1
|
McKinney JM, Pucha KA, Bernard FC, Brandon Dixon J, Doan TN, Willett NJ. Osteoarthritis early-, mid- and late-stage progression in the rat medial meniscus transection model. J Orthop Res 2024. [PMID: 39385586 DOI: 10.1002/jor.25969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 07/31/2024] [Accepted: 08/14/2024] [Indexed: 10/12/2024]
Abstract
Osteoarthritis is a degenerative disease of synovial joints affecting all tissues, including articular cartilage and subchondral bone. Osteoarthritis animal models can recapitulate aspects of human disease progression and are used to test efficacy of drugs, biomaterials, and cell therapies. The rat medial meniscus transection (MMT) model is a surgically induced posttraumatic osteoarthritis model commonly used for preclinical therapeutic screening. We describe herein, the qualitative and quantitative changes to articular cartilage, subchondral bone, and formation of osteophytes at early-, mid-, and late-stages of osteoarthritis progression. Tibia of MMT-operated animals showed proteoglycan loss and fibrillation along articular cartilage surfaces as early as 3-weeks post-surgery. With contrast-enhanced micro-CT technique, quantitative, 3-dimensional analysis of the tibia showed that the articular cartilage thickened at 3- and 6-weeks post-surgery and decreased at 12-weeks post-surgery. This decreased cartilage thickness corresponded with increased lesions in the articular cartilage that led to its full degradation and exposing the subchondral bone layer. Further, subchondral bone thickening was significant at 6-weeks post-surgery and followed cartilage damage. Osteophytes were found as early as 3-weeks post-surgery and coincided with articular cartilage degradation. Cartilaginous osteophytes preceded mineralization, suggesting endochondral ossification. The rat MMT model has predominantly been used out to 3-weeks, and most studies determined the effect of therapies to delay or prevent the onset of osteoarthritis. We provide evidence that an extension of the rat MMT model out to 6- and 12-weeks more resembled severe phenotypes of human osteoarthritis. Thus, evaluating novel therapeutics at late-stage will be important for eventual clinical translation.
Collapse
Affiliation(s)
- Jay M McKinney
- Atlanta Veteran's Affairs Medical Center, Decatur, Georgia, USA
- Department of Orthopaedics, Emory University, Atlanta, Georgia, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Krishna A Pucha
- Department of Orthopaedics, Emory University, Atlanta, Georgia, USA
| | - Fabrice C Bernard
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - J Brandon Dixon
- Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Thanh N Doan
- Atlanta Veteran's Affairs Medical Center, Decatur, Georgia, USA
- Department of Orthopaedics, Emory University, Atlanta, Georgia, USA
| | - Nick J Willett
- Atlanta Veteran's Affairs Medical Center, Decatur, Georgia, USA
- Department of Orthopaedics, Emory University, Atlanta, Georgia, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
2
|
Harmon KA, Kimmerling KA, Mowry KC. Effect of amniotic suspension allograft in a rat destabilization of medial meniscus osteoarthritis model. J Orthop Res 2024; 42:2159-2171. [PMID: 38779982 DOI: 10.1002/jor.25872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/29/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Placental-derived allografts have been of interest as a potential nonsurgical treatment to reduce pain and improve function in knee osteoarthritis (OA). The purpose of this study was to evaluate the effect of single and repeat injection of amniotic suspension allograft (ASA) on pain, function, and cytokine levels using a destabilization of the medial meniscus (DMM) rat model of OA. Post-DMM surgery, animals were treated with a single injection of either ASA, vehicle, or triamcinolone, or repeated injection of either ASA or vehicle. Behavioral testing including knee swelling, pain threshold, dynamic weight bearing (DWB), and gait analysis were evaluated during the in-life phase. Postsacrifice, histopathology and serum and synovial fluid analyses were evaluated. Significant improvements in both DWB differentials and pain threshold were seen in response to repeated injection of ASA, while a single injection of ASA and triamcinolone resulted in significant improvements in pain threshold. Histopathology analysis found no significant differences regardless of treatment compared to vehicle, except for an increase in synovitis following repeated injection of ASA. A single injection of ASA and triamcinolone resulted in increased anti-inflammatory cytokines; repeated ASA injection resulted in significant increases in several immune-modulating factors relevant to OA. When comparing the impact of single and repeat ASA treatments on behavioral testing, repeated injection provided significant additional improvements in both pain and function. This study provides evidence demonstrating the impact of a second injection while also providing additional data for evaluating the use of ASA as a nonsurgical treatment for knee OA.
Collapse
Affiliation(s)
- Katrina A Harmon
- Department of Research and Development, Organogenesis, Birmingham, Alabama, USA
| | - Kelly A Kimmerling
- Department of Research and Development, Organogenesis, Birmingham, Alabama, USA
| | - Katie C Mowry
- Department of Research and Development, Organogenesis, Birmingham, Alabama, USA
| |
Collapse
|
3
|
Sourugeon Y, Boffa A, Perucca Orfei C, de Girolamo L, Magalon J, Sánchez M, Tischer T, Filardo G, Laver L. Cell-based therapies have disease-modifying effects on osteoarthritis in animal models: A systematic review by the ESSKA Orthobiologic Initiative. Part 3: Umbilical cord, placenta, and other sources for cell-based injectable therapies. Knee Surg Sports Traumatol Arthrosc 2024. [PMID: 39302089 DOI: 10.1002/ksa.12472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024]
Abstract
PURPOSE This systematic review aimed to investigate in animal models the presence of disease-modifying effects driven by non-bone marrow-derived and non-adipose-derived products, with a particular focus on umbilical cord and placenta-derived cell-based therapies for the intra-articular injective treatment of osteoarthritis (OA). METHODS A systematic review was performed on three electronic databases (PubMed, Web of Science and Embase) according to PRISMA guidelines. The results were synthesised to investigate disease-modifying effects in preclinical animal studies comparing injectable umbilical cord, placenta, and other sources-derived products with OA controls. The risk of bias was assessed using the SYRCLE tool. RESULTS A total of 80 studies were included (2314 animals). Cell therapies were most commonly obtained from the umbilical cord in 33 studies and placenta/amniotic tissue in 18. Cell products were xenogeneic in 61 studies and allogeneic in the remaining 19 studies. Overall, 25/27 (92.6%) of studies on umbilical cord-derived products documented better results compared to OA controls in at least one of the following outcomes: macroscopic, histological and/or immunohistochemical findings, with 19/22 of studies (83.4%) show positive results at the cartilage level and 4/6 of studies (66.7%) at the synovial level. Placenta-derived injectable products documented positive results in 13/16 (81.3%) of the studies, 12/15 (80.0%) at the cartilage level, and 2/4 (50.0%) at the synovial level, but 2/16 studies (12.5%) found overall worse results than OA controls. Other sources (embryonic, synovial, peripheral blood, dental pulp, cartilage, meniscus and muscle-derived products) were investigated in fewer preclinical studies. The risk of bias was low in 42% of items, unclear in 49%, and high in 9% of items. CONCLUSION Interest in cell-based injectable therapies for OA treatment is soaring, particularly for alternatives to bone marrow and adipose tissue. While expanded umbilical cord mesenchymal stem cells reported auspicious disease-modifying effects in preventing OA progression in animal models, placenta/amniotic tissue also reported deleterious effects on OA joints. Lower evidence has been found for other cellular sources such as embryonic, synovial, peripheral blood, dental-pulp, cartilage, meniscus, and muscle-derived products. LEVEL OF EVIDENCE Level II.
Collapse
Affiliation(s)
- Yosef Sourugeon
- Division of Surgery, Orthopaedics Department, Chaim Sheba Medical Centre, Ramat Gan, Israel
| | - Angelo Boffa
- Applied and Translational Research Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Clinica Ortopedica e Traumatologica 2, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Carlotta Perucca Orfei
- Laboratorio di Biotecnologie Applicate all'Ortopedia, IRCCS Ospedale Galeazzi Sant'Ambrogio, Milan, Italy
| | - Laura de Girolamo
- Laboratorio di Biotecnologie Applicate all'Ortopedia, IRCCS Ospedale Galeazzi Sant'Ambrogio, Milan, Italy
- INSERM, NRA, C2VN, Aix Marseille University, Marseille, France
- SAS Remedex, Marseille, France
| | - Jeremy Magalon
- Cell Therapy Laboratory, Hôpital De La Conception, AP-HM, Marseille, France
| | - Mikel Sánchez
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, Vitoria‑Gasteiz, Spain
- Arthroscopic Surgery Unit, Hospital Vithas Vitoria, Vitoria-Gasteiz, Spain
| | - Thomas Tischer
- Department of Orthopaedic and Trauma Surgery, Malteser Waldkrankenhaus, Erlangen, Germany
- Department of Orthopaedic Surgery, University of Rostock, Rostock, Germany
| | - Giuseppe Filardo
- Applied and Translational Research Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Surgery, Service of Orthopaedics and Traumatology, EOC, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università Della Svizzera Italiana, Lugano, Switzerland
| | - Lior Laver
- Arthrosport Clinic, Tel‑Aviv, Israel
- Rappaport Faculty of Medicine, Technion University Hospital (IsraelInstitute of Technology), Haifa, Israel
- Department of Orthopaedics, Hillel Yaffe Medical Center (HYMC), Hadera, Israel
| |
Collapse
|
4
|
Huang C, Zhao Y, Lin S, Li L, Guo X, Yumiseba S, Yang JD, Hariri R, Ye Q, He S, Kilcoyne A. Characterization of human placenta-derived exosome (pExo) as a potential osteoarthritis disease modifying therapeutic. Arthritis Res Ther 2023; 25:229. [PMID: 38017556 PMCID: PMC10683254 DOI: 10.1186/s13075-023-03219-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023] Open
Abstract
OBJECTIVE Human placenta-derived exosomes (pExo) were generated, characterized, and evaluated as a therapeutic candidate for the treatment of osteoarthritis (OA). METHODS pExo was generated from full-term human placenta tissues by sequential centrifugation, purification, and sterile filtration. Upon analysis of particle size, cytokine composition, and exosome marker expression, pExo was further tested in cell-based assays to examine its effects on human chondrocytes. In vivo therapeutic efficacies were evaluated in a medial meniscal tear/medial collateral ligament tear (MCLT + MMT) rat model, in which animals received pExo injections intraarticularly and weight bearing tests during in-life stage while histopathology and immunohistochemistry were performed as terminal endpoints. RESULTS pExo displayed typical particle size, expressed maker proteins of exosome, and contained proteins with pro-proliferative, pro-anabolic, anti-catabolic, or anti-inflammatory activities. In vitro, pExo promoted chondrocyte migration and proliferation dose-dependently, which may involve its activation of cell growth-related signaling pathways. Expression of inflammatory and catabolic genes induced in a cellular OA model was significantly suppressed by pExo. In the rat OA model, pExo alleviated pain burden, restored cartilage degeneration, and downregulated expressions of pro-inflammatory, catabolic, or apoptotic proteins in a dose-dependent manner. CONCLUSIONS Our study demonstrates that pExo has multiple potential therapeutic effects including symptom control and disease modifying characteristics. This may make it an attractive candidate for further development as an anti-OA therapeutic.
Collapse
Affiliation(s)
- Chenfei Huang
- Celularity Inc., 170 Park Avenue, Florham Park, NJ, 07932, USA
| | - Yuechao Zhao
- Celularity Inc., 170 Park Avenue, Florham Park, NJ, 07932, USA.
| | - Shengchen Lin
- Celularity Inc., 170 Park Avenue, Florham Park, NJ, 07932, USA
| | - Lin Li
- Celularity Inc., 170 Park Avenue, Florham Park, NJ, 07932, USA
| | - Xuan Guo
- Celularity Inc., 170 Park Avenue, Florham Park, NJ, 07932, USA
| | | | - Jeng-Dar Yang
- Celularity Inc., 170 Park Avenue, Florham Park, NJ, 07932, USA
| | - Robert Hariri
- Celularity Inc., 170 Park Avenue, Florham Park, NJ, 07932, USA
| | - Qian Ye
- Celularity Inc., 170 Park Avenue, Florham Park, NJ, 07932, USA
| | - Shuyang He
- Celularity Inc., 170 Park Avenue, Florham Park, NJ, 07932, USA
| | - Adrian Kilcoyne
- Celularity Inc., 170 Park Avenue, Florham Park, NJ, 07932, USA
| |
Collapse
|
5
|
Gomoll AH, Mandelbaum BR, Farr J, Archambault WT, Sherman SL, Tabet SK, Kimmerling KA, Mowry KC. An Initial Injection and a Crossover Injection of Amniotic Suspension Allograft Following Failed Treatment with Hyaluronic Acid or Saline Are Equally Effective in the Treatment of Moderate Symptomatic Knee Osteoarthritis Over 12 Months. Arthroscopy 2023; 39:66-78. [PMID: 35840067 DOI: 10.1016/j.arthro.2022.06.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 02/02/2023]
Abstract
PURPOSE The purpose of this crossover study was to determine the efficacy of amniotic suspension allograft (ASA) for moderate symptomatic knee osteoarthritis following failed treatment with hyaluronic acid (HA) or saline through 12 months' postcrossover injection using patient-reported and safety outcomes. METHODS In this multicenter study, 95 patients from a 200-patient single-blind randomized controlled trial were eligible to crossover and receive a single injection of ASA 3 months after failed treatment with HA or saline. Patient-reported outcomes, including Knee Injury and Osteoarthritis Outcome Score (KOOS) and visual analog scale (VAS), were collected out to 12 months postcrossover to determine pain and function. Radiographs and blood were collected for assessment of changes. Statistical analyses were performed using mixed effects model for repeated measures. RESULTS Treatment with ASA following failed treatment with HA or saline resulted in significant improvements in KOOS and VAS scores compared with crossover baseline. There were no differences in radiographic measures or anti-human leukocyte antigen serum levels compared with baseline and no severe adverse events reported. In addition, more than 55% of patients were responders at months 3, 6, and 12 as measured by the Outcome Measures in Arthritis Clinical Trials-Osteoarthritis Research Society International simplified responder criteria. There were no significant differences between the original ASA randomized group and crossover cohorts at any of the time points evaluated, suggesting that prior failed treatment with HA or saline did not significantly impact outcomes following treatment with ASA. CONCLUSIONS This study showed that patients who previously failed treatment with HA or saline had statistically significant improvements in pain and function scores following a crossover injection of ASA that was sustained for 12 months, as measured by KOOS and VAS. There were no serious adverse events reported, and the injection was safe. LEVEL OF EVIDENCE II, prospective cohort study.
Collapse
Affiliation(s)
- Andreas H Gomoll
- Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, New York.
| | | | - Jack Farr
- Knee Preservation and Cartilage Restoration Center, OrthoIndy, Indianapolis, Indiana
| | | | - Seth L Sherman
- Department of Orthopaedic Surgery, Stanford University Medical Center, Palo Alto, California
| | - Samuel K Tabet
- New Mexico Orthopaedic Associates, Albuquerque, New Mexico
| | - Kelly A Kimmerling
- Department of Research and Development, Organogenesis, Birmingham, Alabama, U.S.A
| | - Katie C Mowry
- Department of Research and Development, Organogenesis, Birmingham, Alabama, U.S.A
| |
Collapse
|
6
|
McClendon DC, Su J, Smith DW. Human Amniotic Allograft in Hand Surgery. J Hand Surg Am 2022; 48:388-395. [PMID: 36535838 DOI: 10.1016/j.jhsa.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 12/23/2022]
Abstract
Amnion epithelial and mesenchymal cells have been shown in vitro to contain a variety of regulatory mediators that result in the promotion of cellular proliferation, differentiation, and epithelialization and the inhibition of fibrosis, immune rejection, inflammation, and bacterial invasion. Amniotic membrane-based products are approved for use as human cells, tissues, and cellular- and tissue-based products through Sections 361 or 351 of the Food and Drug Administration. Previously reported clinical applications of human amniotic membranes include nerve repair, tendon injury, joint and cartilage damage, and wound management. Although there is some evidence regarding the use of amniotic allografts in animals, there is a paucity of literature regarding their use in treating pathology of the hand and wrist. Further investigation is necessary to determine their effectiveness and therapeutic value in the upper extremity.
Collapse
Affiliation(s)
| | - Jacob Su
- University of Texas Health Science Center at Houston, Houston, TX
| | - Dean W Smith
- Hand and Upper Extremity Division, Department of Orthopedic Surgery, University of Texas Health Science Center at Houston, Houston, TX
| |
Collapse
|
7
|
Sawvell E, Wright N, Ode G, Mercuri J. Perinatal Tissue-Derived Allografts and Stromal Cells for the Treatment of Knee Osteoarthritis: A Review of Preclinical and Clinical Evidence. Cartilage 2022; 13:184-199. [PMID: 36398763 PMCID: PMC9924983 DOI: 10.1177/19476035221137725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The use of perinatal-derived tissues and mesenchymal stromal cells (MSCs) as alternative treatment options to corticosteroid and hyaluronic acid injections has been gaining popularity. However, their ability to attenuate osteoarthritic (OA) symptoms while also slowing the progression of the disease remains controversial. Thus, the objective of this article is to summarize the results from both preclinical and clinical studies evaluating the efficacy of perinatal-derived tissue allografts and MSCs for the treatment of OA. DESIGN A comprehensive literature search was conducted on databases including Pubmed, ScienceDirect, and Google Scholar beginning in March 2020 for both preclinical and clinical studies evaluating perinatal-derived tissues and MSCs in OA. Eighteen studies met the inclusion criteria and were used for this review. RESULTS Both animal models and early human clinical trials demonstrated that perinatal tissues could reduce joint inflammation and pain as well as improve range of motion and function in OA. Perinatal tissue-derived MSCs in animal studies have shown the potential to support chondrocyte proliferation while also decreasing inflammatory gene and protein expression. Limited clinical results suggest perinatal tissue-derived MSC sources may also be a viable alternative or adjunct to hyaluronic acid in reducing pain and symptoms in an arthritic joint. CONCLUSIONS Perinatal tissue-derived allografts and MSCs have promise as potential therapeutics for mitigating OA progression. However, further research is warranted to fully define the therapeutic mechanism(s) of action and safety of these biological therapies.
Collapse
Affiliation(s)
- Emily Sawvell
- Laboratory of Orthopaedic Tissue
Regeneration & Orthobiologics, Department of Bioengineering, Clemson University,
Clemson, SC, USA,Frank H. Stelling and C. Dayton Riddle
Orthopaedic Education and Research Laboratory, Clemson University Biomedical
Engineering Innovation Campus, Greenville, SC, USA
| | - Noah Wright
- Laboratory of Orthopaedic Tissue
Regeneration & Orthobiologics, Department of Bioengineering, Clemson University,
Clemson, SC, USA,Frank H. Stelling and C. Dayton Riddle
Orthopaedic Education and Research Laboratory, Clemson University Biomedical
Engineering Innovation Campus, Greenville, SC, USA
| | - Gabriella Ode
- Department of Orthopaedic Surgery,
Prisma Health–Upstate, Greenville, SC, USA
| | - Jeremy Mercuri
- Laboratory of Orthopaedic Tissue
Regeneration & Orthobiologics, Department of Bioengineering, Clemson University,
Clemson, SC, USA,Frank H. Stelling and C. Dayton Riddle
Orthopaedic Education and Research Laboratory, Clemson University Biomedical
Engineering Innovation Campus, Greenville, SC, USA,Jeremy Mercuri, Laboratory of Orthopaedic
Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson
University, 401-5 Rhodes Engineering Research Center, Clemson, SC 29634, USA.
| |
Collapse
|
8
|
Kwapisz A, Bowman M, Walters J, Cosh H, Burnikel B, Tokish J, Ye T, Mercuri J. Human Adipose- and Amnion-Derived Mesenchymal Stromal Cells Similarly Mitigate Osteoarthritis Progression in the Dunkin Hartley Guinea Pig. Am J Sports Med 2022; 50:3963-3973. [PMID: 36300544 DOI: 10.1177/03635465221126683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Clinical trials are currently underway to investigate the efficacy of intra-articular administration of mesenchymal stromal cells (MSCs) to mitigate osteoarthritis (OA) progression in the knee. Although multiple MSC sources exist, studies have yet to determine whether differences in therapeutic efficacy exist between them. PURPOSE To compare the ability of intra-articularly injected adipose-derived MSCs (AD-MSCs) and amnion-derived MSCs (AM-MSCs) to mitigate the progression of knee OA in a small animal model of spontaneous OA, as well as to compare the therapeutic potential of MSCs in hyaluronic acid (HA) and in HA only with saline (OA) controls. STUDY DESIGN Controlled laboratory study. METHODS Injections of AD-MSCs or AM-MSCs suspended in HA or HA only were performed in the rear stifle joints of 3-month-old Dunkin Hartley guinea pigs (DHGPs). Repeat injections occurred at 2 and 4 months after the initial injection in each animal. Contralateral limbs received saline injections and served as untreated controls. Subsequently, joints were analyzed for osteoarthritic changes of the cartilage and subchondral bone via histologic and biochemical analyses. To evaluate MSC retention time in the joint space, DHGPs received a single intra-articular injection of fluorescently labeled AD-MSCs or AM-MSCs, and the fluorescence intensity was longitudinally tracked via an in vivo imaging system. RESULTS No statistically significant differences in outcomes were found when comparing the ability of AD-MSCs and AM-MSCs to mitigate OA. However, the injection of AD-MSCs, AM-MSCs, and HA-only treatments more effectively mitigated cartilage damage compared with that of saline controls by demonstrating higher amounts of cartilage glycosaminoglycan content and improved histological proteoglycan scoring while reducing the percentage of osteophytes present. CONCLUSION Intra-articular injection of AD-MSCs, AM-MSCs, or HA only was able to similarly mitigate the progression of cartilage damage and reduce the percentage of osteophytes compared with that of saline controls in the DHGP. However, this study was unable to establish the superiority of AD-MSCs versus AM-MSCs as a treatment to mitigate spontaneous OA. CLINICAL RELEVANCE MSCs demonstrate the ability to mitigate the progression of knee OA and thus may be used in a prophylactic approach to delay the need for end-stage treatment strategies.
Collapse
Affiliation(s)
- Adam Kwapisz
- Clinic of Orthopedics and Pediatric Orthopedics, Medical University of Lodz, Lodz, Poland
- Steadman Hawkins Clinic of the Carolinas, Department of Orthopaedic Surgery, Prisma Health, Greenville, South Carolina, USA
| | - Mackenzie Bowman
- Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| | - Joshua Walters
- Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| | - Heather Cosh
- Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| | - Brian Burnikel
- Steadman Hawkins Clinic of the Carolinas, Department of Orthopaedic Surgery, Prisma Health, Greenville, South Carolina, USA
| | - John Tokish
- Mayo Clinic, Department of Orthopedic Surgery, Phoenix, Arizona, USA
| | - Tong Ye
- Nano and Functional Imaging Lab, Department of Bioengineering, Clemson University, Charleston, South Carolina, USA
| | - Jeremy Mercuri
- Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
- Frank H. Stelling and C. Dayton Riddle Orthopaedic Education and Research Laboratory, Clemson University Biomedical Engineering Innovation Campus, Greenville, South Carolina, USA
| |
Collapse
|
9
|
Gupta A. Amniotic Suspension Allograft for Treatment of Knee Osteoarthritis. Biomedicines 2022; 10:biomedicines10102658. [PMID: 36289919 PMCID: PMC9599686 DOI: 10.3390/biomedicines10102658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/21/2022] Open
Affiliation(s)
- Ashim Gupta
- Regenerative Orthopaedics, Noida 201301, UP, India;
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 226010, UP, India
- Future Biologics, Noida 201301, UP, India
- BioIntegrate, Lawrenceville, GA 30043, USA
- South Texas Orthopaedic Research Institute (STORI Inc.), Laredo, TX 78045, USA
| |
Collapse
|
10
|
Placental Tissues as Biomaterials in Regenerative Medicine. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6751456. [PMID: 35496035 PMCID: PMC9050314 DOI: 10.1155/2022/6751456] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 03/19/2022] [Indexed: 12/02/2022]
Abstract
Placental tissues encompass all the tissues which support fetal development, including the placenta, placental membrane, umbilical cord, and amniotic fluid. Since the 1990s there has been renewed interest in the use of these tissues as a raw material for regenerative medicine applications. Placental tissues have been extensively studied for their potential contribution to tissue repair applications. Studies have attributed their efficacy in augmenting the healing process to the extracellular matrix scaffolds rich in collagens, glycosaminoglycans, and proteoglycans, as well as the presence of cytokines within the tissues that have been shown to stimulate re-epithelialization, promote angiogenesis, and aid in the reduction of inflammation and scarring. The compositions and properties of all birth tissues give them the potential to be valuable biomaterials for the development of new regenerative therapies. Herein, the development and compositions of each of these tissues are reviewed, with focus on the structural and signaling components that are relevant to medical applications. This review also explores current configurations and recent innovations in the use of placental tissues as biomaterials in regenerative medicine.
Collapse
|
11
|
Gupta A. Allogenic Amniotic Tissue for Treatment of Knee and Hip Osteoarthritis. Pharmaceuticals (Basel) 2022; 15:ph15040404. [PMID: 35455401 PMCID: PMC9031613 DOI: 10.3390/ph15040404] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 12/31/2022] Open
Abstract
Osteoarthritis (OA) impacts millions of people and places a high burden on healthcare systems in the United States. Current treatment modalities have limitations and do not address underlying pathology. Lately, there has been an immense growth in the use of biologics, including perinatal allogenic tissues for orthopedic regenerative medicine applications. Amniotic tissue is an exciting new alternative for such applications. Despite several published studies that reported its use for treatment of ophthalmic conditions and complex wounds, there are limited clinical studies evaluating its safety and efficacy in treating patients suffering with knee or hip OA. In this manuscript, I focused on three prospective clinical studies which evaluated the safety and efficacy of amniotic tissue in patients suffering with moderate knee or hip OA. The results from these studies presented the scientific community with much needed, well-executed, and prospective clinical trials. Though these trials demonstrated that administration of amniotic tissue in knee or hip joint is safe and potentially effective, more multi-center, prospective, double-blinded, randomized controlled trials are warranted to further establish the efficacy of amniotic tissue to mitigate symptoms of knee and hip OA to ultimately justify its clinical use.
Collapse
Affiliation(s)
- Ashim Gupta
- Future Biologics, Lawrenceville, GA 30043, USA;
- BioIntegrate, Lawrenceville, GA 30043, USA
- South Texas Orthopaedic Research Institute (STORI Inc.), Laredo, TX 78045, USA
- Veterans in Pain (V.I.P.), Valencia, CA 91354, USA
- General Therapeutics, Cleveland Heights, OH 44118, USA
| |
Collapse
|
12
|
Kimmerling KA, Gomoll AH, Farr J, Mowry KC. Amniotic suspension allograft improves pain and function in a rat meniscal tear-induced osteoarthritis model. Arthritis Res Ther 2022; 24:63. [PMID: 35246217 PMCID: PMC8895852 DOI: 10.1186/s13075-022-02750-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/18/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Osteoarthritis is a degenerative disease of the knee that affects 250 million people worldwide. Due to the rising incidence of knee replacement and revision surgery, there is a need for a nonsurgical treatment to reduce pain and improve function in patients with knee osteoarthritis. Placental-derived allografts, such as an amniotic suspension allograft (ASA), provide growth factors and cytokines that could potentially modulate the inflammatory environment of osteoarthritis. The purpose of this study was to evaluate the efficacy of ASA in a rat medial meniscal tear (MMT) induced osteoarthritis model through histology, microCT, synovial fluid biomarkers, and behavioral testing. METHODS Rats underwent MMT surgery at day - 7; at day 0, rats were injected with either ASA, vehicle control, or fibroblast growth factor-18 (FGF18). Behavioral testing, including gait analysis, pain threshold, incapacitance, and knee swelling were evaluated in-life, along with histology, microCT analysis of cartilage, and synovial fluid testing post-sacrifice. One MMT cohort was sacrificed at day 10, the other at day 21. A third cohort acted as a safety arm and did not receive MMT surgery; these rats were injected with either vehicle control or ASA and evaluated at day 3 and day 21. RESULTS Behavioral testing showed a significant improvement in pain threshold, incapacitance, and gait following an injection of ASA. MicroCT showed significant improvements in cartilage thickness and attenuation at day 10 only, and histology showed no detrimental effects compared to the vehicle control at day 21. Synovial fluid analysis showed a significant increase in anti-inflammatory IL-10. The safety cohort showed no significant differences except for an increase in synovitis at day 21, which could be evidence of a xenogeneic response in this model. CONCLUSIONS In this study, an injection of ASA was well tolerated with no adverse events. Improvements in pain and function, along with cartilage properties at day 10, were observed. Increases in anti-inflammatory cytokines was also seen, along with no significant cartilage degeneration at day 21 compared to the vehicle control. This study provides evidence for the use of ASA as a nonsurgical treatment for knee OA.
Collapse
Affiliation(s)
- Kelly A Kimmerling
- Department of Research & Development, Organogenesis, 2641 Rocky Ridge Lane, Birmingham, AL, 35216, USA
| | - Andreas H Gomoll
- Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, NY, USA
| | - Jack Farr
- Knee Preservation and Cartilage Restoration Center, OrthoIndy, Indianapolis, IN, USA
| | - Katie C Mowry
- Department of Research & Development, Organogenesis, 2641 Rocky Ridge Lane, Birmingham, AL, 35216, USA.
| |
Collapse
|
13
|
Meadows MC, Elisman K, Nho SJ, Mowry K, Safran MR. A Single Injection of Amniotic Suspension Allograft Is Safe and Effective for Treatment of Mild to Moderate Hip Osteoarthritis: A Prospective Study. Arthroscopy 2022; 38:325-331. [PMID: 33940131 DOI: 10.1016/j.arthro.2021.04.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 04/06/2021] [Accepted: 04/15/2021] [Indexed: 02/02/2023]
Abstract
PURPOSE The purpose of our study was to examine the effects of a commercially available amniotic suspension allograft (ASA) (ReNu, Organogenesis, Canton, MA) in a patient population with moderate osteoarthritis of the hip. METHODS Ten patients with symptomatic hip osteoarthritis, defined as Tonnis grade 1 or 2 on radiographic examination, were prospectively enrolled. Each patient received a single image-guided injection of ASA into the hip joint. Patient-reported outcomes measures, including the 12-item International Hip Outcome Tool, Modified Harris Hip Score, and Single Assessment Numeric Evaluation scores were recorded at baseline, 6 months, and 12 months postinjection. A linear regression model was performed to detect differences in outcome scores from baseline. RESULTS Nine patients had complete 12-month data available for analysis. One patient failed treatment and underwent arthroplasty at 2 months postinjection. The cohort includes 5 males and 4 females, aged 47-67. International Hip Outcome Tool scores demonstrated a significant improvement between baseline and 12 months (P = .02). Single Assessment Numeric Evaluation scores demonstrated a significant difference between baseline and 6 months (P < .01), as well as between baseline and 12 months (P < .01). Modified Harris Hip Scores demonstrated a significant difference between baseline and 6 months (P = .02) and between baseline and 12 months (P = .01). There were no major adverse events in the course of the study period. CONCLUSION This study demonstrates promising results for relief of pain and improvement in patient-reported outcomes with intra-articular ASA in patients with moderate osteoarthritis of the hip for up to one year, although the exact mechanism of action remains unknown. LEVEL OF EVIDENCE: IV, case series.
Collapse
Affiliation(s)
- Molly C Meadows
- Stanford University Department of Orthopaedic Surgery, Redwood City, California, U.S.A..
| | - Katia Elisman
- Stanford University Department of Orthopaedic Surgery, Redwood City, California, U.S.A
| | - Shane J Nho
- Midwest Orthopedics at Rush, Chicago, Illinois, U.S.A
| | | | - Marc R Safran
- Stanford University Department of Orthopaedic Surgery, Redwood City, California, U.S.A
| |
Collapse
|
14
|
Bhattacharjee M, Escobar Ivirico JL, Kan HM, Shah S, Otsuka T, Bordett R, Barajaa M, Nagiah N, Pandey R, Nair LS, Laurencin CT. Injectable amnion hydrogel-mediated delivery of adipose-derived stem cells for osteoarthritis treatment. Proc Natl Acad Sci U S A 2022; 119:e2120968119. [PMID: 35046053 PMCID: PMC8794776 DOI: 10.1073/pnas.2120968119] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/20/2021] [Indexed: 12/21/2022] Open
Abstract
Current treatment strategies for osteoarthritis (OA) predominantly address symptoms with limited disease-modifying potential. There is a growing interest in the use of adipose-derived stem cells (ADSCs) for OA treatment and developing biomimetic injectable hydrogels as cell delivery systems. Biomimetic injectable hydrogels can simulate the native tissue microenvironment by providing appropriate biological and chemical cues for tissue regeneration. A biomimetic injectable hydrogel using amnion membrane (AM) was developed which can self-assemble in situ and retain the stem cells at the target site. In the present study, we evaluated the efficacy of intraarticular injections of AM hydrogels with and without ADSCs in reducing inflammation and cartilage degeneration in a collagenase-induced OA rat model. A week after the induction of OA, rats were treated with control (phosphate-buffered saline), ADSCs, AM gel, and AM-ADSCs. Inflammation and cartilage regeneration was evaluated by joint swelling, analysis of serum by cytokine profiling and Raman spectroscopy, gross appearance, and histology. Both AM and ADSC possess antiinflammatory and chondroprotective properties to target the sites of inflammation in an osteoarthritic joint, thereby reducing the inflammation-mediated damage to the articular cartilage. The present study demonstrated the potential of AM hydrogel to foster cartilage tissue regeneration, a comparable regenerative effect of AM hydrogel and ADSCs, and the synergistic antiinflammatory and chondroprotective effects of AM and ADSC to regenerate cartilage tissue in a rat OA model.
Collapse
Affiliation(s)
- Maumita Bhattacharjee
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT 06030
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT 06030
| | - Jorge L Escobar Ivirico
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT 06030
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT 06030
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269
| | - Ho-Man Kan
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT 06030
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT 06030
| | - Shiv Shah
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT 06030
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269
| | - Takayoshi Otsuka
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT 06030
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT 06030
| | - Rosalie Bordett
- Connecticut Children's Innovation Center, School of Medicine, University of Connecticut Health, Farmington, CT 06032
| | - Mohammed Barajaa
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT 06030
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT 06030
| | - Naveen Nagiah
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT 06030
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT 06030
| | - Rishikesh Pandey
- Connecticut Children's Innovation Center, School of Medicine, University of Connecticut Health, Farmington, CT 06032
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269
| | - Lakshmi S Nair
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT 06030
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT 06030
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269
| | - Cato T Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030;
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT 06030
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT 06030
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269
| |
Collapse
|
15
|
Umbilical Cord Mesenchymal Stromal Cells for Cartilage Regeneration Applications. Stem Cells Int 2022; 2022:2454168. [PMID: 35035489 PMCID: PMC8758292 DOI: 10.1155/2022/2454168] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/13/2021] [Accepted: 11/23/2021] [Indexed: 11/30/2022] Open
Abstract
Chondropathies are increasing worldwide, but effective treatments are currently lacking. Mesenchymal stromal cell (MSCs) transplantation represents a promising approach to counteract the degenerative and inflammatory environment characterizing those pathologies, such as osteoarthritis (OA) and rheumatoid arthritis (RA). Umbilical cord- (UC-) MSCs gained increasing interest due to their multilineage differentiation potential, immunomodulatory, and anti-inflammatory properties as well as higher proliferation rates, abundant supply along with no risks for the donor compared to adult MSCs. In addition, UC-MSCs are physiologically adapted to survive in an ischemic and nutrient-poor environment as well as to produce an extracellular matrix (ECM) similar to that of the cartilage. All these characteristics make UC-MSCs a pivotal source for a stem cell-based treatment of chondropathies. In this review, the regenerative potential of UC-MSCs for the treatment of cartilage diseases will be discussed focusing on in vitro, in vivo, and clinical studies.
Collapse
|
16
|
Becktell L, Matuska AM, Hon S, Delco ML, Cole BJ, Begum L, Zhang S, Fortier LA. Proteomic Analysis and Cell Viability of Nine Amnion, Chorion, Umbilical Cord, and Amniotic Fluid-Derived Products. Cartilage 2021; 13:495S-507S. [PMID: 33356465 PMCID: PMC8804846 DOI: 10.1177/1947603520976767] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Amnion products are used in various musculoskeletal surgeries and as injections for joint pain with conflicting reports of cell viability and protein contents. The objective of this study was to determine the full proteome and examine cell viability in 9 commercial amnion products using an unbiased bottom-up shotgun proteomics approach and confocal microscopy. DESIGN Products were subjected to liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis and searched against a UniProt Homo sapiens database. Relative protein abundance was determined for each sample. Based on proteomics results, lumican was measured by enzyme-linked immunosorbent assay (ELISA) and Western blot analysis was performed for interleukin-1 receptor antagonist (IL-1Ra) and tissue inhibitor of matrix metalloproteinase-2 (TIMP-2). Cell viability was determined by calcein AM (live) and ethidium homodimer (dead) staining and confocal microscopy. RESULTS Proteomic analysis revealed 919 proteins in the nine products. Proteins were primarily collagens, keratin, and albumin. Lumican, a small leucine-rich proteoglycan (SLRP) was found in all samples. Western blot analysis for IL-1Ra and TIMP-2 indicated presence of both proteins, with nonspecific antibody binding also present in all samples. No live cells were identified in any product. CONCLUSIONS Several novel proteins were identified through proteomics that might impart the beneficial effects of amnion products, including SLRPs, collagens, and regulators of fibroblast activity. IL-1Ra and TIMP-2 were identified, but concentrations measured by ELISA may be falsely increased due to nonspecific antibody binding. The concept that the amnion tissues provide live cells to aid in tissue regeneration cannot be supported by the findings of this study.
Collapse
Affiliation(s)
- Liliya Becktell
- College of Veterinary Medicine, Cornell
University, Ithaca, NY, USA
| | | | - Stephanie Hon
- College of Veterinary Medicine, Cornell
University, Ithaca, NY, USA
| | | | - Brian J. Cole
- Midwest Orthopedics at Rush, Rush
University Medical Center, Chicago, IL, USA
| | - Laila Begum
- College of Veterinary Medicine, Cornell
University, Ithaca, NY, USA
| | - Sheng Zhang
- Proteomics and Metabolomics Facility,
Institute of Biotechnology, Cornell University, Ithaca, NY, USA
| | - Lisa A. Fortier
- College of Veterinary Medicine, Cornell
University, Ithaca, NY, USA,Lisa A. Fortier, Department of Clinical
Sciences, College of Veterinary Medicine, Cornell University, 930 Campus Road,
Ithaca, NY 14853, USA.
| |
Collapse
|
17
|
Rzhepakovsky I, Anusha Siddiqui S, Avanesyan S, Benlidayi M, Dhingra K, Dolgalev A, Enukashvily N, Fritsch T, Heinz V, Kochergin S, Nagdalian A, Sizonenko M, Timchenko L, Vukovic M, Piskov S, Grimm W. Anti-arthritic effect of chicken embryo tissue hydrolyzate against adjuvant arthritis in rats (X-ray microtomographic and histopathological analysis). Food Sci Nutr 2021; 9:5648-5669. [PMID: 34646534 PMCID: PMC8498067 DOI: 10.1002/fsn3.2529] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/13/2021] [Accepted: 06/29/2021] [Indexed: 12/24/2022] Open
Abstract
Finding new, safe strategies to prevent and control rheumatoid arthritis is an urgent task. Bioactive peptides and peptide-rich protein hydrolyzate represent a new trend in the development of functional foods and nutraceuticals. The resulting tissue hydrolyzate of the chicken embryo (CETH) has been evaluated for acute toxicity and tested against chronic arthritis induced by Freund's full adjuvant (modified Mycobacterium butyricum) in rats. The antiarthritic effect of CETH was studied on the 28th day of the experiment after 2 weeks of oral administration of CETH at doses of 60 and 120 mg/kg body weight. Arthritis was evaluated on the last day of the experiment on the injected animal paw using X-ray computerized microtomography and histopathology analysis methods. The CETH effect was compared with the non-steroidal anti-inflammatory drug diclofenac sodium (5 mg/kg). Oral administration of CETH was accompanied by effective dose-dependent correction of morphological changes caused by the adjuvant injection. CETH had relatively high recovery effects in terms of parameters for reducing inflammation, inhibition of osteolysis, reduction in the inflammatory reaction of periarticular tissues, and cartilage degeneration. This study presents for the first time that CETH may be a powerful potential nutraceutical agent or bioactive component in the treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Igor Rzhepakovsky
- Institute of Live ScienceNorth Caucasus Federal UniversityStavropolRussia
| | - Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and SustainabilityStraubingGermany
- DIL e.V. German Institute of Food TechnologiesQuakenbrückGermany
| | - Svetlana Avanesyan
- Institute of Live ScienceNorth Caucasus Federal UniversityStavropolRussia
| | - Mehmet Benlidayi
- Faculty of DentistryDepartment of Oral and Maxillofacial SurgeryCukurova UniversitySarıçam/AdanaTurkey
| | - Kunaal Dhingra
- Division of PeriodonticsCentre for Dental Education and ResearchAll India Institute of Medical SciencesNew DelhiIndia
| | - Alexander Dolgalev
- Department of General Dentistry and Pediatric DentistryStavropol State Medical UniversityStavropolRussia
- Center for Innovation and Technology TransferStavropol State Medical UniversityStavropolRussian Federation
| | | | - Tilman Fritsch
- Center for Innovation and Technology TransferStavropol State Medical UniversityStavropolRussian Federation
| | - Volker Heinz
- DIL e.V. German Institute of Food TechnologiesQuakenbrückGermany
| | | | - Andrey Nagdalian
- Institute of Live ScienceNorth Caucasus Federal UniversityStavropolRussia
| | - Marina Sizonenko
- Institute of Live ScienceNorth Caucasus Federal UniversityStavropolRussia
| | - Lyudmila Timchenko
- Institute of Live ScienceNorth Caucasus Federal UniversityStavropolRussia
| | - Marko Vukovic
- Center for Innovation and Technology TransferStavropol State Medical UniversityStavropolRussian Federation
| | - Sergey Piskov
- Institute of Live ScienceNorth Caucasus Federal UniversityStavropolRussia
| | - Wolf‐Dieter Grimm
- Center for Innovation and Technology TransferStavropol State Medical UniversityStavropolRussian Federation
- Periodontology, School of Dental MedicineFaculty of HealthWitten/Herdecke UniversityWittenGermany
| |
Collapse
|
18
|
A novel placental tissue biologic, PTP-001, inhibits inflammatory and catabolic responses in vitro and prevents pain and cartilage degeneration in a rat model of osteoarthritis. Osteoarthritis Cartilage 2021; 29:1203-1212. [PMID: 34023528 DOI: 10.1016/j.joca.2021.03.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/17/2021] [Accepted: 03/31/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Characterization of a novel human placental tissue-derived biologic, PTP-001, which is in development as a candidate therapeutic for the treatment of osteoarthritis symptoms and pathophysiology. METHODS Human placental tissues from healthy donors were prepared as a particulate formulation, PTP-001. PTP-001 extracts were assayed for the presence of disease-relevant biofactors which could have beneficial effects in treating osteoarthritis. PTP-001 eluates were tested in human chondrocyte cultures to determine effects on the production of a key collagen-degrading matrix metalloproteinase, MMP-13. PTP-001 eluates were also assessed for anti-inflammatory potential in human monocyte/macrophage cultures, as well as for growth-stimulating anabolic effects in human synoviocytes. The in vivo effects of PTP-001 on joint pain and histopathology were evaluated in a rat model of osteoarthritis induced surgically by destabilization of the medial meniscus. RESULTS PTP-001 was found to contain an array of beneficial growth factors, cytokines and anti-inflammatory molecules. PTP-001 eluates dose-dependently inhibited the production of chondrocyte MMP-13, and the secretion of proinflammatory cytokines from monocyte/macrophage cultures. PTP-001 eluates also promoted proliferation of cultured synovial cells. In a rat osteoarthritis model, PTP-001 significantly reduced pain responses throughout 6 weeks post-dosing. The magnitude and duration of pain reduction following a single intraarticular treatment with PTP-001 was comparable to that observed for animals treated with a corticosteroid (active control). For rats dosed twice with PTP-001, significant reductions in cartilage histopathology scores were observed. CONCLUSIONS PTP-001 represents a promising biologic treatment for osteoarthritis, with a multi-modal mechanism of action that may contribute to symptom management and disease modification.
Collapse
|
19
|
Pearce B. Nonoperative treatment of recalcitrant neuritis of the infrapatellar saphenous nerve: a case series. J Med Case Rep 2021; 15:378. [PMID: 34261538 PMCID: PMC8281630 DOI: 10.1186/s13256-021-02912-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 05/17/2021] [Indexed: 12/03/2022] Open
Abstract
Background Neuritis of the infrapatellar branch of the saphenous nerve can result from iatrogenic injury, entrapment, bursitis, or patellar dislocation. Currently, there is an unmet clinical need for treating refractory neuritis nonsurgically. Case presentation Three patients presented with persistent anterior knee pain caused by neuritis of the infrapatellar branch of the saphenous nerve that had got excellent but only temporary relief from steroid and local anesthetic nerve block. The neuropathic pain diagnostic Douleur Neuropathique 4 questionnaire and painDETECT questionnaire confirmed presence of neuropathic pain. After injection with 25 mg amniotic and umbilical cord particulate, the patient’s pain decreased from 7.3 before injection to 0.3 at 6 weeks postinjection. In addition, neuropathic symptoms significantly improved at 2 weeks and were not present by 6 weeks. By 63 weeks, two of the patients reported continued complete pain relief, while one patient underwent total knee replacement due to an allergy of a previously implanted unicondylar implant. Conclusions This case series suggests that amniotic and umbilical cord particulate may be a viable alternative to reduce pain in patients with neuropathic pain.
Collapse
Affiliation(s)
- Beth Pearce
- Orthopaedic Associates of St. Augustine, One Orthopaedic Pl, St. Augustine, Jacksonville, FL, 32086, USA.
| |
Collapse
|
20
|
Gomoll AH, Farr J, Cole BJ, Flanigan DC, Lattermann C, Mandelbaum BR, Strickland SM, Zaslav KR, Kimmerling KA, Mowry KC. Safety and Efficacy of an Amniotic Suspension Allograft Injection Over 12 Months in a Single-Blinded, Randomized Controlled Trial for Symptomatic Osteoarthritis of the Knee. Arthroscopy 2021; 37:2246-2257. [PMID: 33716121 DOI: 10.1016/j.arthro.2021.02.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 02/02/2023]
Abstract
PURPOSE The purpose of this study is to determine the efficacy of amniotic suspension allograft (ASA) compared to hyaluronic acid (HA) and saline at up to 12 months of follow-up through the use of patient-reported outcomes, immunoglobulin levels, and anti-human leukocyte antigen (HLA) levels. METHODS Within this multicenter study, 200 patients were randomized 1:1:1 to a single intra-articular injection of saline, HA, or ASA. Patient-reported outcomes, including Knee Injury and Osteoarthritis Outcome Score (KOOS) and visual analog scale (VAS) score, were collected at multiple time points (baseline, 1 week, 6 weeks, 3 months, 6 months) out to 12 months to assess improvements in pain and function. Radiographs at baseline and 12 months were taken to determine radiographic changes, while blood was collected at baseline, 6 weeks, and 6 months to determine changes in immunoglobulins and anti-HLA levels. Statistical analyses were performed using last observation carried forward and mixed effects model for repeated measures. RESULTS Treatment with ASA resulted in significant improvements in KOOS and VAS scores that were maintained through 12 months (P < .05). Treatment with ASA resulted in a 63.2% responder rate at 12 months using the Outcome Measures in Arthritis Clinical Trials-Osteoarthritis Research Society International simplified definition. There were no significant differences between groups for radiographic measures in the index knee, immunoglobulins, C-reactive protein, or anti-HLA serum levels (P > .05). The number and type of adverse events (AEs) reported for ASA were comparable to the HA injection group, while no treatment-emergent AEs were reported for the saline group. CONCLUSIONS This randomized controlled trial of ASA vs HA and saline for the treatment of symptomatic knee osteoarthritis demonstrated clinically meaningful improved outcomes with ASA over the controls out to 12 months postinjection. No concerning immunologic or adverse reactions to the ASA injection were identified with regards to severe AEs, immunoglobulin, or anti-HLA levels. LEVEL OF EVIDENCE Level I, randomized controlled multicenter trial.
Collapse
Affiliation(s)
- Andreas H Gomoll
- Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, New York, U.S.A..
| | - Jack Farr
- Knee Preservation and Cartilage Restoration Center, OrthoIndy, Indianapolis, Indiana, U.S.A
| | - Brian J Cole
- Midwest Orthopaedics at Rush, Rush University Medical Center, Chicago, Illinois, U.S.A
| | - David C Flanigan
- Division of Sports Medicine Cartilage Repair Center, Department of Orthopaedics, The Ohio State University, Columbus, Ohio, U.S.A
| | - Christian Lattermann
- Department of Orthopaedic Surgery, Brigham and Women's Hospital, Boston, Massachusetts, U.S.A
| | | | - Sabrina M Strickland
- Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, New York, U.S.A
| | | | - Kelly A Kimmerling
- Department of Research and Development, Organogenesis, Birmingham, Alabama, U.S.A
| | - Katie C Mowry
- Department of Research and Development, Organogenesis, Birmingham, Alabama, U.S.A
| |
Collapse
|
21
|
Alden KJ, Harris S, Hubbs B, Kot K, Istwan NB, Mason D. Micronized Dehydrated Human Amnion Chorion Membrane Injection in the Treatment of Knee Osteoarthritis-A Large Retrospective Case Series. J Knee Surg 2021; 34:841-845. [PMID: 31779034 DOI: 10.1055/s-0039-3400951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Osteoarthritis (OA) of the knee is a leading cause of chronic pain and disability in the United States. Current treatment options primarily target OA symptoms reserving surgical intervention and knee replacement for those who fail conservative measures. With average age of patients with knee OA decreasing, regenerative treatment approaches to reduce symptoms, increase quality of life, and delay the need for surgical intervention are increasingly sought. Human amniotic membrane contains growth factors and cytokines, which promote epithelial cell migration and proliferation, stimulate metabolic processes leading to collagen synthesis, and attract fibroblasts, while also reducing pain and inflammation. Micronization of the tissue allows for suspension in normal saline and injection. We conducted a retrospective review of 100 knees treated for symptomatic OA with micronized dehydrated human amnion/chorion membrane (mdHACM) and followed for 6 months. Our purpose is to present our experience and patient outcomes. Data were abstracted from electronic medical records of 82 consecutive OA patients (100 knees) injected with 100 mg mdHACM. Patient age, gender, adverse events and routinely collected Knee Injury and Osteoarthritis Outcome Score (KOOS) were evaluated. Effectiveness of mdHACM treatment was measured by serial KOOS at baseline, and posttreatment at 6 weeks, 3, and 6 months. Overall mean KOOS for the cohort was 40 at baseline, improving to 52, 62, and 65 at 6 weeks, 3 months, and 6 months post-mdHACM injection. Percent increases were 32, 56, and 65%, respectively. Quality of life and sports/recreation domains improved by 111 and 118%, respectively, at 6 months. Pain scores improved by 67% at 6 months. All scores improved throughout the observation period. The most common adverse event was pain after injection lasting 2 to 7 days, observed in 68% of cases. This represents the largest single-physician experience with mdHACM for treatment of knee OA reported to date. Injectable mdHACM appears to be a potentially useful treatment option for knee OA patients. Controlled studies are underway to confirm these observations.
Collapse
Affiliation(s)
- Kris J Alden
- Department of Surgery, Hinsdale Orthopaedics Associates, Hinsdale, Illinois
| | - Stan Harris
- Department of Medical Affairs, MiMedx Group Inc., Marietta, Georgia
| | - Brandon Hubbs
- Department of Medical Affairs, MiMedx Group Inc., Marietta, Georgia
| | - Kimberly Kot
- Department of Medical Affairs, MiMedx Group Inc., Marietta, Georgia
| | - Niki B Istwan
- Department of Medical Affairs, MiMedx Group Inc., Marietta, Georgia
| | - David Mason
- Department of Medical Affairs, MiMedx Group Inc., Marietta, Georgia
| |
Collapse
|
22
|
Muthu S, Jeyaraman M, Jain R, Gulati A, Jeyaraman N, Prajwal GS, Mishra PC. Accentuating the sources of mesenchymal stem cells as cellular therapy for osteoarthritis knees-a panoramic review. Stem Cell Investig 2021; 8:13. [PMID: 34386542 PMCID: PMC8327191 DOI: 10.21037/sci-2020-055] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/25/2021] [Indexed: 02/05/2023]
Abstract
The large economic burden on the global health care systems is due to the increasing number of symptomatic osteoarthritis (OA) knee patients whereby accounting for greater morbidity and impaired functional quality of life. The recent developments and impulses in molecular and regenerative medicine have paved the way for inducing the biological active cells such as stem cells, bioactive materials, and growth factors towards the healing and tissue regenerative process. Mesenchymal stem cells (MSCs) act as a minimally invasive procedure that bridges the gap between pharmacological treatment and surgical treatment for OA. MSCs are the ideal cell-based therapy for treating disorders under a minimally invasive environment in conjunction with cartilage regeneration. Due to the worldwide recognized animal model for such cell-based therapies, global researchers have started using the various sources of MSCs towards cartilage regeneration. However, there is a lacuna in literature on the comparative efficacy and safety of various sources of MSCs in OA of the knee. Hence, the identification of a potential source for therapeutic use in this clinical scenario remains unclear. In this article, we compared the therapeutic effects of various sources of MSCs in terms of efficacy, safety, differentiation potential, durability, accessibility, allogenic preparation and culture expandability to decide the optimal source of MSCs for OA knee.
Collapse
Affiliation(s)
- Sathish Muthu
- Assistant Orthopaedic Surgeon, Government Hospital, Velayuthampalayam, Karur, Tamil Nadu, India
- International Association of Stemcell and Regenerative Medicine (IASRM), New Delhi, India
| | - Madhan Jeyaraman
- International Association of Stemcell and Regenerative Medicine (IASRM), New Delhi, India
- Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Rashmi Jain
- Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Arun Gulati
- Department of Orthopaedics, Kalpana Chawla Government Medical College & Hospital, Karnal, Haryana, India
| | - Naveen Jeyaraman
- International Association of Stemcell and Regenerative Medicine (IASRM), New Delhi, India
- Department of Orthopaedics, Kasturba Medical College, MAHE University, Manipal, Karnataka, India
| | | | - Prabhu Chandra Mishra
- International Association of Stemcell and Regenerative Medicine (IASRM), New Delhi, India
| |
Collapse
|
23
|
Mead OG, Mead LP. Intra-Articular Injection of Amniotic Membrane and Umbilical Cord Particulate for the Management of Moderate to Severe Knee Osteoarthritis. Orthop Res Rev 2020; 12:161-170. [PMID: 33116955 PMCID: PMC7585522 DOI: 10.2147/orr.s272980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/26/2020] [Indexed: 12/31/2022] Open
Abstract
Objective To evaluate the long-term benefit of a single injection of amniotic membrane/umbilical cord (AM/UC) particulate in patients with moderate to severe knee osteoarthritis (OA). Methods A single-center, investigator-initiated, retrospective study of patients who received intra-articular injection of 100 mg lyophilized and micronized AM/UC for radiographically confirmed, Kellgren–Lawrence (KL) grade 3 or 4 symptomatic knee OA. Data regarding demographics, OA severity, comorbidities, treatment regimens, complications, and patient-reported outcomes were collected and assessed. Patient Global Impression of Change (PGIC) was assessed on a 7-point scale, and Global Perceived Improvement (GPI), expressed as percent improvement relative to baseline, was used to further quantify the degree of symptomatic change. Clinically important response to treatment was assessed at 12 months using simplified OMERACT–OARSI responder criteria. Results A total of 42 patients with KL grade 3 (36%) and 4 (64%) knee OA were included for analysis. Prior to injection, patient-rated pain was 6.6 ± 1.5 out of 10 (median: 7, range: 3–10) despite prior treatment with oral/topical NSAIDs (62%) and intra-articular injection(s) of corticosteroids (57%) and/or hyaluronic acid (48%). Twelve months following AM/UC injection, 31 patients (74%) reported significant clinical improvement via PGIC, and the OMERACT–OARSI treatment response rate was 81% (34/42). GPI of pain and function was 62 ± 24%, 69 ± 27%, 69 ± 27%, and 64 ± 31% at 1, 3, 6, and 12 months, respectively. Symptomatic improvement was maintained for an average duration of 12.1 ± 4.5 months (median: 12, range: 3–22). One patient developed swelling in the knee within 36 hours of injection. No other adverse events or complications were reported. Conclusion Intra-articular injection of AM/UC particulate may be effective in alleviating pain and improving function in patients with moderate to severe knee OA, with the potential to delay total knee replacement for up to 12 months.
Collapse
|
24
|
Castellanos R, Tighe S. Injectable Amniotic Membrane/Umbilical Cord Particulate for Knee Osteoarthritis: A Prospective, Single-Center Pilot Study. PAIN MEDICINE 2020; 20:2283-2291. [PMID: 31418794 PMCID: PMC6830267 DOI: 10.1093/pm/pnz143] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To evaluate the short-term safety and effectiveness of amniotic membrane/umbilical cord particulate (AMUC) in managing pain in patients with various severities of knee osteoarthritis (OA). DESIGN Single-center, prospective, investigator-initiated pilot study. SETTING Private practice. SUBJECTS A total of 20 knee OA patients aged ≥18 years were enrolled with pain >40 mm, as determined by the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC)-A. METHODS Patients received an ultrasound-guided, intra-articular injection of 50 mg of AMUC particulate reconstituted in 2 mL of preservative-free saline. All patients were then monitored at six weeks, 12 weeks, and 24 weeks postinjection. Patients who did not show >30% reduction in pain received a second injection of AMUC at six weeks. WOMAC, Patient Global Assessment, medication usage, and magnetic resonance imaging (MRI) were assessed. RESULTS Knee OA pain significantly decreased from 74.3 ± 17.2 at baseline to 45.0 ± 25.4 at six weeks (P < 0.01), 35.4 ± 26.6 at 12 weeks (P < 0.001), and 37.4 ± 26.7 at 24 weeks (P < 0.001). This pain reduction was associated with a significant improvement in physical function (WOMAC-C) at all time points (P < 0.05) and stiffness (WOMAC-B) at 12 weeks (P = 0.01). Eleven patients received a second injection, which was significantly correlated with body mass index >30 kg/m2 (P = 0.025). MRI evaluation of the overall population revealed an improvement in the severity of bone marrow lesions in seven patients. No adverse events were observed. CONCLUSIONS AMUC particulate injection relieved pain and improved physical function in patients with symptomatic knee OA.
Collapse
Affiliation(s)
| | - Sean Tighe
- Herbert Wertheim College of Medicine, Florida International University, Miami, Florida.,TissueTech, Miami, Florida, USA
| |
Collapse
|
25
|
Abstract
Context Discogenic low back pain is the most common type of low back pain and is a major cause of morbidity worldwide. Current nonoperative treatment options are limited in efficacy and lack evidence of long-term pain relief; thus, there is an unmet clinical need for an effective treatment for patients with discogenic pain. Amniotic membrane and umbilical cord (AMUC) particulate may be useful in relieving pain and inhibiting the degenerative cascade in patients with discogenic pain by reducing inflammation. Objective To evaluate the effectiveness of AMUC particulate for discogenic pain. Methods Six months of conservative therapy failed in patients who had discogenic pain confirmed by magnetic resonance imaging and provocative discography. They subsequently received intradiskal injection of 50 to 100 mg of AMUC particulate for cervical, lumbar, and lumbosacral disks. Results A total of 11 patients with 20 disks were included. Before treatment, all patients reported severe pain, and 10 patients took opioids daily. After treatment, the median reported pain relief was 40%, 50%, and 75% at 1-month (n=6), 3 months (n=8), and 6 months (n=5), respectively. Complete pain relief was noted in 1 patient; however, 2 patients (18%) reported no pain relief at 1 and 3 months. No adverse events, repeated procedures, or complications occurred. Conclusion This preliminary evidence suggests that a single intradiskal injection of AMUC particulate is safe and may provide symptomatic pain relief in some patients with discogenic pain.
Collapse
|
26
|
Kimmerling KA, Gomoll AH, Farr J, Mowry KC. Amniotic Suspension Allograft Modulates Inflammation in a Rat Pain Model of Osteoarthritis. J Orthop Res 2020; 38:1141-1149. [PMID: 31814175 PMCID: PMC7187262 DOI: 10.1002/jor.24559] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 12/04/2019] [Indexed: 02/04/2023]
Abstract
Osteoarthritis (OA) affects over 301 million adults worldwide. Inflammation is a recognized component of the OA process; two potent pro-inflammatory cytokines involved in OA are interleukin-1β and tumor necrosis factor-α. Placental-derived tissues and fluids are known to contain anti-inflammatory and immunomodulatory cytokines and growth factors. The objective of this study was to evaluate the anti-inflammatory effects of amniotic suspension allograft (ASA) in an in vivo model of OA; we evaluated pain, function, and cytokine levels following ASA treatment in the rat monosodium iodoacetate (MIA) OA pain model. Rats were injected with 2 mg of MIA, which causes pain, cartilage degeneration, and inflammation, followed by treatment with saline, triamcinolone (positive control), or ASA 7 days following disease induction with MIA. Behavioral assays, including gait analysis, mechanical pain threshold, incapacitance, and swelling were evaluated, along with histology and serum and synovial fluid biomarkers. Treatment with ASA resulted in significant improvements in pain threshold, while weight bearing aversion and swelling were significantly decreased. There were no differences between groups in total joint score after histological grading. Serum biomarkers did not show differences, indicating a lack of systemic response; however, synovial fluid levels of IL-10 were significantly increased in animals treated with ASA. ASA treatment significantly reduced pain, weight-bearing aversion and swelling. This study provides mechanistic data regarding potential therapeutic effects of ASA in OA and preliminary evidence of the anti-inflammatory nature of ASA. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:1141-1149, 2020.
Collapse
Affiliation(s)
| | - Andreas H. Gomoll
- Department of Orthopaedic SurgeryHospital for Special SurgeryNew YorkNew York
| | - Jack Farr
- Knee Preservation and Cartilage Restoration Center, OrthoIndyIndianapolisIndiana
| | | |
Collapse
|
27
|
Huddleston HP, Cohn MR, Haunschild ED, Wong SE, Farr J, Yanke AB. Amniotic Product Treatments: Clinical and Basic Science Evidence. Curr Rev Musculoskelet Med 2020; 13:148-154. [PMID: 32076938 PMCID: PMC7174465 DOI: 10.1007/s12178-020-09614-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Orthobiologics, including amniotic products, have been gaining interest in the past decade for the treatment of various orthopedic conditions including osteoarthritis. However, the use of biologics is varied and is currently available with minimal oversight or regulation. This review will assess the current state of research that utilizes amniotic products both in vitro and in vivo. RECENT FINDINGS Amniotic tissue derivatives have been shown to have positive effects in animal models for a variety of conditions. Clinical trials are limited with mixed outcomes, yet some recent studies suggest the rationale for continued investigation. While amniotic products appear promising in numerous animal studies, human clinical trials are still lacking. Future studies are needed to assess whether amniotic products have a role in the treatment of osteoarthritis and other orthopedic pathologies.
Collapse
Affiliation(s)
- Hailey P Huddleston
- Department of Orthopaedic Surgery, Division of Sports Medicine, Rush University Medical Center, 1611 W. Harrison St, Suite 300, Chicago, IL, 60612, USA
| | - Matthew R Cohn
- Department of Orthopaedic Surgery, Division of Sports Medicine, Rush University Medical Center, 1611 W. Harrison St, Suite 300, Chicago, IL, 60612, USA
| | - Eric D Haunschild
- Department of Orthopaedic Surgery, Division of Sports Medicine, Rush University Medical Center, 1611 W. Harrison St, Suite 300, Chicago, IL, 60612, USA
| | - Stephanie E Wong
- Department of Orthopaedic Surgery, Division of Sports Medicine, Rush University Medical Center, 1611 W. Harrison St, Suite 300, Chicago, IL, 60612, USA
| | - Jack Farr
- Knee Preservation and Cartilage Restoration Center, OrthoIndy, Indianapolis, IN, USA
| | - Adam B Yanke
- Department of Orthopaedic Surgery, Division of Sports Medicine, Rush University Medical Center, 1611 W. Harrison St, Suite 300, Chicago, IL, 60612, USA.
| |
Collapse
|
28
|
Reece DS, Burnsed OA, Parchinski K, Marr EE, White RM, Salazar-Noratto GE, Lin ASP, Willett NJ, Guldberg RE. Reduced Size Profile of Amniotic Membrane Particles Decreases Osteoarthritis Therapeutic Efficacy. Tissue Eng Part A 2019; 26:28-37. [PMID: 31269875 DOI: 10.1089/ten.tea.2019.0074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Osteoarthritis (OA) is a widespread disease that continues to lack approved and efficacious treatments that modify disease progression. Micronized dehydrated human amnion/chorion membrane (μ-dHACM) has been shown to be effective in reducing OA progression, but many of the engineering design parameters have not been explored. The objectives of this study were to characterize the particle size distributions of two μ-dHACM formulations and to investigate the influence of these distributions on the in vivo therapeutic efficacy of μ-dHACM. Male Lewis rats underwent medial meniscus transection (MMT) or sham surgery, and intra-articular injections of saline, μ-dHACM, or reduced particle size μ-dHACM (RPS μ-dHACM) were administered at 24 hours postsurgery (n = 9 per treatment group). After 3 weeks, the animals were euthanized, and left legs harvested for equilibrium partitioning of an ionic contrast agent microcomputed tomography and histological analysis. μ-dHACM and RPS μ-dHACM particles were fluorescently tagged and particle clearance was tracked in vivo for up to 42 days postsurgery. Protein elution from both formulations was quantified in vitro. Treatment with μ-HACM, but not RPS μ-dHACM, reduced lesion volume in the MMT model 3 weeks postsurgery. In contrast, RPS μ-dHACM increased cartilage surface roughness and osteophyte cartilage thickness and volume compared to saline treatment. There was no difference of in vivo fluorescently tagged particle clearance between the two μ-dHACM sizes. RPS μ-dHACM showed significantly greater protein elution in vitro over 21 days. Overall, delivery of RPS μ-dHACM did result in an increase of in vivo joint degeneration and in vitro protein elution compared to μ-dHACM, but did not result in differences in joint clearance in vivo. These results suggest that particle size and factor elution may be tailorable factors that are important to optimize for particulate amniotic membrane treatment to be an effective therapy for OA. Impact Statement Osteoarthritis (OA) is a widespread disease that continues to lack treatments that modify the progression of the disease. Micronized dehydrated human amnion/chorion membrane (μ-dHACM) has been shown to be effective in reducing OA progression, but many of the engineering design parameters have not been explored. This work investigates the effects of particle size profile of the μ-dHACM particles and lays out the methods used in these studies. The results of this work will guide engineers in designing μ-dHACM treatments specifically and disease-modifying OA therapeutics generally, and it demonstrates the utility of novel therapeutic evaluation methods such as contrast-enhanced microcomputed tomography.
Collapse
Affiliation(s)
- David S Reece
- Wallace H. Coulter Department of Biomedical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Olivia A Burnsed
- Wallace H. Coulter Department of Biomedical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Kaley Parchinski
- Wallace H. Coulter Department of Biomedical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Elizabeth E Marr
- Wallace H. Coulter Department of Biomedical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Roger M White
- W.P. Carey School of Business, Arizona State University, Tempe, Arizona
| | - Giuliana E Salazar-Noratto
- Wallace H. Coulter Department of Biomedical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Angela S P Lin
- George W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Nick J Willett
- Department of Orthopaedics, Emory University, Atlanta, Georgia.,Atlanta Veteran's Affairs Medical Center, Decatur, Georgia.,Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Robert E Guldberg
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon
| |
Collapse
|
29
|
Kim SR. Successful treatment of scapholunate advanced collapse: A case report. Clin Case Rep 2019; 7:1230-1232. [PMID: 31183100 PMCID: PMC6552941 DOI: 10.1002/ccr3.2201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/03/2019] [Accepted: 04/26/2019] [Indexed: 12/20/2022] Open
Abstract
This case illustrates the successful treatment by injection of amniotic membrane and umbilical cord particulate for scapholunate advanced collapse unresponsive to traditional nonsurgical treatment.
Collapse
Affiliation(s)
- Sunny R. Kim
- Progressive Rehabilitation Medicine, PCCedar RapidsIowa
| |
Collapse
|
30
|
Bullard JD, Lei J, Lim JJ, Massee M, Fallon AM, Koob TJ. Evaluation of dehydrated human umbilical cord biological properties for wound care and soft tissue healing. J Biomed Mater Res B Appl Biomater 2019; 107:1035-1046. [PMID: 30199609 PMCID: PMC6585686 DOI: 10.1002/jbm.b.34196] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/16/2018] [Accepted: 06/27/2018] [Indexed: 12/11/2022]
Abstract
Chronic wounds are a significant health care problem with serious implications for quality of life because they do not properly heal and often require therapeutic intervention. Amniotic membrane allografts have been successfully used as a biologic therapy to promote soft tissue healing; however, the umbilical cord, another placental-derived tissue, has also recently garnered interest because of its unique composition but similar placental tissue origin. The aim of this study was to characterize PURION® PLUS Processed dehydrated human umbilical cord (dHUC) and evaluate the biological properties of this tissue that contribute to healing. This was performed through the characterization of the tissue composition, evaluation of in vitro cellular response to dHUC treatment, and in vivo bioresorption and tissue response in a rat model. It was observed that dHUC contains collagen I, hyaluronic acid, laminin, and fibronectin. Additionally, 461 proteins that consist of growth factors and cytokines, inflammatory modulators, chemokines, proteases and inhibitors, adhesion molecules, signaling receptors, membrane-bound proteins, and other soluble regulators were detected. Cell-based assays demonstrated an increase in adipose-derived stem cell and mesenchymal stem cell proliferation, fibroblast migration and endothelial progenitor cell vessel formation in a dose-dependent manner after dHUC treatment. Lastly, rat subcutaneous implantation demonstrated biocompatibility since dHUC allografts were resorbed without fibrous encapsulation. These findings establish that dHUC possesses biological properties that stimulate cellular responses important for soft tissue healing. © 2018 The Authors. Journal Of Biomedical Materials Research Part B: Applied Biomaterials Published By Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1035-1046, 2019.
Collapse
|
31
|
Bennett DS. Cryopreserved amniotic membrane and umbilical cord particulate for managing pain caused by facet joint syndrome: A case series. Medicine (Baltimore) 2019; 98:e14745. [PMID: 30855467 PMCID: PMC6417546 DOI: 10.1097/md.0000000000014745] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Treatment of back pain due to facet joint syndrome has been a challenge for physicians since its recognition ∼80 years ago. Intra-articular injections of steroids, local anesthetics, and phenol have been widely adopted despite their known shortcomings. Recently, intra-articular injection of amniotic membrane-umbilical cord (AMUC) has been utilized in various orthopedic indications, including those involving synovial joints, due to its reported anti-inflammatory properties. Herein, use of AMUC for facet joint syndrome was evaluated.A single-center case series was conducted on patients presenting with pain caused by facet joint syndrome, confirmed by single blocking anesthetic injection and treated using a single intra-articular injection of 50 mg particulate AMUC (CLARIX FLO) suspended in preservative-free saline. Patient reported back pain severity (numerical scale 0-10) and opioid use were compared between baseline and 6 months following treatment.A total of 9 patients (7 males, 2 females), average age 52.1 ± 15.9 years, were included. Five patients with cervical pain had a history of trauma, 1 patient had suffered lumbar facet injury and 3 had degenerative lumbar facet osteoarthritis. All patients had severe pain prior to injection (8.2 ± 0.8) and 4 (44%) were taking opioids (>100 morphine milligram equivalents). Six-month post-treatment, average pain had decreased to 0.4 ± 0.7 (P <.05). All patients had ceased use of prescription pain medications, including opioids. No adverse events, repeat procedures, or complications were reported.Intra-articular injection of AMUC appears to be promising for managing facet pain and mitigating opioid use. Further investigation with larger sample size is warranted.
Collapse
|
32
|
Marino-Martínez IA, Martínez-Castro AG, Peña-Martínez VM, Acosta-Olivo CA, Vílchez-Cavazos F, Guzmán-López A, Pérez Rodríguez E, Romero-Díaz VJ, Ortega-Blanco JA, Lara-Arias J. Human amniotic membrane intra-articular injection prevents cartilage damage in an osteoarthritis model. Exp Ther Med 2018; 17:11-16. [PMID: 30651759 PMCID: PMC6307525 DOI: 10.3892/etm.2018.6924] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 08/09/2018] [Indexed: 12/17/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease that affects the soft tissues and bones of involved articulations as a result of deregulation between synthesis and extracellular matrix degradation in articular cartilage. The present study evaluated the effect of intra-articular injection of human amniotic membrane (AM) as a treatment in an OA animal model in the knee. Chemical OA was developed in the knees of New Zealand rabbits. Once OA was established, the right knees only were treated with an intra-articular injection of human AM, with the left knees considered as a negative control group. The evaluation was performed at 3 and 6 weeks post-treatment. At 3 weeks post-injection, the cartilage exhibited fibrillation, erosion, cracks and cell clusters in the negative control group, but not in the treated group (P=0.028). At 6 weeks post-injection, the left knees exhibited hypertrophy, cracks, cell clusters, decreased matrix staining and structure loss. However, the right knees exhibited cell clusters without evidence of disruption in cartilage integrity (P=0.015). These results suggested that the intra-articular injection of human AM delays histological changes of cartilage in OA.
Collapse
Affiliation(s)
- I A Marino-Martínez
- Pathology Service, Hospital Universitario 'Dr. José E. González', Monterrey, NL 64460, Mexico
| | - A G Martínez-Castro
- Orthopedics and Traumatology Service, Hospital Universitario 'Dr. José E. González', Monterrey, NL 64460, Mexico
| | - V M Peña-Martínez
- Orthopedics and Traumatology Service, Hospital Universitario 'Dr. José E. González', Monterrey, NL 64460, Mexico
| | - C A Acosta-Olivo
- Orthopedics and Traumatology Service, Hospital Universitario 'Dr. José E. González', Monterrey, NL 64460, Mexico
| | - F Vílchez-Cavazos
- Orthopedics and Traumatology Service, Hospital Universitario 'Dr. José E. González', Monterrey, NL 64460, Mexico
| | - A Guzmán-López
- Obstetrics and Gynecology Service, Hospital Universitario 'Dr. José E. González', Monterrey, NL 64460, Mexico
| | | | - V J Romero-Díaz
- Department of Histology, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, NL 64460, Mexico
| | | | - J Lara-Arias
- Orthopedics and Traumatology Service, Hospital Universitario 'Dr. José E. González', Monterrey, NL 64460, Mexico
| |
Collapse
|
33
|
Topoluk N, Steckbeck K, Siatkowski S, Burnikel B, Tokish J, Mercuri J. Amniotic mesenchymal stem cells mitigate osteoarthritis progression in a synovial macrophage-mediated in vitro explant coculture model. J Tissue Eng Regen Med 2017; 12:1097-1110. [PMID: 29131526 DOI: 10.1002/term.2610] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 10/03/2017] [Accepted: 10/28/2017] [Indexed: 02/06/2023]
Abstract
Osteoarthritis (OA) is a disease of the synovial joint marked by chronic, low-grade inflammation leading to cartilage destruction. Regenerative medicine strategies for mitigating OA progression and/or promoting cartilage regeneration must be assessed using models that mimic the hallmarks of OA. More specifically, these models should maintain synovial macrophage phenotype in their native micro-environment. Herein, an in vitro coculture model of patient-matched human OA cartilage and synovium was assessed for viability, macrophage phenotype, and progressive cartilage destruction in the presence of an inflammatory milieu. Additionally, the influence of synovial macrophages and their polarization within the model was defined using depletion studies. Finally, the model was used to compare the ability of human amniotic stem cells (hAMSCs) and human adipose stem cells (hADSCs) to mitigate OA progression. OA cocultures demonstrated progressive and significant reductions in chondrocyte viability and cartilage glycosaminoglycan content within a proinflammatory environment. Selective depletion of synovial macrophages resulted in significant decreases in M1:M2 percentage ratio yielding significant reductions in concentrations of interleukin-1 beta, matrix metalloproteinase-13 and attenuation of cartilage damage. Finally, hAMSCs were found to be more chondroprotective versus hADSCs as indicated by significantly improved OA chondrocyte viability (89.8 ± 2.4% vs. 58.4 ± 2.4%) and cartilage glycosaminoglycan content (499.0 ± 101.9 μg/mg dry weight vs. 155.0 ± 26.3 μg/mg dry weight) and were more effective at shifting OA synovial macrophage M1:M2 ratio (1.3:1 vs. 5:1), respectively. Taken together, the coculture model mimics salient features of OA, including macrophage-mediated cartilage destruction that was effectively abrogated by hAMSCs but not hADSCs.
Collapse
Affiliation(s)
- Natasha Topoluk
- The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Kathleen Steckbeck
- The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Sandra Siatkowski
- The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Brian Burnikel
- The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, SC, USA.,Steadman Hawkins Clinic of the Carolinas, Greenville Health System, Greenville, SC, USA
| | - John Tokish
- The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, SC, USA.,Steadman Hawkins Clinic of the Carolinas, Greenville Health System, Greenville, SC, USA
| | - Jeremy Mercuri
- The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, SC, USA
| |
Collapse
|
34
|
Abstract
Nonsurgical treatment of ankle arthritis can be a short-term fix or a long-term solution. An understanding of the biomechanics of the ankle is helpful in the successful use of orthotics and bracing. Pharmacologic and/or biologic treatments can be used exclusively or in concert with mechanical interventions to decrease pain, improve function, and potentially extend the life span of an arthritic ankle.
Collapse
Affiliation(s)
- Michael A Gentile
- Northwest Extremity Specialists, Westside Foot and Ankle Specialists, 9900 Southwest Hall Boulevard, Suite 100, Portland, OR 97223, USA.
| |
Collapse
|