1
|
Ma H, Xie B, Chen H, Hao L, Jia H, Yu D, Zhou Y, Song P, Li Y, Liu J, Yu K, Zhao Y, Zhang Y. Structurally sophisticated 3D-printed PCL-fibrin hydrogel meniscal scaffold promotes in situ regeneration in the rabbit knee meniscus. Mater Today Bio 2025; 30:101391. [PMID: 39790487 PMCID: PMC11715118 DOI: 10.1016/j.mtbio.2024.101391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 11/22/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025] Open
Abstract
A meniscus injury is a common cartilage disease of the knee joint. Despite the availability of various methods for the treatment of meniscal injuries, the poor regenerative capacity of the meniscus often necessitates resection, leading to the accelerated progression of osteoarthritis. Advances in tissue engineering have introduced meniscal tissue engineering as a potential treatment option. In this study, we established the size of a standardized meniscal scaffold using knee Magnetic Resonance Imaging (MRI) data and created a precise Polycaprolactone (PCL) scaffold utilizing 3-Dimensional (3D) printing technology, which was then combined with Fibrin (Fib) hydrogel to form a PCL-Fib scaffold. The PCL scaffold offers superior biomechanical properties, while the Fib hydrogel creates a conducive microenvironment for cell growth, supporting chondrocyte proliferation and extracellular matrix (ECM) production. Physical and chemical characterization, biocompatibility testing, and in vivo animal experiments revealed the excellent biomechanical properties and biocompatibility of the scaffold, which enhanced in situ meniscal regeneration and reduced osteoarthritis progression. In conclusion, the integration of 3D printing technology and the Fib hydrogel provided a supportive microenvironment for chondrocyte proliferation and ECM secretion, facilitating the in situ regeneration and repair of the meniscal defect. This innovative approach presents a promising avenue for meniscal injury treatment and advances the clinical utilization of artificial meniscal grafts.
Collapse
Affiliation(s)
- Hebin Ma
- Medical School of Chinese PLA, Beijing, 100853, PR China
- Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, PR China
- Beijing Engineering Research Center of Orthopedics Implants, Beijing, 100048, PR China
- Air Force Characteristic Medical Center, The Fifth School of Clinical Medicine, Anhui Medical University, Beijing, 100142, PR China
| | - Bowen Xie
- Air Force Characteristic Medical Center, The Fifth School of Clinical Medicine, Anhui Medical University, Beijing, 100142, PR China
| | - Hongguang Chen
- Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, PR China
- Beijing Engineering Research Center of Orthopedics Implants, Beijing, 100048, PR China
| | - Lifang Hao
- Beijing Engineering Research Center of Orthopedics Implants, Beijing, 100048, PR China
| | - Haigang Jia
- Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, PR China
| | - Dengjie Yu
- Medical School of Chinese PLA, Beijing, 100853, PR China
| | - Yuanbo Zhou
- Medical School of Chinese PLA, Beijing, 100853, PR China
- Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, PR China
- Beijing Engineering Research Center of Orthopedics Implants, Beijing, 100048, PR China
| | - Puzhen Song
- Medical School of Chinese PLA, Beijing, 100853, PR China
- Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, PR China
| | - Yajing Li
- Department of Respiratory and Critical Care Medicine, the Eighth Medical Center of Chinese PLA General Hospital, Beijing, 100091, PR China
| | - Jing Liu
- Department of Radiological, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, PR China
| | - Kaitao Yu
- Department of Stomatology, the Fifth Medical Center of PLA General Hospital, Beijing, 100071, PR China
| | - Yantao Zhao
- Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, PR China
- Beijing Engineering Research Center of Orthopedics Implants, Beijing, 100048, PR China
| | - Yadong Zhang
- Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, PR China
- Department of Orthopedics, the Fifth Medical Center of PLA General Hospital, Beijing, 100071, PR China
| |
Collapse
|
2
|
Stehle M, Amini M, Venkatesan JK, Liu W, Wang D, Nguyen TN, Leroux A, Madry H, Migonney V, Cucchiarini M. Commitment of human mesenchymal stromal cells towards ACL fibroblast differentiation upon rAAV-mediated FGF-2 and TGF-β overexpression using pNaSS-grafted PCL films. Biotechnol Bioeng 2024; 121:3196-3210. [PMID: 38877726 DOI: 10.1002/bit.28773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/29/2024] [Accepted: 05/28/2024] [Indexed: 06/16/2024]
Abstract
Despite various clinical options, human anterior cruciate ligament (ACL) lesions do not fully heal. Biomaterial-guided gene therapy using recombinant adeno-associated virus (rAAV) vectors may improve the intrinsic mechanisms of ACL repair. Here, we examined whether poly(sodium styrene sulfonate)-grafted poly(ε-caprolactone) (pNaSS-grafted PCL) films can deliver rAAV vectors coding for the reparative basic fibroblast growth factor (FGF-2) and transforming growth factor beta (TGF-β) in human mesenchymal stromal cells (hMSCs) as a source of implantable cells in ACL lesions. Efficient and sustained rAAV-mediated reporter (red fluorescent protein) and therapeutic (FGF-2 and TGF-β) gene overexpression was achieved in the cells for at least 21 days in particular with pNaSS-grafted PCL films relative to all other conditions (up to 5.2-fold difference). Expression of FGF-2 and TGF-β mediated by rAAV using PCL films increased the levels of cell proliferation, the DNA contents, and the deposition of proteoglycans and of type-I and -III collagen (up to 2.9-fold difference) over time in the cells with higher levels of transcription factor expression (Mohawk, Scleraxis) (up to 1.9-fold difference), without activation of inflammatory tumor necrosis alpha especially when using pNaSS-grafted PCL films compared with the controls. Overall, the effects mediated by TGF-β were higher than those promoted by FGF-2, possibly due to higher levels of gene expression achieved upon rAAV gene transfer. This study shows the potential of using functionalized PCL films to apply rAAV vectors for ACL repair.
Collapse
Affiliation(s)
- Meret Stehle
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Saarland, Germany
| | - Mahnaz Amini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Saarland, Germany
| | - Jagadeesh K Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Saarland, Germany
| | - Wei Liu
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Saarland, Germany
| | - Dan Wang
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Saarland, Germany
| | - Tuan N Nguyen
- LBPS/CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, Villetaneuse, France
| | - Amélie Leroux
- LBPS/CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, Villetaneuse, France
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Saarland, Germany
| | - Véronique Migonney
- LBPS/CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, Villetaneuse, France
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Saarland, Germany
| |
Collapse
|
3
|
Amini M, Venkatesan JK, Nguyen TN, Liu W, Leroux A, Madry H, Migonney V, Cucchiarini M. rAAV TGF-β and FGF-2 Overexpression via pNaSS-Grafted PCL Films Stimulates the Reparative Activities of Human ACL Fibroblasts. Int J Mol Sci 2023; 24:11140. [PMID: 37446318 DOI: 10.3390/ijms241311140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Lesions in the human anterior cruciate ligament (ACL) are frequent, unsolved clinical issues due to the limited self-healing ability of the ACL and lack of treatments supporting full, durable ACL repair. Gene therapy guided through the use of biomaterials may steadily activate the processes of repair in sites of ACL injury. The goal of the present study was to test the hypothesis that functionalized poly(sodium styrene sulfonate)-grafted poly(ε-caprolactone) (pNaSS-grafted PCL) films can effectively deliver recombinant adeno-associated virus (rAAV) vectors as a means of overexpressing two reparative factors (transforming growth factor beta-TGF-β and basic fibroblast growth factor-FGF-2) in primary human ACL fibroblasts. Effective, durable rAAV reporter red fluorescent protein and candidate TGF-β and FGF-2 gene overexpression was achieved in the cells for at least 21 days, especially when pNaSS-grafted PCL films were used versus control conditions, such as ungrafted films and systems lacking vectors or films (between 1.8- and 5.2-fold differences), showing interactive regulation of growth factor production. The expression of TGF-β and FGF-2 from rAAV via PCL films safely enhanced extracellular matrix depositions of type-I/-III collagen, proteoglycans/decorin, and tenascin-C (between 1.4- and 4.5-fold differences) in the cells over time with increased levels of expression of the specific transcription factors Mohawk and scleraxis (between 1.7- and 3.7-fold differences) and without the activation of the inflammatory mediators IL-1β and TNF-α, most particularly with pNaSS-grafted PCL films relative to the controls. This work shows the value of combining rAAV gene therapy with functionalized PCL films to enhance ACL repair.
Collapse
Affiliation(s)
- Mahnaz Amini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Germany
| | - Jagadeesh K Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Germany
| | - Tuan N Nguyen
- LBPS/CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, 93430 Villetaneuse, France
| | - Wei Liu
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Germany
| | - Amélie Leroux
- LBPS/CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, 93430 Villetaneuse, France
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Germany
| | - Véronique Migonney
- LBPS/CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, 93430 Villetaneuse, France
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Germany
| |
Collapse
|
4
|
Kato M, Ishikawa S, Shen Q, Du Z, Katashima T, Naito M, Numahata T, Okazaki M, Sakai T, Kurita M. In situ-formable, dynamic crosslinked poly(ethylene glycol) carrier for localized adeno-associated virus infection and reduced off-target effects. Commun Biol 2023; 6:508. [PMID: 37193797 DOI: 10.1038/s42003-023-04851-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 04/19/2023] [Indexed: 05/18/2023] Open
Abstract
The adeno-associated virus (AAV) is a potent vector for in vivo gene transduction and local therapeutic applications of AAVs, such as for skin ulcers, are expected. Localization of gene expression is important for the safety and efficiency of genetic therapies. We hypothesized that gene expression could be localized by designing biomaterials using poly(ethylene glycol) (PEG) as a carrier. Here we show one of the designed PEG carriers effectively localized gene expression on the ulcer surface and reduced off-target effects in the deep skin layer and the liver, as a representative organ to assess distant off-target effects, using a mouse skin ulcer model. The dissolution dynamics resulted in localization of the AAV gene transduction. The designed PEG carrier may be useful for in vivo gene therapies using AAVs, especially for localized expression.
Collapse
Affiliation(s)
- Motoi Kato
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Shohei Ishikawa
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Qi Shen
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Zening Du
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Takuya Katashima
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Mitsuru Naito
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Takao Numahata
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Mutsumi Okazaki
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Takamasa Sakai
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan.
| | - Masakazu Kurita
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
5
|
Advances in Biomaterial-Mediated Gene Therapy for Articular Cartilage Repair. Bioengineering (Basel) 2022; 9:bioengineering9100502. [PMID: 36290470 PMCID: PMC9598732 DOI: 10.3390/bioengineering9100502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Articular cartilage defects caused by various reasons are relatively common in clinical practice, but the lack of efficient therapeutic methods remains a substantial challenge due to limitations in the chondrocytes’ repair abilities. In the search for scientific cartilage repair methods, gene therapy appears to be more effective and promising, especially with acellular biomaterial-assisted procedures. Biomaterial-mediated gene therapy has mainly been divided into non-viral vector and viral vector strategies, where the controlled delivery of gene vectors is contained using biocompatible materials. This review will introduce the common clinical methods of cartilage repair used, the strategies of gene therapy for cartilage injuries, and the latest progress.
Collapse
|
6
|
The development of natural polymer scaffold-based therapeutics for osteochondral repair. Biochem Soc Trans 2021; 48:1433-1445. [PMID: 32794551 DOI: 10.1042/bst20190938] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023]
Abstract
Due to the limited regenerative capacity of cartilage, untreated joint defects can advance to more extensive degenerative conditions such as osteoarthritis. While some biomaterial-based tissue-engineered scaffolds have shown promise in treating such defects, no scaffold has been widely accepted by clinicians to date. Multi-layered natural polymer scaffolds that mimic native osteochondral tissue and facilitate the regeneration of both articular cartilage (AC) and subchondral bone (SCB) in spatially distinct regions have recently entered clinical use, while the transient localized delivery of growth factors and even therapeutic genes has also been proposed to better regulate and promote new tissue formation. Furthermore, new manufacturing methods such as 3D bioprinting have made it possible to precisely tailor scaffold micro-architectures and/or to control the spatial deposition of cells in requisite layers of an implant. In this way, natural and synthetic polymers can be combined to yield bioactive, yet mechanically robust, cell-laden scaffolds suitable for the osteochondral environment. This mini-review discusses recent advances in scaffolds for osteochondral repair, with particular focus on the role of natural polymers in providing regenerative templates for treatment of both AC and SCB in articular joint defects.
Collapse
|
7
|
Venkatesan JK, Cai X, Meng W, Rey-Rico A, Schmitt G, Speicher-Mentges S, Falentin-Daudré C, Leroux A, Madry H, Migonney V, Cucchiarini M. pNaSS-Grafted PCL Film-Guided rAAV TGF-β Gene Therapy Activates the Chondrogenic Activities in Human Bone Marrow Aspirates. Hum Gene Ther 2021; 32:895-906. [PMID: 33573471 DOI: 10.1089/hum.2020.329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Scaffold-guided viral gene therapy is a novel, powerful tool to enhance the processes of tissue repair in articular cartilage lesions by the delivery and overexpression of therapeutic genes in a noninvasive, controlled release manner based on a procedure that may protect the gene vehicles from undesirable host immune responses. In this study, we examined the potential of transferring a recombinant adeno-associated virus (rAAV) vector carrying a sequence for the highly chondroregenerative transforming growth factor beta (TGF-β), using poly(ɛ-caprolactone) (PCL) films functionalized by the grafting of poly(sodium styrene sulfonate) (pNaSS) in chondrogenically competent bone marrow aspirates as future targets for therapy in cartilage lesions. Effective overexpression of TGF-β in the aspirates by rAAV was achieved upon delivery using pNaSS-grafted and ungrafted PCL films for up to 21 days (the longest time point evaluated), with superior levels using the grafted films, compared with respective conditions without vector coating. The production of rAAV-mediated TGF-β by pNaSS-grafted and ungrafted PCL films significantly triggered the biological activities and chondrogenic processes in the samples (proteoglycan and type-II collagen deposition and cell proliferation), while containing premature mineralization and hypertrophy relative to the other conditions, with overall superior effects supported by the pNaSS-grafted films. These observations demonstrate the potential of PCL film-assisted rAAV TGF-β gene transfer as a convenient, off-the-shelf technique to enhance the reparative potential of the bone marrow in patients in future approaches for improved cartilage repair.
Collapse
Affiliation(s)
- Jagadeesh K Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany
| | - Xiaoyu Cai
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany
| | - Weikun Meng
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany
| | - Ana Rey-Rico
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany
| | - Gertrud Schmitt
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany
| | | | | | - Amélie Leroux
- LBPS/CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, Villetaneuse, France
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany.,Department of Orthopaedic Surgery, Saarland University Medical Center, Homburg/Saar, Germany
| | - Véronique Migonney
- LBPS/CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, Villetaneuse, France
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany
| |
Collapse
|
8
|
Zhao X, Hu DA, Wu D, He F, Wang H, Huang L, Shi D, Liu Q, Ni N, Pakvasa M, Zhang Y, Fu K, Qin KH, Li AJ, Hagag O, Wang EJ, Sabharwal M, Wagstaff W, Reid RR, Lee MJ, Wolf JM, El Dafrawy M, Hynes K, Strelzow J, Ho SH, He TC, Athiviraham A. Applications of Biocompatible Scaffold Materials in Stem Cell-Based Cartilage Tissue Engineering. Front Bioeng Biotechnol 2021; 9:603444. [PMID: 33842441 PMCID: PMC8026885 DOI: 10.3389/fbioe.2021.603444] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 02/08/2021] [Indexed: 12/16/2022] Open
Abstract
Cartilage, especially articular cartilage, is a unique connective tissue consisting of chondrocytes and cartilage matrix that covers the surface of joints. It plays a critical role in maintaining joint durability and mobility by providing nearly frictionless articulation for mechanical load transmission between joints. Damage to the articular cartilage frequently results from sport-related injuries, systemic diseases, degeneration, trauma, or tumors. Failure to treat impaired cartilage may lead to osteoarthritis, affecting more than 25% of the adult population globally. Articular cartilage has a very low intrinsic self-repair capacity due to the limited proliferative ability of adult chondrocytes, lack of vascularization and innervation, slow matrix turnover, and low supply of progenitor cells. Furthermore, articular chondrocytes are encapsulated in low-nutrient, low-oxygen environment. While cartilage restoration techniques such as osteochondral transplantation, autologous chondrocyte implantation (ACI), and microfracture have been used to repair certain cartilage defects, the clinical outcomes are often mixed and undesirable. Cartilage tissue engineering (CTE) may hold promise to facilitate cartilage repair. Ideally, the prerequisites for successful CTE should include the use of effective chondrogenic factors, an ample supply of chondrogenic progenitors, and the employment of cell-friendly, biocompatible scaffold materials. Significant progress has been made on the above three fronts in past decade, which has been further facilitated by the advent of 3D bio-printing. In this review, we briefly discuss potential sources of chondrogenic progenitors. We then primarily focus on currently available chondrocyte-friendly scaffold materials, along with 3D bioprinting techniques, for their potential roles in effective CTE. It is hoped that this review will serve as a primer to bring cartilage biologists, synthetic chemists, biomechanical engineers, and 3D-bioprinting technologists together to expedite CTE process for eventual clinical applications.
Collapse
Affiliation(s)
- Xia Zhao
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Daniel A. Hu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Di Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Fang He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Ministry of Education Key Laboratory of Diagnostic Medicine, The School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Linjuan Huang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Deyao Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Orthopaedic Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Spine Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Na Ni
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Ministry of Education Key Laboratory of Diagnostic Medicine, The School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Mikhail Pakvasa
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Yongtao Zhang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Kai Fu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Departments of Neurosurgery, The Affiliated Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kevin H. Qin
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Alexander J. Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Ofir Hagag
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Eric J. Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Maya Sabharwal
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Surgery, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL, United States
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Jennifer Moriatis Wolf
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Mostafa El Dafrawy
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Kelly Hynes
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Sherwin H. Ho
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Aravind Athiviraham
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| |
Collapse
|
9
|
Yang R, Chen F, Guo J, Zhou D, Luan S. Recent advances in polymeric biomaterials-based gene delivery for cartilage repair. Bioact Mater 2020; 5:990-1003. [PMID: 32671293 PMCID: PMC7338882 DOI: 10.1016/j.bioactmat.2020.06.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/29/2020] [Accepted: 06/10/2020] [Indexed: 12/16/2022] Open
Abstract
Untreated articular cartilage damage normally results in osteoarthritis and even disability that affects millions of people. However, both the existing surgical treatment and tissue engineering approaches are unable to regenerate the original structures of articular cartilage durably, and new strategies for integrative cartilage repair are needed. Gene therapy provides local production of therapeutic factors, especially guided by biomaterials can minimize the diffusion and loss of the genes or gene complexes, achieve accurate spatiotemporally release of gene products, thus provideing long-term treatment for cartilage repair. The widespread application of gene therapy requires the development of safe and effective gene delivery vectors and supportive gene-activated matrices. Among them, polymeric biomaterials are particularly attractive due to their tunable physiochemical properties, as well as excellent adaptive performance. This paper reviews the recent advances in polymeric biomaterial-guided gene delivery for cartilage repair, with an emphasis on the important role of polymeric biomaterials in delivery systems.
Collapse
Affiliation(s)
- Ran Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
- College of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, PR China
| | - Fei Chen
- Center for Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Jinshan Guo
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Dongfang Zhou
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
- College of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, PR China
| |
Collapse
|
10
|
Abstract
Therapeutic viral gene delivery is an emerging technology which aims to correct genetic mutations by introducing new genetic information to cells either to correct a faulty gene or to initiate cell death in oncolytic treatments. In recent years, significant scientific progress has led to several clinical trials resulting in the approval of gene therapies for human treatment. However, successful therapies remain limited due to a number of challenges such as inefficient cell uptake, low transduction efficiency (TE), limited tropism, liver toxicity and immune response. To adress these issues and increase the number of available therapies, additives from a broad range of materials like polymers, peptides, lipids, nanoparticles, and small molecules have been applied so far. The scope of this review is to highlight these selected delivery systems from a materials perspective.
Collapse
Affiliation(s)
- Kübra Kaygisiz
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | | |
Collapse
|
11
|
Meng W, Rey-Rico A, Claudel M, Schmitt G, Speicher-Mentges S, Pons F, Lebeau L, Venkatesan JK, Cucchiarini M. rAAV-Mediated Overexpression of SOX9 and TGF-β via Carbon Dot-Guided Vector Delivery Enhances the Biological Activities in Human Bone Marrow-Derived Mesenchymal Stromal Cells. NANOMATERIALS 2020; 10:nano10050855. [PMID: 32354138 PMCID: PMC7712756 DOI: 10.3390/nano10050855] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/21/2022]
Abstract
Scaffold-assisted gene therapy is a highly promising tool to treat articular cartilage lesions upon direct delivery of chondrogenic candidate sequences. The goal of this study was to examine the feasibility and benefits of providing highly chondroreparative agents, the cartilage-specific sex-determining region Y-type high-mobility group 9 (SOX9) transcription factor or the transforming growth factor beta (TGF-β), to human bone marrow-derived mesenchymal stromal cells (hMSCs) via clinically adapted, independent recombinant adeno-associated virus (rAAV) vectors formulated with carbon dots (CDs), a novel class of carbon-dominated nanomaterials. Effective complexation and release of a reporter rAAV-lacZ vector was achieved using four different CDs elaborated from 1-citric acid and pentaethylenehexamine (CD-1); 2-citric acid, poly(ethylene glycol) monomethyl ether (MW 550 Da), and N,N-dimethylethylenediamine (CD-2); 3-citric acid, branched poly(ethylenimine) (MW 600 Da), and poly(ethylene glycol) monomethyl ether (MW 2 kDa) (CD-3); and 4-citric acid and branched poly(ethylenimine) (MW 600 Da) (CD-4), allowing for the genetic modification of hMSCs. Among the nanoparticles, CD-2 showed an optimal ability for rAAV delivery (up to 2.2-fold increase in lacZ expression relative to free vector treatment with 100% cell viability for at least 10 days, the longest time point examined). Administration of therapeutic (SOX9, TGF-β) rAAV vectors in hMSCs via CD-2 led to the effective overexpression of each independent transgene, promoting enhanced cell proliferation (TGF-β) and cartilage matrix deposition (glycosaminoglycans, type-II collagen) for at least 21 days relative to control treatments (CD-2 lacking rAAV or associated to rAAV-lacZ), while advantageously restricting undesirable type-I and -X collagen deposition. These results reveal the potential of CD-guided rAAV gene administration in hMSCs as safe, non-invasive systems for translational strategies to enhance cartilage repair.
Collapse
Affiliation(s)
- Weikun Meng
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg, Germany
| | - Ana Rey-Rico
- Cell Therapy and Regenerative Medicine Unit, Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, ES-15071 A Coruña, Spain
| | - Mickaël Claudel
- Laboratoire de Conception et Application de Molécules Bioactives, Faculty of Pharmacy, UMR 7199 CNRS—University of Strasbourg, F-67401 Illkirch, France
| | - Gertrud Schmitt
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg, Germany
| | - Susanne Speicher-Mentges
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg, Germany
| | - Françoise Pons
- Laboratoire de Conception et Application de Molécules Bioactives, Faculty of Pharmacy, UMR 7199 CNRS—University of Strasbourg, F-67401 Illkirch, France
| | - Luc Lebeau
- Laboratoire de Conception et Application de Molécules Bioactives, Faculty of Pharmacy, UMR 7199 CNRS—University of Strasbourg, F-67401 Illkirch, France
| | - Jagadeesh K. Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg, Germany
- Correspondence: ; Tel.: +49-6841-1624-987; Fax: +49-6841-1624-988
| |
Collapse
|
12
|
Venkatesan JK, Meng W, Rey-Rico A, Schmitt G, Speicher-Mentges S, Falentin-Daudré C, Leroux A, Madry H, Migonney V, Cucchiarini M. Enhanced Chondrogenic Differentiation Activities in Human Bone Marrow Aspirates via sox9 Overexpression Mediated by pNaSS-Grafted PCL Film-Guided rAAV Gene Transfer. Pharmaceutics 2020; 12:pharmaceutics12030280. [PMID: 32245159 PMCID: PMC7151167 DOI: 10.3390/pharmaceutics12030280] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/13/2020] [Accepted: 03/19/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The delivery of therapeutic genes in sites of articular cartilage lesions using non-invasive, scaffold-guided gene therapy procedures is a promising approach to stimulate cartilage repair while protecting the cargos from detrimental immune responses, particularly when targeting chondroreparative bone marrow-derived mesenchymal stromal cells in a natural microenvironment like marrow aspirates. METHODS Here, we evaluated the benefits of providing a sequence for the cartilage-specific sex-determining region Y-type high-mobility group box 9 (SOX9) transcription factor to human marrow aspirates via recombinant adeno-associated virus (rAAV) vectors delivered by poly(ε-caprolactone) (PCL) films functionalized via grafting with poly(sodium styrene sulfonate) (pNaSS) to enhance the marrow chondrogenic potential over time. RESULTS Effective sox9 overexpression was observed in aspirates treated with pNaSS-grafted or ungrafted PCL films coated with the candidate rAAV-FLAG-hsox9 (FLAG-tagged rAAV vector carrying a human sox9 gene sequence) vector for at least 21 days relative to other conditions (pNaSS-grafted and ungrafted PCL films without vector coating). Overexpression of sox9 via rAAV sox9/pNaSS-grafted or ungrafted PCL films led to increased biological and chondrogenic differentiation activities (matrix deposition) in the aspirates while containing premature osteogenesis and hypertrophy without impacting cell proliferation, with more potent effects noted when using pNaSS-grafted films. CONCLUSIONS These findings show the benefits of targeting patients' bone marrow via PCL film-guided therapeutic rAAV (sox9) delivery as an off-the-shelf system for future strategies to enhance cartilage repair in translational applications.
Collapse
Affiliation(s)
- Jagadeesh K. Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg/Saar, Germany; (J.K.V.); (W.M.); (A.R.-R.); (G.S.); (S.S.-M.); (H.M.)
| | - Weikun Meng
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg/Saar, Germany; (J.K.V.); (W.M.); (A.R.-R.); (G.S.); (S.S.-M.); (H.M.)
| | - Ana Rey-Rico
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg/Saar, Germany; (J.K.V.); (W.M.); (A.R.-R.); (G.S.); (S.S.-M.); (H.M.)
| | - Gertrud Schmitt
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg/Saar, Germany; (J.K.V.); (W.M.); (A.R.-R.); (G.S.); (S.S.-M.); (H.M.)
| | - Susanne Speicher-Mentges
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg/Saar, Germany; (J.K.V.); (W.M.); (A.R.-R.); (G.S.); (S.S.-M.); (H.M.)
| | - Céline Falentin-Daudré
- LBPS/CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, F-93430 Villetaneuse, France; (C.F.-D.); (A.L.); (V.M.)
| | - Amélie Leroux
- LBPS/CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, F-93430 Villetaneuse, France; (C.F.-D.); (A.L.); (V.M.)
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg/Saar, Germany; (J.K.V.); (W.M.); (A.R.-R.); (G.S.); (S.S.-M.); (H.M.)
- Department of Orthopaedic Surgery, Saarland University Medical Center, D-66421 Homburg/Saar, Germany
| | - Véronique Migonney
- LBPS/CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, F-93430 Villetaneuse, France; (C.F.-D.); (A.L.); (V.M.)
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg/Saar, Germany; (J.K.V.); (W.M.); (A.R.-R.); (G.S.); (S.S.-M.); (H.M.)
- Correspondence: ; Tel.: +49-6841-1624-987; Fax: +49-6841-1624-988
| |
Collapse
|