1
|
Yuan Z, Li Y, Zhang S, Wang X, Dou H, Yu X, Zhang Z, Yang S, Xiao M. Extracellular matrix remodeling in tumor progression and immune escape: from mechanisms to treatments. Mol Cancer 2023; 22:48. [PMID: 36906534 PMCID: PMC10007858 DOI: 10.1186/s12943-023-01744-8] [Citation(s) in RCA: 154] [Impact Index Per Article: 154.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/11/2023] [Indexed: 03/13/2023] Open
Abstract
The malignant tumor is a multi-etiological, systemic and complex disease characterized by uncontrolled cell proliferation and distant metastasis. Anticancer treatments including adjuvant therapies and targeted therapies are effective in eliminating cancer cells but in a limited number of patients. Increasing evidence suggests that the extracellular matrix (ECM) plays an important role in tumor development through changes in macromolecule components, degradation enzymes and stiffness. These variations are under the control of cellular components in tumor tissue via the aberrant activation of signaling pathways, the interaction of the ECM components to multiple surface receptors, and mechanical impact. Additionally, the ECM shaped by cancer regulates immune cells which results in an immune suppressive microenvironment and hinders the efficacy of immunotherapies. Thus, the ECM acts as a barrier to protect cancer from treatments and supports tumor progression. Nevertheless, the profound regulatory network of the ECM remodeling hampers the design of individualized antitumor treatment. Here, we elaborate on the composition of the malignant ECM, and discuss the specific mechanisms of the ECM remodeling. Precisely, we highlight the impact of the ECM remodeling on tumor development, including proliferation, anoikis, metastasis, angiogenesis, lymphangiogenesis, and immune escape. Finally, we emphasize ECM "normalization" as a potential strategy for anti-malignant treatment.
Collapse
Affiliation(s)
- Zhennan Yuan
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yingpu Li
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Sifan Zhang
- Department of Neurobiology, Harbin Medical University, Harbin, 150081, China
| | - Xueying Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - He Dou
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xi Yu
- Department of Gynecological Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Zhiren Zhang
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.,Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorder and Cancer Related Cardiovascular Diseases, Harbin, 150001, China
| | - Shanshan Yang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, 150000, China.
| | - Min Xiao
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
2
|
Marzaro M, Pozzato G, Tedesco S, Algeri M, Pozzato A, Tomao L, Montano I, Torroni F, Balassone V, Contini ACI, Guerra L, D’Angelo T, Federici di Abriola G, Lupoi L, Caristo ME, Boškoski I, Costamagna G, Francalanci P, Astori G, Bozza A, Bagno A, Todesco M, Trovalusci E, Oglio LD, Locatelli F, Caldaro T. Decellularized esophageal tubular scaffold microperforated by quantum molecular resonance technology and seeded with mesenchymal stromal cells for tissue engineering esophageal regeneration. Front Bioeng Biotechnol 2022; 10:912617. [PMID: 36267444 PMCID: PMC9576845 DOI: 10.3389/fbioe.2022.912617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022] Open
Abstract
Current surgical options for patients requiring esophageal replacement suffer from several limitations and do not assure a satisfactory quality of life. Tissue engineering techniques for the creation of customized “self-developing” esophageal substitutes, which are obtained by seeding autologous cells on artificial or natural scaffolds, allow simplifying surgical procedures and achieving good clinical outcomes. In this context, an appealing approach is based on the exploitation of decellularized tissues as biological matrices to be colonized by the appropriate cell types to regenerate the desired organs. With specific regard to the esophagus, the presence of a thick connective texture in the decellularized scaffold hampers an adequate penetration and spatial distribution of cells. In the present work, the Quantum Molecular Resonance® (QMR) technology was used to create a regular microchannel structure inside the connective tissue of full-thickness decellularized tubular porcine esophagi to facilitate a diffuse and uniform spreading of seeded mesenchymal stromal cells within the scaffold. Esophageal samples were thoroughly characterized before and after decellularization and microperforation in terms of residual DNA content, matrix composition, structure and biomechanical features. The scaffold was seeded with mesenchymal stromal cells under dynamic conditions, to assess the ability to be repopulated before its implantation in a large animal model. At the end of the procedure, they resemble the original esophagus, preserving the characteristic multilayer composition and maintaining biomechanical properties adequate for surgery. After the sacrifice we had histological and immunohistochemical evidence of the full-thickness regeneration of the esophageal wall, resembling the native organ. These results suggest the QMR microperforated decellularized esophageal scaffold as a promising device for esophagus regeneration in patients needing esophageal substitution.
Collapse
Affiliation(s)
| | | | | | - Mattia Algeri
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | | | - Luigi Tomao
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Ilaria Montano
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Filippo Torroni
- Digestive Endoscopy and Surgical Unit, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Valerio Balassone
- Digestive Endoscopy and Surgical Unit, Bambino Gesù Children’s Hospital, Rome, Italy
| | | | - Luciano Guerra
- Digestive Endoscopy and Surgical Unit, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Tommaso D’Angelo
- Digestive Endoscopy and Surgical Unit, Bambino Gesù Children’s Hospital, Rome, Italy
| | | | - Lorenzo Lupoi
- Cen.Ri.S. Policlinico Gemelli UNICATT Rome, Rome, Italy
| | | | - Ivo Boškoski
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Digestive Endoscopy Unit, Rome, Italy
- Università Cattolica del Sacro Cuore, Centre For Endoscopic Research Therapeutics and Training (CERTT), Rome, Italy—CERTT Gemelli, Rome, Italy
- *Correspondence: Ivo Boškoski,
| | - Guido Costamagna
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Digestive Endoscopy Unit, Rome, Italy
- Università Cattolica del Sacro Cuore, Centre For Endoscopic Research Therapeutics and Training (CERTT), Rome, Italy—CERTT Gemelli, Rome, Italy
| | | | - Giuseppe Astori
- Advanced Cellular Therapy Laboratory, Haematology Unit, San Bortolo Hospital, Vicenza, Italy
| | - Angela Bozza
- Advanced Cellular Therapy Laboratory, Haematology Unit, San Bortolo Hospital, Vicenza, Italy
- Consorzio Per la Ricerca Sanitaria (CORIS) of the Veneto Region, Padova, Italy
| | - Andrea Bagno
- Department of Industrial Engineering, University of Padova, Padova, Italy
| | - Martina Todesco
- Department of Industrial Engineering, University of Padova, Padova, Italy
| | - Emanuele Trovalusci
- Pediatric Surgery Department AULSS2 Treviso, University of Padova, Padova, Italy
| | - Luigi Dall’ Oglio
- Digestive Endoscopy and Surgical Unit, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Department of Pediatrics, Sapienza University of Rome, Roma, Italy
| | - Tamara Caldaro
- Digestive Endoscopy and Surgical Unit, Bambino Gesù Children’s Hospital, Rome, Italy
| |
Collapse
|
3
|
Murdock MH, Hussey GS, Chang JT, Hill RC, Nascari DG, Rao AV, Hansen KC, Foley LM, Hitchens TK, Amankulor NM, Badylak SF. A liquid fraction of extracellular matrix inhibits glioma cell viability in vitro and in vivo. Oncotarget 2022; 13:426-438. [PMID: 35198102 PMCID: PMC8860176 DOI: 10.18632/oncotarget.28203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/07/2022] [Indexed: 12/04/2022] Open
Abstract
Suppressive effects of extracellular matrix (ECM) upon various cancers have been reported. Glioblastoma multiforme has poor prognosis and new therapies are desired. This work investigated the effects of a saline-soluble fraction of urinary bladder ECM (ECM-SF) upon glioma cells. Viability at 24 hours in 1, 5, or 10 mg/mL ECM-SF-spiked media was evaluated in primary glioma cells (0319, 1015, 1119), glioma cell lines (A172, T98G, U87MG, C6), and brain cell lines (HCN-2, HMC3). Viability universally decreased at 5 and 10 mg/mL with U87MG, HCN-2, and HCM3 being least sensitive. Apoptosis in 0319 and 1119 cells was confirmed via NucView 488. Bi-weekly intravenous injection of ECM-SF (120 mg/kg) for 10 weeks in Sprague-Dawley rats did not affect weight, temperature, complete blood count, or multi-organ histology (N = 5). Intratumoral injection of ECM-SF (10 uL of 30 mg/mL) at weeks 2-4 post C6 inoculation in Wistar rats increased median survival from 24.5 to 51 days (hazard ratio for death 0.22) and decreased average tumor volume at time of death from 349 mm3 to 90 mm3 over 10 weeks (N = 6). Mass spectrometry identified 2,562 protein species in ECM-SF, parent ECM, and originating tissue. These results demonstrate the suppressive effects of ECM on glioma and warrant further study.
Collapse
Affiliation(s)
- Mark H. Murdock
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - George S. Hussey
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jordan T. Chang
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan C. Hill
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO, USA
| | - David G. Nascari
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aparna V. Rao
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kirk C. Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO, USA
| | - Lesley M. Foley
- Animal Imaging Center, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - T. Kevin Hitchens
- Animal Imaging Center, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nduka M. Amankulor
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephen F. Badylak
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
4
|
The effect of normal, metaplastic, and neoplastic esophageal extracellular matrix upon macrophage activation. ACTA ACUST UNITED AC 2020; 13. [PMID: 34027260 DOI: 10.1016/j.regen.2020.100037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction Macrophages are capable of extreme plasticity and their activation state has been strongly associated with solid tumor growth progression and regression. Although the macrophage response to extracellular matrix (ECM) isolated from normal tissue is reasonably well understood, there is a relative dearth of information regarding their response to ECM isolated from chronically inflamed tissues, pre-neoplastic tissues, and neoplastic tissues. Esophageal adenocarcinoma (EAC) is a type of neoplasia driven by chronic inflammation in the distal esophagus, and the length of the esophagus provides the opportunity to investigate macrophage behavior in the presence of ECM isolated from a range of disease states within the same organ. Methods Normal, metaplastic, and neoplastic ECM hydrogels were prepared from decellularized EAC tissue. The hydrogels were evaluated for their nanofibrous structure (SEM), biochemical profile (targeted and global proteomics), and direct effect upon macrophage (THP-1 cell) activation state (qPCR, ELISA, immunolabeling) and indirect effect upon epithelial cell (Het-1A) migration (Boyden chamber). Results Nanofibrous ECM hydrogels from the three tissue types could be formed, and normal and neoplastic ECM showed distinctive protein profiles by targeted and global mass spectroscopy. ECM proteins functionally related to cancer and tumorigenesis were identified in the neoplastic esophageal ECM including collagen alpha-1(VIII) chain (COL8A1), lumican, and elastin. Metaplastic and neoplastic esophageal ECM induce distinctive effects upon THP-1 macrophage signaling compared to normal esophageal ECM. These effects include activation of pro-inflammatory IFNγ and TNFα gene expression and anti-inflammatory IL1RN gene expression. Most notably, neoplastic ECM robustly increased macrophage TNFα protein expression. The secretome of macrophages pre-treated with metaplastic and neoplastic ECM increases the migration of normal esophageal epithelial cells, similar behavior to that shown by tumor cells. Metaplastic ECM shows similar but less pronounced effects than neoplastic ECM suggesting the abnormal signals also exist within the pre-cancerous state. Conclusion A progressively diseased ECM, as exists within the esophagus exposed to chronic gastric reflux, can provide insights into novel biomarkers of early disease and identify potential therapeutic targets.
Collapse
|
5
|
Naranjo JD, Saldin LT, Sobieski E, Quijano LM, Hill RC, Chan PG, Torres C, Dziki JL, Cramer MC, Lee YC, Das R, Bajwa AK, Nossair R, Klimak M, Marchal L, Patel S, Velankar SS, Hansen KC, McGrath K, Badylak SF. Esophageal extracellular matrix hydrogel mitigates metaplastic change in a dog model of Barrett's esophagus. SCIENCE ADVANCES 2020; 6:eaba4526. [PMID: 32656339 PMCID: PMC7329334 DOI: 10.1126/sciadv.aba4526] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/16/2020] [Indexed: 05/17/2023]
Abstract
Chronic inflammatory gastric reflux alters the esophageal microenvironment and induces metaplastic transformation of the epithelium, a precancerous condition termed Barrett's esophagus (BE). The microenvironmental niche, which includes the extracellular matrix (ECM), substantially influences cell phenotype. ECM harvested from normal porcine esophageal mucosa (eECM) was formulated as a mucoadhesive hydrogel, and shown to largely retain basement membrane and matrix-cell adhesion proteins. Dogs with BE were treated orally with eECM hydrogel and omeprazole (n = 6) or omeprazole alone (n = 2) for 30 days. eECM treatment resolved esophagitis, reverted metaplasia to a normal, squamous epithelium in four of six animals, and downregulated the pro-inflammatory tumor necrosis factor-α+ cell infiltrate compared to control animals. The metaplastic tissue in control animals (n = 2) did not regress. The results suggest that in vivo alteration of the microenvironment with a site-appropriate, mucoadhesive ECM hydrogel can mitigate the inflammatory and metaplastic response in a dog model of BE.
Collapse
Affiliation(s)
- Juan Diego Naranjo
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Lindsey T. Saldin
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Eric Sobieski
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Lina M. Quijano
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Ryan C. Hill
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Patrick G. Chan
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Cardiothoracic Surgery, UPMC, Pittsburgh, PA 15213, USA
| | - Crisanto Torres
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Cardiothoracic Surgery, UPMC, Pittsburgh, PA 15213, USA
| | - Jenna L. Dziki
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Madeline C. Cramer
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yoojin C. Lee
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Rohit Das
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, UPMC, Pittsburgh, PA 15213, USA
| | - Anant K. Bajwa
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Rania Nossair
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Molly Klimak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Lucile Marchal
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Shil Patel
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Sachin S. Velankar
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Chemical Engineering, Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Kirk C. Hansen
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kevin McGrath
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, UPMC, Pittsburgh, PA 15213, USA
| | - Stephen F. Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|