1016/j.actbio.2021.05.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/29/2021] [Accepted: 05/20/2021] [Indexed: 12/17/2022]
Abstract
Biomaterials offer a promising approach to repair bone defects. Whereas traditional studies predominantly focused on optimizing the osteogenic capacity of biomaterials, less focus has been on the immune response elicited by them. However, the immune and skeletal systems extensively interact, a concept which is referred to as 'osteoimmunology'. This realization has fuelled the development of biomaterials with favourable osteoimmunomodulatory (OIM) properties, aiming to modulate the immune response and to support bone regeneration, thereby affecting the success of an implant. Given the plethora of in vitro assays used to evaluate the OIM properties of biomaterials, it may be challenging to select the right methods to produce conclusive results. In this review, we aim to provide a comprehensive and practical guide for researchers interested in studying the OIM properties of biomaterials in vitro. After a concise overview of the concept of osteoimmunology, emphasis is put on the methodologies that are regularly used to evaluate the OIM properties of biomaterials. First, a description of the most commonly used cell types and cell culture media is provided. Second, typical experimental set-ups and their relevant characteristics are discussed. Third, a detailed overview of the generally used methodologies and readouts, including cell type-specific markers and time points of analysis, is given. Finally, we highlight the promise of advanced approaches, namely microarrays, bioreactors and microfluidic-based systems, and the potential that these may offer to the osteoimmunology field. STATEMENT OF SIGNIFICANCE: Osteoimmunology focuses on the connection and communication between the skeletal and immune systems. This interaction has been recognized to play an important role in the clinical success of biomaterials, which has resulted in an increasing amount of research on the osteoimmunomodulatory (OIM) properties of biomaterials. However, the amount of literature makes it challenging to extract the information needed to design experiments from beginning to end, and to compare obtained results to existing work. This article intends to serve as a guide for those aiming to learn more about the commonly used experimental approaches in the field. We cover early-stage choices, such as cell types and experimental set-ups, but also discuss specific assays, including cell markers and time points of analysis.
Collapse
Affiliation(s)
- Gemma Mestres
- Division of Microsystems Technology, Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, 751 22 Uppsala, Sweden.
| | - Sarah-Sophia D Carter
- Division of Microsystems Technology, Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, 751 22 Uppsala, Sweden
| | - Nils P Hailer
- Ortholab, Department of Surgical Sciences-Orthopaedics, Uppsala University, 751 85 Uppsala, Sweden
| | - Anna Diez-Escudero
- Ortholab, Department of Surgical Sciences-Orthopaedics, Uppsala University, 751 85 Uppsala, Sweden
| |
Collapse
|
2
|
Wang Z, Maimaitiaili A, Wang T, Song X. Rifapentine Polylactic Acid Sustained-Release Microsphere Complex for Spinal Tuberculosis Therapy: Preparation, in vitro and in vivo Studies. Infect Drug Resist 2021; 14:1781-1794. [PMID: 34025123 PMCID: PMC8132576 DOI: 10.2147/idr.s304864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022] Open
Abstract
Purpose Spinal tuberculosis has been a common clinical extrapulmonary tuberculosis in recent years. The general anti-tuberculosis drug treatment cycle is long, with unsatisfactory efficacy. This study focused on the preparation and evaluation of rifapentine polylactic acid sustained-release microsphere complex for spinal tuberculosis therapy. Methods Rifapentine polylactic acid sustained-release microspheres (RPSMs) were prepared through the double emulsion solvent evaporation method, and RPSMs were combined with hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) composite material to obtain drug-loaded, sustained-release complex. We evaluated the complex for dynamics of drug release and osteogenic ability using in vitro release test, alkaline phosphatase and alizarin red staining, real-time PCR and Western blot. A rabbit model of a spinal tuberculosis defect was established and repaired using HA/β-TCP or complex. The ability of anti-tuberculosis and tissue repair effects of the complex were evaluated through in vivo experiments. Results The complex constructed of RPSMs and HA/β-TCP demonstrated a long drug release time, with no significant inhibition of cell osteogenic differentiation in vitro experiments. Postoperative macroscopic observation, immunohistochemical staining and Nilsson histological scores showed that the complex has good effects on the tissue repair. Moreover, the erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP), important indexes of inflammation, decreased to normal levels in the complex group. Conclusion In vitro and in vivo experiments demonstrated that the complex constructed of RPSMs and HA/β-TCP effectively treated spinal tuberculosis. Therefore, the complex represents a promising approach for the treatment of spinal tuberculosis.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Orthopeadics, The Affiliated Linfen Hospital of Shanxi Medical University, Linfen, Shanxi Province, People's Republic of China.,Department of Orthopeadics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Province, People's Republic of China
| | - Abulikemu Maimaitiaili
- Department of Orthopeadics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Province, People's Republic of China
| | - Tengfei Wang
- Department of Orthopeadics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Province, People's Republic of China
| | - Xinghua Song
- Department of Orthopeadics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Province, People's Republic of China.,Department of Orthopeadics, The Affiliated Shunde Hospital of Jinan University, Foshan, Guangdong Province, People's Republic of China
| |
Collapse
|
3
|
Umbilical Cord-Derived Mesenchymal Stem Cells Are Able to Use bFGF Treatment and Represent a Superb Tool for Immunosuppressive Clinical Applications. Int J Mol Sci 2020; 21:ijms21155366. [PMID: 32731615 PMCID: PMC7432622 DOI: 10.3390/ijms21155366] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/15/2020] [Accepted: 07/22/2020] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have become a promising tool in cellular therapy for restoring immune system haemostasis; however, the success of clinical trials has been impaired by the lack of standardized manufacturing processes. This study aims to determine the suitability of source tissues and culture media for the production of MSC-based advanced therapy medicinal products (ATMPs) and to define parameters to extend the set of release criteria. MSCs were isolated from umbilical cord (UC), bone marrow and lipoaspirate and expanded in three different culture media. MSC phenotype, proliferation capacity and immunosuppressive parameters were evaluated in normal MSCs compared to primed MSCs treated with cytokines mimicking an inflammatory environment. Compared to bone marrow and lipoaspirate, UC-derived MSCs (UC-MSCs) showed the highest proliferative capacity, which was further enhanced by media supplemented with bFGF, while the cells maintained their immunosuppressive characteristics. Moreover, UC-MSCs expanded in the bFGF-enriched medium were the least sensitive to undesirable priming-induced changes in the MSC phenotype. Surface markers and secreted factors were identified to reflect the cell response to inflammatory priming and to be variable among MSCs from different source tissues. This study demonstrates that UC is a favorable cell source for manufacturing MSC-based ATMPs for immunosuppressive applications. UC-MSCs are able to use the bFGF-enriched medium for higher cell yields without the impairment of immunosuppressive parameters and undesirable phenotype changes after inflammatory preconditioning of MSCs before transplantation. Additionally, immunosuppressive parameters were identified to help finding predictors of clinically efficient MSCs in the following clinical trials.
Collapse
|
4
|
Enhanced osteogenic differentiation of mesenchymal stem cells in ankylosing spondylitis: a study based on a three-dimensional biomimetic environment. Cell Death Dis 2019; 10:350. [PMID: 31024000 PMCID: PMC6484086 DOI: 10.1038/s41419-019-1586-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/17/2019] [Accepted: 04/10/2019] [Indexed: 12/27/2022]
Abstract
The mechanism of pathological osteogenesis in Ankylosing spondylitis (AS) is largely unknown. Our previous studies demonstrated that the imbalance between BMP-2 and Noggin secretion induces abnormal osteogenic differentiation of marrow-derived mesenchymal stem cells (MSCs) from AS patients in a two-dimensional culture environment. In this study, HA/β-TCP scaffolds were further used as a three-dimensional (3D) biomimetic culture system to mimic the bone microenvironment in vivo to determine the abnormal osteogenic differentiation of AS-MSCs. We demonstrated that when cultured in HA/β-TCP scaffolds, AS-MSCs had a stronger osteogenic differentiation capacity than that of MSCs from healthy donors (HD-MSCs) in vitro and in vivo. This dysfunction resulted from BMP2 overexpression in AS-MSCs, which excessively activated the Smad1/5/8 and ERK signalling pathways and finally led to enhanced osteogenic differentiation. Both the signalling pathway inhibitors and siRNAs inhibiting BMP2 expression could rectify the enhanced osteogenic differentiation of AS-MSCs. Furthermore, BMP2 expression in ossifying entheses was significantly higher in AS patients. In summary, our study demonstrated that AS-MSCs possess enhanced osteogenic differentiation in HA/β-TCP scaffolds as a 3D biomimetic microenvironment because of BMP2 overexpression, but not Noggin. These results provide insights into the mechanism of pathological osteogenesis, which can aid in the development of niche-targeting medications for AS.
Collapse
|
5
|
Humbert P, Brennan MÁ, Davison N, Rosset P, Trichet V, Blanchard F, Layrolle P. Immune Modulation by Transplanted Calcium Phosphate Biomaterials and Human Mesenchymal Stromal Cells in Bone Regeneration. Front Immunol 2019; 10:663. [PMID: 31001270 PMCID: PMC6455214 DOI: 10.3389/fimmu.2019.00663] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/11/2019] [Indexed: 12/22/2022] Open
Abstract
A wide variety of biomaterials have been developed as both stabilizing structures for the injured bone and inducers of bone neoformation. They differ in chemical composition, shape, porosity, and mechanical properties. The most extensively employed and studied subset of bioceramics are calcium phosphate materials (CaPs). These materials, when transplanted alongside mesenchymal stem cells (MSCs), lead to ectopic (intramuscular and subcutaneous) and orthotopic bone formation in preclinical studies, and effective fracture healing in clinical trials. Human MSC transplantation in pre-clinical and clinical trials reveals very low engraftment in spite of successful clinical outcomes and their therapeutic actions are thought to be primarily through paracrine mechanisms. The beneficial role of transplanted MSC could rely on their strong immunomodulatory effect since, even without long-term engraftment, they have the ability to alter both the innate and adaptive immune response which is critical to facilitate new bone formation. This study presents the current knowledge of the immune response to the implantation of CaP biomaterials alone or in combination with MSC. In particular the central role of monocyte-derived cells, both macrophages and osteoclasts, in MSC-CaP mediated bone formation is emphasized. Biomaterial properties, such as macroporosity and surface microstructure, dictate the host response, and the ultimate bone healing cascade. Understanding intercellular communications throughout the inflammation, its resolution and the bone regeneration phase, is crucial to improve the current therapeutic strategies or develop new approaches.
Collapse
Affiliation(s)
- Paul Humbert
- Laboratory Phy-Os, Inserm UMR1238, University of Nantes, Nantes, France
| | - Meadhbh Á. Brennan
- Laboratory Phy-Os, Inserm UMR1238, University of Nantes, Nantes, France
- Harvard School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
| | - Noel Davison
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
- Instructure Labs, B.V., The Hague, Netherlands
| | - Philippe Rosset
- Laboratory Phy-Os, Inserm UMR1238, University of Nantes, Nantes, France
- Centre Hospitalier Universitaire de Tours, Tours, France
| | - Valérie Trichet
- Laboratory Phy-Os, Inserm UMR1238, University of Nantes, Nantes, France
| | | | - Pierre Layrolle
- Laboratory Phy-Os, Inserm UMR1238, University of Nantes, Nantes, France
| |
Collapse
|
6
|
Li J, Chen T, Huang X, Zhao Y, Wang B, Yin Y, Cui Y, Zhao Y, Zhang R, Wang X, Wang Y, Dai J. Substrate-independent immunomodulatory characteristics of mesenchymal stem cells in three-dimensional culture. PLoS One 2018; 13:e0206811. [PMID: 30408051 PMCID: PMC6224081 DOI: 10.1371/journal.pone.0206811] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 10/21/2018] [Indexed: 01/02/2023] Open
Abstract
Mesenchymal stem cells (MSCs) play important roles in tissue regeneration, and multi-lineage differentiation and immunomodulation are two major characteristics of MSCs that are utilized in stem cell therapy. MSCs in vivo have a markedly different three-dimensional (3D) niche compared to the traditional two-dimensional (2D) culture in vitro. A 3D scaffold is predicted to provide an artificial 3D environment similar to the in vivo environment. Significant changes in MSC differentiation are shown to be occurred when under 3D culture. However, the immunomodulatory characteristics of MSCs under 3D culture remain unknown. In this study, 3D culture systems were constructed using different substrates to evaluate the common immunomodulatory characteristics of MSCs. Compared to the MSCs under 2D culture, the MSCs under 3D culture, which had higher stemness and maintained cell phenotype, showed altered immunophenotypic pattern. Gene expression profile analysis at mRNA and protein level detected by gene chip and protein chip, respectively, further revealed the difference between 3D cultured MSCs and 2D cultured MSCs, which was mainly concentrated in the immunoregulation related aspects. Moreover, the immunoregulatory role of 3D culture was confirmed by our immunosuppressive experiments. These findings demonstrated that the immunomodulatory capacities of MSCs were enhanced by the 3D geometry of substrates.
Collapse
Affiliation(s)
- Jing Li
- Laboratory of Translational Medicine, Chinese PLA General Hospital, Beijing, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Tong Chen
- University of Chinese Academy of Sciences, Beijing, China
- The State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yunshan Zhao
- Institute of General Surgery, Chinese PLA General Hospital, Beijing, China
| | - Bin Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yanyun Yin
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yi Cui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ruiping Zhang
- Department of Radiology, First Clinical Medical School of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiujie Wang
- The State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
7
|
Abdolmohammadi K, Pakdel FD, Aghaei H, Assadiasl S, Fatahi Y, Rouzbahani NH, Rezaiemanesh A, Soleimani M, Tayebi L, Nicknam MH. Ankylosing spondylitis and mesenchymal stromal/stem cell therapy: a new therapeutic approach. Biomed Pharmacother 2018; 109:1196-1205. [PMID: 30551369 DOI: 10.1016/j.biopha.2018.10.137] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 12/17/2022] Open
Abstract
Ankylosing spondylitis (AS) is an inflammatory rheumatoid disease categorized within spondyloarthropathies (SpA) and manifested by chronic spinal arthritis. Several innate and adaptive immune cells and secreted-mediators have been indicated to play a role in AS pathogenesis. Considering the limitations of current therapeutic approaches (NSAIDs, glucocorticoids, DMARDs and biologic drugs), finding new treatments with fewer side effects and high therapeutic potentials are required in AS. Mesenchymal stem cells (MSCs) with considerable immunomodulatory and regenerative properties could be able to attenuate the inflammatory responses and help tissue repair by cell-to-cell contact and secretion of soluble factors. Moreover, MSCs do not express HLA-DR, which renders them a favorable therapeutic choice for transplantation in immune-mediated disorders. In the present review, we describe immunopathogenesis and current treatments restrictions of AS. Afterwards, immunomodulatory properties and applications of MSCs in immune-mediated disorders, as well as recent findings of clinical trials involving mesenchymal stem cell therapy (MSCT) in ankylosing spondylitis, will be discussed in detail. Additional studies are required to investigate several features of MSCT such as cell origin, dosage, administration route and, specifically, the most suitable stage of disease for ideal intervention.
Collapse
Affiliation(s)
- Kamal Abdolmohammadi
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Stem Cell Biology, Stem Cell Technology Research Center, Tehran, Iran
| | - Fatemeh Dadgar Pakdel
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamideh Aghaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Assadiasl
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Negin Hosseini Rouzbahani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Stem Cell Biology, Stem Cell Technology Research Center, Tehran, Iran; Department of Immunology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Alireza Rezaiemanesh
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoud Soleimani
- Department of Stem Cell Biology, Stem Cell Technology Research Center, Tehran, Iran; Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| | - Mohammad Hossein Nicknam
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Leach JK, Whitehead J. Materials-Directed Differentiation of Mesenchymal Stem Cells for Tissue Engineering and Regeneration. ACS Biomater Sci Eng 2018; 4:1115-1127. [PMID: 30035212 PMCID: PMC6052883 DOI: 10.1021/acsbiomaterials.6b00741] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cell-based therapies are a promising alternative to grafts and organ transplantation for treating tissue loss or damage due to trauma, malfunction, or disease. Over the past two decades, mesenchymal stem cells (MSCs) have attracted much attention as a potential cell population for use in regenerative medicine. While the proliferative capacity and multilineage potential of MSCs provide an opportunity to generate clinically relevant numbers of transplantable cells, their use in tissue regenerative applications has met with relatively limited success to date apart from secreting paracrine-acting factors to modulate the defect microenvironment. Presently, there is significant effort to engineer the biophysical properties of biomaterials to direct MSC differentiation and further expand on the potential of MSCs in tissue engineering, regeneration, and repair. Biomaterials can dictate MSC differentiation by modulating features of the substrate including composition, mechanical properties, porosity, and topography. The purpose of this review is to highlight recent approaches for guiding MSC fate using biomaterials and provide a description of the underlying characteristics that promote differentiation toward a desired phenotype.
Collapse
Affiliation(s)
- J. Kent Leach
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616
- Department of Orthopaedic Surgery, School of Medicine, UC Davis Medical Center, Sacramento, C 95817
| | - Jacklyn Whitehead
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616
| |
Collapse
|
9
|
A Multicentric, Open-Label, Randomized, Comparative Clinical Trial of Two Different Doses of Expanded hBM-MSCs Plus Biomaterial versus Iliac Crest Autograft, for Bone Healing in Nonunions after Long Bone Fractures: Study Protocol. Stem Cells Int 2018. [PMID: 29535772 PMCID: PMC5842679 DOI: 10.1155/2018/6025918] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
ORTHOUNION is a multicentre, open, comparative, three-arm, randomized clinical trial (EudraCT number 2015-000431-32) to compare the efficacy, at one and two years, of autologous human bone marrow-derived expanded mesenchymal stromal cell (hBM-MSC) treatments versus iliac crest autograft (ICA) to enhance bone healing in patients with diaphyseal and/or metaphysodiaphyseal fracture (femur, tibia, and humerus) status of atrophic or oligotrophic nonunion (more than 9 months after the acute fracture, including recalcitrant cases after failed treatments). The primary objective is to determine if the treatment with hBM-MSCs combined with biomaterial is superior to ICA in obtaining bone healing. If confirmed, a secondary objective is set to determine if the dose of 100 × 106 hBM-MSCs is noninferior to that of 200 × 106 hBM-MSCs. The participants (n = 108) will be randomly assigned to either the experimental low dose (n = 36), the experimental high dose (n = 36), or the comparator arm (n = 36) using a central randomization service. The trial will be conducted in 20 clinical centres in Spain, France, Germany, and Italy under the same clinical protocol. The confirmation of superiority for the proposed ATMP in nonunions may foster the future of bone regenerative medicine in this indication. On the contrary, absence of superiority may underline its limitations in clinical use.
Collapse
|
10
|
Benning L, Gutzweiler L, Tröndle K, Riba J, Zengerle R, Koltay P, Zimmermann S, Stark GB, Finkenzeller G. Cytocompatibility testing of hydrogels toward bioprinting of mesenchymal stem cells. J Biomed Mater Res A 2017; 105:3231-3241. [DOI: 10.1002/jbm.a.36179] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/07/2017] [Accepted: 07/28/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Leo Benning
- Department of Plastic and Hand Surgery; Faculty of Medicine, Medical Center-University of Freiburg, Freiburg; Germany
| | - Ludwig Gutzweiler
- Laboratory for MEMS Applications, IMTEK-Department of Microsystems Engineering; University of Freiburg, Georges-Koehler-Allee 103; Freiburg 79110 Germany
- Hahn-Schickard, Georges-Koehler-Allee 103; Freiburg 79110 Germany
| | - Kevin Tröndle
- Laboratory for MEMS Applications, IMTEK-Department of Microsystems Engineering; University of Freiburg, Georges-Koehler-Allee 103; Freiburg 79110 Germany
| | - Julian Riba
- Laboratory for MEMS Applications, IMTEK-Department of Microsystems Engineering; University of Freiburg, Georges-Koehler-Allee 103; Freiburg 79110 Germany
| | - Roland Zengerle
- Laboratory for MEMS Applications, IMTEK-Department of Microsystems Engineering; University of Freiburg, Georges-Koehler-Allee 103; Freiburg 79110 Germany
- Hahn-Schickard, Georges-Koehler-Allee 103; Freiburg 79110 Germany
- FIT-Freiburg Centre for Interactive Materials and Bioinspired Technologies; University of Freiburg, Georges-Koehler-Allee 105; Freiburg 79110 Germany
| | - Peter Koltay
- Laboratory for MEMS Applications, IMTEK-Department of Microsystems Engineering; University of Freiburg, Georges-Koehler-Allee 103; Freiburg 79110 Germany
| | - Stefan Zimmermann
- Laboratory for MEMS Applications, IMTEK-Department of Microsystems Engineering; University of Freiburg, Georges-Koehler-Allee 103; Freiburg 79110 Germany
| | - G. Björn Stark
- Department of Plastic and Hand Surgery; Faculty of Medicine, Medical Center-University of Freiburg, Freiburg; Germany
| | - Günter Finkenzeller
- Department of Plastic and Hand Surgery; Faculty of Medicine, Medical Center-University of Freiburg, Freiburg; Germany
| |
Collapse
|
11
|
Amati E, Sella S, Perbellini O, Alghisi A, Bernardi M, Chieregato K, Lievore C, Peserico D, Rigno M, Zilio A, Ruggeri M, Rodeghiero F, Astori G. Generation of mesenchymal stromal cells from cord blood: evaluation of in vitro quality parameters prior to clinical use. Stem Cell Res Ther 2017; 8:14. [PMID: 28115021 PMCID: PMC5260040 DOI: 10.1186/s13287-016-0465-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 12/13/2016] [Accepted: 12/21/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Increasing evidence suggests the safety and efficacy of mesenchymal stromal cells (MSC) as advanced therapy medicinal products because of their immunomodulatory properties and supportive role in hematopoiesis. Although bone marrow remains the most common source for obtaining off-the-shelf MSC, cord blood (CB) represents an alternative source, which can be collected noninvasively and without major ethical concerns. However, the low estimated frequency and inconsistency of successful isolation represent open challenges for the use of CB-derived MSC in clinical trials. This study explores whether CB may represent a suitable source of MSC for clinical use and analyzes several in vitro parameters useful to better define the quality of CB-derived MSC prior to clinical application. METHODS CB units (n = 50) selected according to quality criteria (CB volume ≥ 20 ml, time from collection ≤ 24 h) were cultured using a standardized procedure for CB-MSC generation. MSC were analyzed for their growth potential and secondary colony-forming capacity. Immunophenotype and multilineage differentiation potential of culture-expanded CB-MSC were assessed to verify MSC identity. The immunomodulatory activity at resting conditions and after inflammatory priming (IFN-γ-1b and TNF-α for 48 hours) was explored to assess the in vitro potency of CB-MSC prior to clinical application. Molecular karyotyping was used to assess the genetic stability after prolonged MSC expansion. RESULTS We were able to isolate MSC colonies from 44% of the processed units. Our results do not support a role of CB volume in determining the outcome of the cultures, in terms of both isolation and proliferative capacity of CB-MSC. Particularly, we have confirmed the existence of two different CB-MSC populations named short- and long-living (SL- and LL-) CBMSC, clearly diverging in their growth capacity and secondary colony-forming efficiency. Only LL-CBMSC were able to expand consistently and to survive for longer periods in vitro, while preserving genetic stability. Therefore, they may represent interesting candidates for therapeutic applications. We have also observed that LL-CBMSC were not equally immunosuppressive, particularly after inflammatory priming and despite upregulating priming-inducible markers. CONCLUSIONS This work supports the use of CB as a potential MSC source for clinical applications, remaining more readily available compared to conventional sources. We have provided evidence that not all LL-CBMSC are equally immunosuppressive in an inflammatory environment, suggesting the need to include the assessment of potency among the release criteria for each CB-MSC batch intended for clinical use, at least for the treatment of immune disorders as GvHD.
Collapse
Affiliation(s)
- Eliana Amati
- Advanced Cellular Therapy Laboratory - Hematology Unit, S. Bortolo Hospital - ULSS 6, Contra' San Francesco 41, 36100, Vicenza, Italy
| | - Sabrina Sella
- Advanced Cellular Therapy Laboratory - Hematology Unit, S. Bortolo Hospital - ULSS 6, Contra' San Francesco 41, 36100, Vicenza, Italy
| | - Omar Perbellini
- Advanced Cellular Therapy Laboratory - Hematology Unit, S. Bortolo Hospital - ULSS 6, Contra' San Francesco 41, 36100, Vicenza, Italy
| | | | - Martina Bernardi
- Advanced Cellular Therapy Laboratory - Hematology Unit, S. Bortolo Hospital - ULSS 6, Contra' San Francesco 41, 36100, Vicenza, Italy.,Hematology Project Foundation, Vicenza, Italy
| | - Katia Chieregato
- Advanced Cellular Therapy Laboratory - Hematology Unit, S. Bortolo Hospital - ULSS 6, Contra' San Francesco 41, 36100, Vicenza, Italy.,Hematology Project Foundation, Vicenza, Italy
| | - Chiara Lievore
- Transfusion Medicine, S. Bortolo Hospital, Vicenza, Italy
| | - Denise Peserico
- Advanced Cellular Therapy Laboratory - Hematology Unit, S. Bortolo Hospital - ULSS 6, Contra' San Francesco 41, 36100, Vicenza, Italy
| | - Manuela Rigno
- Transfusion Medicine, S. Bortolo Hospital, Vicenza, Italy
| | - Anna Zilio
- Genetics and Molecular Biology, Transfusion Medicine, S. Bortolo Hospital, Vicenza, Italy
| | - Marco Ruggeri
- Advanced Cellular Therapy Laboratory - Hematology Unit, S. Bortolo Hospital - ULSS 6, Contra' San Francesco 41, 36100, Vicenza, Italy
| | | | - Giuseppe Astori
- Advanced Cellular Therapy Laboratory - Hematology Unit, S. Bortolo Hospital - ULSS 6, Contra' San Francesco 41, 36100, Vicenza, Italy.
| |
Collapse
|
12
|
Vercellino M, Ceccarelli G, Cristofaro F, Balli M, Bertoglio F, Bruni G, Benedetti L, Avanzini MA, Imbriani M, Visai L. Nanostructured TiO₂ Surfaces Promote Human Bone Marrow Mesenchymal Stem Cells Differentiation to Osteoblasts. NANOMATERIALS 2016; 6:nano6070124. [PMID: 28335251 PMCID: PMC5224601 DOI: 10.3390/nano6070124] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/13/2016] [Accepted: 06/15/2016] [Indexed: 11/24/2022]
Abstract
Micro- and nano-patterning/modification are emerging strategies to improve surfaces properties that may influence critically cells adherence and differentiation. Aim of this work was to study the in vitro biological reactivity of human bone marrow mesenchymal stem cells (hBMSCs) to a nanostructured titanium dioxide (TiO2) surface in comparison to a coverglass (Glass) in two different culture conditions: with (osteogenic medium (OM)) and without (proliferative medium (PM)) osteogenic factors. To evaluate cell adhesion, hBMSCs phosphorylated focal adhesion kinase (pFAK) foci were analyzed by confocal laser scanning microscopy (CLSM) at 24 h: the TiO2 surface showed a higher number of pFAK foci with respect to Glass. The hBMSCs differentiation to osteoblasts was evaluated in both PM and OM culture conditions by enzyme-linked immunosorbent assay (ELISA), CLSM and real-time quantitative reverse transcription PCR (qRT-PCR) at 28 days. In comparison with Glass, TiO2 surface in combination with OM conditions increased the content of extracellular bone proteins, calcium deposition and alkaline phosphatase activity. The qRT-PCR analysis revealed, both in PM and OM, that TiO2 surface increased at seven and 28 days the expression of osteogenic genes. All together, these results demonstrate the capability of TiO2 nanostructured surface to promote hBMSCs osteoblast differentiation and its potentiality in biomedical applications.
Collapse
Affiliation(s)
- Marco Vercellino
- Department of Molecular Medicine, Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Viale Taramelli 3/b, Pavia 27100, Italy.
| | - Gabriele Ceccarelli
- Department of Public Health, Experimental Medicine and Forensic, Human Anatomy Unit, Center of Health Technologies (CHT), University of Pavia, Viale Forlanini 8, Pavia 27100, Italy.
| | - Francesco Cristofaro
- Department of Molecular Medicine, Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Viale Taramelli 3/b, Pavia 27100, Italy.
| | - Martina Balli
- Department of Public Health, Experimental Medicine and Forensic, Human Anatomy Unit, Center of Health Technologies (CHT), University of Pavia, Viale Forlanini 8, Pavia 27100, Italy.
| | - Federico Bertoglio
- Department of Molecular Medicine, Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Viale Taramelli 3/b, Pavia 27100, Italy.
| | - Gianna Bruni
- Department of Chemistry-Physical-Chemistry Section, University of Pavia, Viale Taramelli 16, Pavia 27100, Italy.
| | - Laura Benedetti
- Department of Public Health, Experimental Medicine and Forensic, Human Anatomy Unit, Center of Health Technologies (CHT), University of Pavia, Viale Forlanini 8, Pavia 27100, Italy.
| | - Maria Antonietta Avanzini
- Laboratory of Transplant Immunology/Cell Factory, Fondazione IRCCS Policlinico "San Matteo", P.le Golgi 19, Pavia 27100, Italy.
| | - Marcello Imbriani
- Department of Public Health, Experimental Medicine and Forensic, Human Anatomy Unit, Center of Health Technologies (CHT), University of Pavia, Viale Forlanini 8, Pavia 27100, Italy.
- Department of Occupational Medicine, Toxicology and Environmental Risks, S. Maugeri Foundation, IRCCS, Via S.Boezio 28, Pavia 27100, Italy.
| | - Livia Visai
- Department of Molecular Medicine, Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Viale Taramelli 3/b, Pavia 27100, Italy.
- Department of Occupational Medicine, Toxicology and Environmental Risks, S. Maugeri Foundation, IRCCS, Via S.Boezio 28, Pavia 27100, Italy.
| |
Collapse
|
13
|
Di Trapani M, Bassi G, Midolo M, Gatti A, Kamga PT, Cassaro A, Carusone R, Adamo A, Krampera M. Differential and transferable modulatory effects of mesenchymal stromal cell-derived extracellular vesicles on T, B and NK cell functions. Sci Rep 2016; 6:24120. [PMID: 27071676 PMCID: PMC4829861 DOI: 10.1038/srep24120] [Citation(s) in RCA: 215] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/22/2016] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are multipotent cells, immunomodulatory stem cells that are currently used for regenerative medicine and treatment of a number of inflammatory diseases, thanks to their ability to significantly influence tissue microenvironments through the secretion of large variety of soluble factors. Recently, several groups have reported the presence of extracellular vesicles (EVs) within MSC secretoma, showing their beneficial effect in different animal models of disease. Here, we used a standardized methodological approach to dissect the immunomodulatory effects exerted by MSC-derived EVs on unfractionated peripheral blood mononuclear cells and purified T, B and NK cells. We describe here for the first time: i. direct correlation between the degree of EV-mediated immunosuppression and EV uptake by immune effector cells, a phenomenon further amplified following MSC priming with inflammatory cytokines; ii. induction in resting MSCs of immunosuppressive properties towards T cell proliferation through EVs obtained from primed MSCs, without any direct inhibitory effect towards T cell division. Our conclusion is that the use of reproducible and validated assays is not only useful to characterize the mechanisms of action of MSC-derived EVs, but is also capable of justifying EV potential use as alternative cell-free therapy for the treatment of human inflammatory diseases.
Collapse
Affiliation(s)
- Mariano Di Trapani
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Italy
| | - Giulio Bassi
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Italy
| | - Martina Midolo
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Italy
| | - Alessandro Gatti
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Italy
| | - Paul Takam Kamga
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Italy
| | - Adriana Cassaro
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Italy
| | - Roberta Carusone
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Italy
| | - Annalisa Adamo
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Italy
| | - Mauro Krampera
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Italy
| |
Collapse
|