1
|
Han Y, Gao H, Gao J, Yang Y, He C. Low-intensity pulsed ultrasound regulates bone marrow mesenchymal stromal cells differentiation and inhibits bone loss by activating the IL-11-Wnt/β-catenin signaling pathway. Int Immunopharmacol 2024; 143:113380. [PMID: 39405933 DOI: 10.1016/j.intimp.2024.113380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/28/2024] [Accepted: 10/07/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Osteoporosis (OP) is a common metabolic bone disease. Low-intensity pulsed ultrasound (LIPUS) can effectively promote bone formation and fracture healing. The Wnt/β-catenin signaling pathway is crucial for regulating bone homeostasis and bone diseases, and its downregulation is one of the main mechanisms of osteoporosis pathogenesis. Interleukin-11 (IL-11), which is regulated by mechanical stress, is a key factor in bone remodeling. Here, we investigated the optimal intervention parameters for LIPUS, the relationships among LIPUS, IL-11, and the Wnt/β-catenin signaling pathway, and the effects of LIPUS on bone loss and potential molecular mechanisms in ovariectomized (OVX) mice. METHODS Bone marrow mesenchymal stromal cells (BMSCs) were subjected to LIPUS intervention for 0, 10, or 20 min to determine the optimal intervention time. The mediating role of IL-11 in LIPUS intervention was explored through IL-11 knockdown and overexpression. Finally, animal experiments were conducted to investigate the in vivo therapeutic effects of LIPUS. RESULTS The optimal intervention time for LIPUS was 20 min. LIPUS promoted IL-11 expression and upregulated the Wnt/β-catenin signaling pathway, thereby promoting osteogenic differentiation and inhibiting adipogenic differentiation of BMSCs. IL-11 mediates the regulation of the Wnt/β-catenin signaling pathway by LIPUS. Additionally, LIPUS effectively improved the bone microstructure in ovariectomized mice, inhibited bone loss, promoted IL-11 expression in bone tissue, and activated the Wnt/β-catenin signaling pathway in the femur. CONCLUSION Low-intensity pulsed ultrasound can regulate BMSCs differentiation and inhibit bone loss by promoting IL-11 expression and activating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yijing Han
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China, 610000; Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, China, 610000
| | - Hui Gao
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China, 610000; Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, China, 610000
| | - Jing Gao
- LIFU Medical Research Center, Sichuan Taiyou Technology Co., Ltd., Chengdu, Sichuan, China, 610000
| | - Yonghong Yang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China, 610000; Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, China, 610000.
| | - Chengqi He
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China, 610000; Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, China, 610000.
| |
Collapse
|
2
|
Zheng F, Wu T, Wang F, Li H, Tang H, Cui X, Li C, Wang Y, Jiang J. Low-intensity pulsed ultrasound promotes the osteogenesis of mechanical force-treated periodontal ligament cells via Piezo1. Front Bioeng Biotechnol 2024; 12:1347406. [PMID: 38694622 PMCID: PMC11061374 DOI: 10.3389/fbioe.2024.1347406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/03/2024] [Indexed: 05/04/2024] Open
Abstract
Background Low-intensity pulsed ultrasound (LIPUS) can accelerate tooth movement and preserve tooth and bone integrity during orthodontic treatment. However, the mechanisms by which LIPUS affects tissue remodeling during orthodontic tooth movement (OTM) remain unclear. Periodontal ligament cells (PDLCs) are pivotal in maintaining periodontal tissue equilibrium when subjected to mechanical stimuli. One notable mechano-sensitive ion channel, Piezo1, can modulate cellular function in response to mechanical cues. This study aimed to elucidate the involvement of Piezo1 in the osteogenic response of force-treated PDLCs when stimulated by LIPUS. Method After establishing rat OTM models, LIPUS was used to stimulate rats locally. OTM distance and alveolar bone density were assessed using micro-computed tomography, and histological analyses included hematoxylin and eosin staining, tartrate-resistant acid phosphatase staining and immunohistochemical staining. GsMTx4 and Yoda1 were respectively utilized for Piezo1 functional inhibition and activation experiments in rats. We isolated human PDLCs (hPDLCs) in vitro and evaluated the effects of LIPUS on the osteogenic differentiation of force-treated hPDLCs using real-time quantitative PCR, Western blot, alkaline phosphatase and alizarin red staining. Small interfering RNA and Yoda1 were employed to validate the role of Piezo1 in this process. Results LIPUS promoted osteoclast differentiation and accelerated OTM in rats. Furthermore, LIPUS alleviated alveolar bone resorption under pressure and enhanced osteogenesis of force-treated PDLCs both in vivo and in vitro by downregulating Piezo1 expression. Subsequent administration of GsMTx4 in rats and siPIEZO1 transfection in hPDLCs attenuated the inhibitory effect on osteogenic differentiation under pressure, whereas LIPUS efficacy was partially mitigated. Yoda1 treatment inhibited osteogenic differentiation of hPDLCs, resulting in reduced expression of Collagen Ⅰα1 and osteocalcin in the periodontal ligament. However, LIPUS administration was able to counteract these effects. Conclusion This research unveils that LIPUS promotes the osteogenesis of force-treated PDLCs via downregulating Piezo1.
Collapse
Affiliation(s)
- Fu Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Haidian, Beijing, China
- National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology, Haidian, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Haidian, Beijing, China
| | - Tong Wu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Haidian, Beijing, China
- National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology, Haidian, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Haidian, Beijing, China
| | - Feifei Wang
- National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology, Haidian, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Haidian, Beijing, China
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Haidian, Beijing, China
| | - Huazhi Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Haidian, Beijing, China
- National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology, Haidian, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Haidian, Beijing, China
| | - Hongyi Tang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Haidian, Beijing, China
- National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology, Haidian, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Haidian, Beijing, China
| | - Xinyu Cui
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Haidian, Beijing, China
- National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology, Haidian, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Haidian, Beijing, China
| | - Cuiying Li
- National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology, Haidian, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Haidian, Beijing, China
- Central Laboratory, Peking University School and Hospital of Stomatology, Haidian, Beijing, China
| | - Yixiang Wang
- National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology, Haidian, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Haidian, Beijing, China
- Central Laboratory, Peking University School and Hospital of Stomatology, Haidian, Beijing, China
| | - Jiuhui Jiang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Haidian, Beijing, China
- National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology, Haidian, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Haidian, Beijing, China
| |
Collapse
|
3
|
Zhu Y, Liu T, Deng X, Sheng D, Chen J, Kuang Y, Dai Z, Chen H. Ultrasound-mediated intra-/extracellular dual intervening effect combined with all-trans retinoic acid for cancer stemness inhibition. NANO TODAY 2024; 55:102207. [DOI: 10.1016/j.nantod.2024.102207] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
4
|
Anderson H, Hersh DS, Khan Y. The potential role of mechanotransduction in the management of pediatric calvarial bone flap repair. Biotechnol Bioeng 2024; 121:39-52. [PMID: 37668193 PMCID: PMC10841298 DOI: 10.1002/bit.28534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/30/2023] [Accepted: 08/05/2023] [Indexed: 09/06/2023]
Abstract
Pediatric patients suffering traumatic brain injuries may require a decompressive craniectomy to accommodate brain swelling by removing a portion of the skull. Once the brain swelling subsides, the preserved calvarial bone flap is ideally replaced as an autograft during a cranioplasty to restore protection of the brain, as it can reintegrate and grow with the patient during immature skeletal development. However, pediatric patients exhibit a high prevalence of calvarial bone flap resorption post-cranioplasty, causing functional and cosmetic morbidity. This review examines possible solutions for mitigating pediatric calvarial bone flap resorption by delineating methods of stimulating mechanosensitive cell populations with mechanical forces. Mechanotransduction plays a critical role in three main cell types involved with calvarial bone repair, including mesenchymal stem cells, osteoblasts, and dural cells, through mechanisms that could be exploited to promote osteogenesis. In particular, physiologically relevant mechanical forces, including substrate deformation, external forces, and ultrasound, can be used as tools to stimulate bone repair in both in vitro and in vivo systems. Ultimately, combating pediatric calvarial flap resorption may require a combinatorial approach using both cell therapy and bioengineering strategies.
Collapse
Affiliation(s)
- Hanna Anderson
- Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA
- The Cato T. Laurencin Institute for Regenerative Engineering, UConn Health, Farmington, Connecticut, USA
| | - David S Hersh
- Department of Surgery, UConn School of Medicine, Farmington, Connecticut, USA
- Division of Neurosurgery, Connecticut Children's Medical Center, Hartford, Connecticut, USA
| | - Yusuf Khan
- Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA
- The Cato T. Laurencin Institute for Regenerative Engineering, UConn Health, Farmington, Connecticut, USA
- Orthopaedic Surgery, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
5
|
Dai H, Zhang H, Qiu Z, Shi Q. Periosteum-derived skeletal stem cells encapsulated in platelet-rich plasma enhance the repair of bone defect. Tissue Cell 2023; 83:102144. [PMID: 37354707 DOI: 10.1016/j.tice.2023.102144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND Spontaneous restoration of large bone defects remains a challenge under infections, tumors, and crushing conditions. Current stem cell-based therapies for treating bone defects need improvement, because the used stem cells are isolated by a traditional protocol, which is based on their properties of in-vitro plastic adherence and fibroblastic colony formation. The stem cells isolated by the traditional protocol belong to a multicellular type mixture, individual cells vary in proliferative and osteogenic potential. Thus, developing a protocol capable of isolating stem cell subset with higher purity is required and urgent. AIM This study aimed to sort a subpopulation of stem cells from periosteum using flow cytometry (named as FC-PSCs), and evaluate the proliferative and osteogenic capacity of FC-PSCs in-vitro, and then establish a new stem cell-based therapies for treating bone defects by delivering the FC-PSCs within platelet-rich plasma (PRP). METHODS Mouse periosteum was used to sort FC-PSCs using flow cytometry with CD45-TER119-TIE2-ITGAV+CD90 + 6C3-CD105- markers, or isolate periosteum-derived stem cells with the traditional protocol (TP-PSCs) as control. After evaluating the FC-PSCs proliferation and osteogenic differentiation in-vitro as well as the promotive efficacy of platelet-rich plasma (PRP) on FC-PSCs proliferation and osteogenic differentiation, the FC-PSCs were delivered into the femoral epiphysis bone defect site of a mouse model by platelet-rich plasma (PRP). At postoperative 14 or 28 days, these mice were euthanized for harvest the femur specimens for micro-CT, histological evaluation. RESULTS In-vitro results determined that the FC-PSCs showed more capacity for proliferation and osteogenic differentiation compared with the TP-PSCs. In addition, in-vitro results showed the promotive efficacy of PRP on FC-PSCs proliferation and osteogenic differentiation. In-vivo results showed that the FC-PSCs delivered by PRP was able to facilitate the repair of bone defects by stimulating new bone formation and remodeling. CONCLUSION FC-PSCs delivered by PRP enhance the repair of bone defects by stimulating new bone formation and remodeling.
Collapse
Affiliation(s)
- Haibo Dai
- Department of Orthopedics (Second ward), Xiangtan Central Hospital, Xiangtan 411199, China; Xiangtan Clinical College, Xiangya Medical School, Central South University, Xiangtan 411199, China
| | - Haici Zhang
- Department of Orthopedics (Second ward), Xiangtan Central Hospital, Xiangtan 411199, China; Xiangtan Clinical College, Xiangya Medical School, Central South University, Xiangtan 411199, China
| | - Zhilong Qiu
- Department of Orthopedics (Second ward), Xiangtan Central Hospital, Xiangtan 411199, China; Xiangtan Clinical College, Xiangya Medical School, Central South University, Xiangtan 411199, China
| | - Qiang Shi
- Department of Spine Surgery, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410018, China; Clinical College of Changsha Central Hospital, Xiangya Medical College, Central South University, Changsha 410018, China; Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
6
|
Arranz-Paraiso D, Baeza-Moyano D, González-Lezcano RA. Sound and Light Waves in Healthy Environments. ADVANCES IN RELIGIOUS AND CULTURAL STUDIES 2023:145-162. [DOI: 10.4018/978-1-6684-6924-8.ch007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Architects need the freedom to design their projects with the assurance that they will be inspiring aesthetic as well as healthy places, i.e., buildings, streets, parks, avenues, and squares that offer a complete living experience in an environment that takes into account light, sound, vibration, climate, and all those aspects that can disturb people's well-being. We know that prolonged exposure to noise can cause discomfort and sleep disorders, which affect the quality of life. This noise is not the only pollutant as there are other sound waves such as infrasound and ultrasound that are not perceptible but potentially harmful to health. Not forgetting electromagnetic waves, the light that reaches our bodies and which has regulated our lives throughout the existence of the species. The invention of electric lighting had the consequence that people spend practically all day indoors. Days are poorly illuminated, and the nights have too much light. On the other hand, the intensity of artificial light is a fraction of that of daylight and the spectral composition is also different.
Collapse
|
7
|
Peng L, Wu F, Cao M, Li M, Cui J, Liu L, Zhao Y, Yang J. Effects of different physical factors on osteogenic differentiation. Biochimie 2023; 207:62-74. [PMID: 36336107 DOI: 10.1016/j.biochi.2022.10.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/11/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Osteoblasts are essential for bone formation and can perceive external mechanical stimuli, which are translated into biochemical responses that ultimately alter cell phenotypes and respond to environmental stimuli, described as mechanical transduction. These cells actively participate in osteogenesis and the formation and mineralisation of the extracellular bone matrix. This review summarises the basic physiological and biological mechanisms of five different physical stimuli, i.e. light, electricity, magnetism, force and sound, to induce osteogenesis; further, it summarises the effects of changing culture conditions on the morphology, structure and function of osteoblasts. These findings may provide a theoretical basis for further studies on bone physiology and pathology at the cytological level and will be useful in the clinical application of bone formation and bone regeneration technology.
Collapse
Affiliation(s)
- Li Peng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Fanzi Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, China
| | - Mengjiao Cao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, China
| | - Mengxin Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, China
| | - Jingyao Cui
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, China
| | - Lijia Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, China
| | - Yun Zhao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| | - Jing Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, China.
| |
Collapse
|
8
|
Lin H, Wang Q, Quan C, Ren Q, He W, Xiao H. Low-intensity pulsed ultrasound enhances immunomodulation and facilitates osteogenesis of human periodontal ligament stem cells by inhibiting the NF-κB pathway. Cell Tissue Bank 2023; 24:45-58. [PMID: 35644018 PMCID: PMC9148194 DOI: 10.1007/s10561-022-10010-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 04/22/2022] [Indexed: 01/20/2023]
Abstract
Human periodontal ligament stem cells (hPDLSCs) are vital in cellular regeneration and tissue repair due to their multilineage differentiation potential. Low intensity pulsed ultrasound (LIPUS) has been applied for treating bone and cartilage defects. This study explored the role of LIPUS in the immunomodulation and osteogenesis of hPDLSCs. hPDLSCs were cultured in vitro, and the effect of different intensities of LIPUS (30, 60, and 90 mW/cm2) on hPDLSC viability was measured. hPDLSCs irradiated by LIPUS and stimulated by lipopolysaccharide (LPS) and LIPUS (90 mW/cm2) were co-cultured with peripheral blood mononuclear cells (PBMCs). Levels of immunomodulatory factors in hPDLSCs and inflammatory factors in PBMCs were estimated, along with determination of osteogenesis-related gene expression in LIPUS-irradiated hPDLSCs. The mineralized nodules and alkaline phosphatase (ALP) activity of hPDLSCs and levels of IκBα, p-IκBα, and p65 subunits of NF-κB were determined. hPDLSC viability was increased as LIPUS intensity increased. Immunomodulatory factors were elevated in LIPUS-irradiated hPDLSCs, and inflammatory factors were reduced in PBMCs. Osteogenesis-related genes, mineralized nodules, and ALP activity were promoted in LIPUS-irradiated hPDLSCs. The cytoplasm of hPDLSCs showed increased IκBα and p65 and decreased p-IκBα at increased LIPUS intensity. After LPS and LIPUS treatment, the inhibitory effect of LIPUS irradiation on the NF-κB pathway was partially reversed, and the immunoregulation and osteogenic differentiation of hPDLSCs were decreased. LIPUS irradiation enhanced immunomodulation and osteogenic differentiation abilities of hPDLSCs by inhibiting the NF-κB pathway, and the effect is dose-dependent. This study may offer novel insights relevant to periodontal tissue engineering.
Collapse
Affiliation(s)
- Haiyan Lin
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, No. 366 South Jiangnan Road, Haizhu District, Guangzhou, 510280, Guangdong, People's Republic of China
- Department of Orthodontics, Nanning Angel Stomatological Hospital, No. 20-1, Xinmin Road, Nanning, 530029, Guangxi, People's Republic of China
| | - Qing Wang
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, No. 366 South Jiangnan Road, Haizhu District, Guangzhou, 510280, Guangdong, People's Republic of China
| | - Chuntian Quan
- Department of Orthodontics, Nanning Angel Stomatological Hospital, No. 20-1, Xinmin Road, Nanning, 530029, Guangxi, People's Republic of China
| | - Qingyuan Ren
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, No. 366 South Jiangnan Road, Haizhu District, Guangzhou, 510280, Guangdong, People's Republic of China
| | - Wulin He
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, No. 366 South Jiangnan Road, Haizhu District, Guangzhou, 510280, Guangdong, People's Republic of China.
| | - Hui Xiao
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, No. 366 South Jiangnan Road, Haizhu District, Guangzhou, 510280, Guangdong, People's Republic of China.
| |
Collapse
|
9
|
Bakhshandeh B, Ranjbar N, Abbasi A, Amiri E, Abedi A, Mehrabi M, Dehghani Z, Pennisi CP. Recent progress in the manipulation of biochemical and biophysical cues for engineering functional tissues. Bioeng Transl Med 2023; 8:e10383. [PMID: 36925674 PMCID: PMC10013802 DOI: 10.1002/btm2.10383] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/28/2022] [Accepted: 07/16/2022] [Indexed: 11/11/2022] Open
Abstract
Tissue engineering (TE) is currently considered a cutting-edge discipline that offers the potential for developing treatments for health conditions that negatively affect the quality of life. This interdisciplinary field typically involves the combination of cells, scaffolds, and appropriate induction factors for the regeneration and repair of damaged tissue. Cell fate decisions, such as survival, proliferation, or differentiation, critically depend on various biochemical and biophysical factors provided by the extracellular environment during developmental, physiological, and pathological processes. Therefore, understanding the mechanisms of action of these factors is critical to accurately mimic the complex architecture of the extracellular environment of living tissues and improve the efficiency of TE approaches. In this review, we recapitulate the effects that biochemical and biophysical induction factors have on various aspects of cell fate. While the role of biochemical factors, such as growth factors, small molecules, extracellular matrix (ECM) components, and cytokines, has been extensively studied in the context of TE applications, it is only recently that we have begun to understand the effects of biophysical signals such as surface topography, mechanical, and electrical signals. These biophysical cues could provide a more robust set of stimuli to manipulate cell signaling pathways during the formation of the engineered tissue. Furthermore, the simultaneous application of different types of signals appears to elicit synergistic responses that are likely to improve functional outcomes, which could help translate results into successful clinical therapies in the future.
Collapse
Affiliation(s)
- Behnaz Bakhshandeh
- Department of Biotechnology, College of ScienceUniversity of TehranTehranIran
| | - Nika Ranjbar
- Department of Biotechnology, College of ScienceUniversity of TehranTehranIran
| | - Ardeshir Abbasi
- Department of Immunology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Elahe Amiri
- Department of Life Science Engineering, Faculty of New Sciences and TechnologyUniversity of TehranTehranIran
| | - Ali Abedi
- Department of Life Science Engineering, Faculty of New Sciences and TechnologyUniversity of TehranTehranIran
| | - Mohammad‐Reza Mehrabi
- Department of Microbial Biotechnology, School of Biology, College of ScienceUniversity of TehranTehranIran
| | - Zahra Dehghani
- Department of Biotechnology, College of ScienceUniversity of TehranTehranIran
| | - Cristian Pablo Pennisi
- Regenerative Medicine Group, Department of Health Science and TechnologyAalborg UniversityAalborgDenmark
| |
Collapse
|
10
|
Xiao H, Yan A, Li M, Wang L, Xiang J. LIPUS accelerates bone regeneration via HDAC6-mediated ciliogenesis. Biochem Biophys Res Commun 2023; 641:34-41. [PMID: 36521283 DOI: 10.1016/j.bbrc.2022.12.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
Delayed fracture union and nonunion are common complications of fracture encountered, while Low-intensity pulsed ultrasound (LIPUS) can stimulate bone regeneration. Still, the underlying mechanism of LIPUS on bone regeneration has been poorly understood, which resulted in varied outcomes in the clinic. Therefore, figuring out the mechanism of LIPUS on bone regeneration can lay the foundation for better use of LIPUS in clinical bone regenerative therapies. In this study, we created transgenic mice to reveal the relationship between the periosteal cells' fate and the number of ciliated cells under the LIPUS stimulation. In vitro, we isolated the periosteal cell and aim to figure out the relationship between LIPUS and HDAC6-mediated ciliogenesis and find out a potential target for LIPUS-based bone regeneration strategies. The results showed that LIPUS promoted femoral bone defect regeneration and enhanced osteogenic differentiation of Prrx1+ cells. However, these pro-effects were significantly weakened when the Prrx1+ cell's primary cilia were knocked down. Besides, LIPUS stimulated the formation of Prrx1+ cells' primary cilia in the bone defect microenvironment. In vitro, the results supported that LIPUS enhanced the osteogenic differentiation of Prrx1+ cells through HDAC6-mediated ciliogenesis. In conclusion, λ LIPUS could promote the osteogenic differentiation of Prrx1+ cells to stimulate bone regeneration and inhibit the expression of HDAC6 to increase the prevalence of primary cilia in Prrx1+ cells. LIPUS could enhance the osteogenic differentiation of Prrx1+ cells mainly through HDAC6-mediated ciliogenesis.
Collapse
Affiliation(s)
- Han Xiao
- Department of Pediatric Orthopaedics, Hunan Children's Hospital, Changsha, Hunan, 410007, China; The Pediatric Academy of University of South China, Changsha, Hunan, 410007, China
| | - An Yan
- Department of Pediatric Orthopaedics, Hunan Children's Hospital, Changsha, Hunan, 410007, China; The Pediatric Academy of University of South China, Changsha, Hunan, 410007, China
| | - Miao Li
- Department of Pediatric Orthopaedics, Hunan Children's Hospital, Changsha, Hunan, 410007, China; The Pediatric Academy of University of South China, Changsha, Hunan, 410007, China
| | - Linfeng Wang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jie Xiang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China; Shenshan Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, 516600, China.
| |
Collapse
|
11
|
Lin Z, Gao L, Hou N, Zhi X, Zhang Y, Che Z, Deng A. Application of low-intensity pulsed ultrasound on tissue resident stem cells: Potential for ophthalmic diseases. Front Endocrinol (Lausanne) 2023; 14:1153793. [PMID: 37008913 PMCID: PMC10063999 DOI: 10.3389/fendo.2023.1153793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
INTRODUCTION Tissue-resident stem cells (TRSCs) have the ability to self-renew and differentiate throughout an individual's lifespan, and they utilize both mechanisms to maintain homeostasis and regenerate damaged tissues. Several studies suggest that these stem cells can serve as a potential source for cell-replacement-based therapy by promoting differentiation or expansion. In recent years, low-intensity pulsed ultrasound (LIPUS) has been demonstrated to effectively stimulate stem cell proliferation and differentiation, promote tissue regeneration, and inhibit inflammatory responses. AIMS To present a comprehensive overview of current application and mechanism of LIPUS on tissue resident stem cells. METHODS We searched PubMed, Web of Science for articles on the effects of LIPUS on tissue resident stem cells and its application. RESULTS The LIPUS could modulate cellular activities such as cell viability, proliferation and differentiation of tissue resident stem cells and related cells through various cellular signaling pathways. Currently, LIPUS, as the main therapeutic ultrasound, is being widely used in the treatment of preclinical and clinical diseases. CONCLUSION The stem cell research is the hot topic in the biological science, while in recent years, increasing evidence has shown that TRSCs are good targets for LIPUS-regulated regenerative medicine. LIPUS may be a novel and valuable therapeutic approach for the treatment of ophthalmic diseases. How to further improve its efficiency and accuracy, as well as the biological mechanism therein, will be the focus of future research.
Collapse
|
12
|
Aimaijiang M, Liu Y, Zhang Z, Qin Q, Liu M, Abulikemu P, Liu L, Zhou Y. LIPUS as a potential strategy for periodontitis treatment: A review of the mechanisms. Front Bioeng Biotechnol 2023; 11:1018012. [PMID: 36911184 PMCID: PMC9992218 DOI: 10.3389/fbioe.2023.1018012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
Periodontitis is a chronic inflammatory condition triggered by oral bacteria. A sustained inflammatory state in periodontitis could eventually destroy the alveolar bone. The key objective of periodontal therapy is to terminate the inflammatory process and reconstruct the periodontal tissues. The traditional Guided tissue regeneration (GTR) procedure has unstable results due to multiple factors such as the inflammatory environment, the immune response caused by the implant, and the operator's technique. Low-intensity pulsed ultrasound (LIPUS), as acoustic energy, transmits the mechanical signals to the target tissue to provide non-invasive physical stimulation. LIPUS has positive effects in promoting bone regeneration, soft-tissue regeneration, inflammation inhibition, and neuromodulation. LIPUS can maintain and regenerate alveolar bone during an inflammatory state by suppressing the expression of inflammatory factors. LIPUS also affects the cellular behavior of periodontal ligament cells (PDLCs), thereby protecting the regenerative potential of bone tissue in an inflammatory state. However, the underlying mechanisms of the LIPUS therapy are still yet to be summarized. The goal of this review is to outline the potential cellular and molecular mechanisms of periodontitis-related LIPUS therapy, as well as to explain how LIPUS manages to transmit mechanical stimulation into the signaling pathway to achieve inflammatory control and periodontal bone regeneration.
Collapse
Affiliation(s)
- Maierhaba Aimaijiang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yiping Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhiying Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Qiuyue Qin
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Manxuan Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Palizi Abulikemu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Lijun Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yanmin Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
13
|
Liang C, Liu X, Yan Y, Sun R, Li J, Geng W. Effectiveness and Mechanisms of Low-Intensity Pulsed Ultrasound on Osseointegration of Dental Implants and Biological Functions of Bone Marrow Mesenchymal Stem Cells. Stem Cells Int 2022; 2022:7397335. [PMID: 36199628 PMCID: PMC9529500 DOI: 10.1155/2022/7397335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/09/2022] [Indexed: 11/27/2022] Open
Abstract
Dental implant restoration is the preferred choice for patients with dentition defects or edentulous patients, and obtaining stable osseointegration is the determining factor for successful implant healing. The risk of implant failure during the healing stage is still an urgent problem in clinical practice due to differences in bone quality at different implant sites and the impact of some systemic diseases on bone tissue metabolism. Low-intensity pulsed ultrasound (LIPUS) is a noninvasive physical intervention method widely recognized in the treatment of bone fracture and joint damage repair. Moreover, many studies indicated that LIPUS could effectively promote the osseointegration of dental implants and improve the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). This review is aimed at investigating the research progress on the use of LIPUS in dental implant medicine from three aspects: (1) discuss the promoting effects of LIPUS on osseointegration and peri-implant bone regeneration, (2) summarize the effects and associated mechanisms of LIPUS on the biological functions of BMSCs, and (3) introduce the application and prospects of LIPUS in the clinical work of dental implantation. Although many challenges need to be overcome in the future, LIPUS is bound to be an efficient and convenient therapeutic method to improve the dental implantation success rate and expand clinical implant indications.
Collapse
Affiliation(s)
- Chao Liang
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Xiu Liu
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Yuwei Yan
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Rongxin Sun
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Jun Li
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Wei Geng
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| |
Collapse
|
14
|
Zhang T, Chen Z, Zhu M, Jing X, Xu X, Yuan X, Zhou M, Zhang Y, Lu M, Chen D, Xu S, Song J. Extracellular vesicles derived from human dental mesenchymal stem cells stimulated with low-intensity pulsed ultrasound alleviate inflammation-induced bone loss in a mouse model of periodontitis. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
15
|
Hou J, Tamura Y, Lu HY, Takahashi Y, Kasugai S, Nakata H, Kuroda S. An In Vitro Evaluation of Selenium Nanoparticles on Osteoblastic Differentiation and Antimicrobial Properties against Porphyromonas gingivalis. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1850. [PMID: 35683706 PMCID: PMC9182271 DOI: 10.3390/nano12111850] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 01/27/2023]
Abstract
Despite numerous treatment methods, there is no gold standard for the treatment of peri-implantitis-an infectious peri-implant disease. Here, we examined selenium nanoparticles (SeNPs) at a wide range of concentrations to investigate their cytotoxicity, regulation of osteoblastic differentiation, and assessed the antibacterial effect against Porphyromonas gingivalis. SeNPs (mean size: 70 nm; shape: near-spherical; concentration: 0-2048 ppm) were tested against the MC3T3-E1 osteoblast precursor cell line and P. gingivalis red complex pathogen. Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) analysis was used to evaluate the bone morphogenetic protein 2 (BMP-2) signaling pathway. SeNPs at concentrations of 2-16 ppm showed no obvious cytotoxicity and promoted good mineralization and calcification. SeNPs at concentrations 64 ppm and below influenced gene expression promoting osteoblastic differentiation, whereas at high concentrations inhibited the expression of Runt-related transcription factor 2 (Runx2). The growth of P. gingivalis was significantly inhibited at SeNP concentrations of more than 4 ppm. SeNPs at low concentrations promoted osteoblastic differentiation while strongly inhibiting peri-implantitis pathogen growth. This study represents one of the few in vitro assessments of SeNPs against a red complex pathogen and the regulatory effect on osteoblastic differentiation. The findings demonstrate SeNPs could potentially be used for future application on implant coating.
Collapse
Affiliation(s)
- Jason Hou
- Department of Oral Implantology and Regenerative Dental Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; (J.H.); (H.-Y.L.); (S.K.)
| | - Yukihiko Tamura
- Department of Dental Pharmacology, Tokyo Medical and Dental University, Tokyo 113-8510, Japan;
| | - Hsin-Ying Lu
- Department of Oral Implantology and Regenerative Dental Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; (J.H.); (H.-Y.L.); (S.K.)
| | - Yuta Takahashi
- Dental Hospital Clinical Laboratory Division, Tokyo Medical and Dental University, Tokyo 113-8510, Japan;
| | - Shohei Kasugai
- Department of Oral Implantology and Regenerative Dental Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; (J.H.); (H.-Y.L.); (S.K.)
| | - Hidemi Nakata
- Department of Oral Implantology and Regenerative Dental Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; (J.H.); (H.-Y.L.); (S.K.)
| | - Shinji Kuroda
- Department of Oral Implantology and Regenerative Dental Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; (J.H.); (H.-Y.L.); (S.K.)
| |
Collapse
|
16
|
Qian M, Zhang D, Qi H, Yang X, Yin G, Zhang C, Guo J, Qi H. pH-responsive aldehyde-bearing cyclometalated iridium(III) complex for tracking intracellular pH fluctuations under external stimulation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Liu Y, Fu D. lncRNA ZNF710-AS1 Acts as a ceRNA for miR-146a-5p and miR-146b-5p to Accelerate Osteogenic Differentiation of PDLSCs by Upregulating the BMP6/Smad1/5/9 Pathway. J HARD TISSUE BIOL 2022. [DOI: 10.2485/jhtb.31.231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ying Liu
- Dentistry Department, Jiufeng Street Health Service Center of East Lake Gaoxin District
| | - Dongjie Fu
- Department of Stomatology, Renmin Hospital of Wuhan University
| |
Collapse
|
18
|
Hadaegh Y, Uludag H, Dederich D, El-Bialy TH. The effect of low intensity pulsed ultrasound on mandibular condylar growth in young adult rats. Bone Rep 2021; 15:101122. [PMID: 34527791 PMCID: PMC8433121 DOI: 10.1016/j.bonr.2021.101122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 11/30/2022] Open
Abstract
There is a need for more effective methods to enhance mandibular growth in young adults with mandibular deficiency. Previous studies suggest that low intensity pulsed ultrasound (LIPUS) can enhance mandibular growth in growing individuals. This study aimed to evaluate the potential growth changes of the mandible following 4-week LIPUS application in young adult rats. Nineteen ≈120-day-old female rats were allocated to experimental (n = 10) and control (n = 9) groups. The animals in the experimental group were treated with LIPUS to their temporomandibular joints (TMJs) bilaterally, 20 min each day for 28 consecutive days. Animals were then euthanized; gross morphological evaluation was performed on 2D photographs and 3D virtual models of hemi-mandibles, and microstructural assessment was done for the mandibular condyle (MC). Evaluation of mineralization and microarchitecture properties of subchondral cancellous bone was performed by micro-computed tomography (μCT) scanning. Qualitative and histomorphometric analysis was done on condylar cartilage and subchondral bone following Alcian Blue/PAS and Goldner's Trichrome staining. Vital flourochrome (calcein green) labeling was also utilized to determine the amount of endochondral bone growth. Gross morphological evaluations showed a slight statistically non-significant increase especially in the main condylar growth direction in the LIPUS group. Moreover, 3D evaluation depicted an enhanced periosteal bone apposition at the site of LIPUS application. Microstructural analysis revealed that LIPUS stimulates both chondrogenesis and osteogenesis and enhances endochondral bone formation in young adult rat MC. Furthermore, the effect of LIPUS on osteogenic cells of subchondral cancellous bone was notable. To conclude, LIPUS can enhance young adult rats' MC residual growth potential.
Collapse
Affiliation(s)
- Yasamin Hadaegh
- School of Dentistry, University of Alberta, Edmonton, Canada
| | - Hasan Uludag
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
19
|
Imafuji T, Shirakata Y, Shinohara Y, Nakamura T, Noguchi K. Enhanced bone formation of calvarial bone defects by low-intensity pulsed ultrasound and recombinant human bone morphogenetic protein-9: a preliminary experimental study in rats. Clin Oral Investig 2021; 25:5917-5927. [PMID: 33755786 DOI: 10.1007/s00784-021-03897-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/18/2021] [Indexed: 01/24/2023]
Abstract
OBJECTIVES The aim of this study was to evaluate the combined effects of recombinant human bone morphogenetic protein - 9 (rhBMP-9) loaded onto absorbable collagen sponges (ACS) and low-intensity pulsed ultrasound (LIPUS) on bone formation in rat calvarial defects. MATERIALS AND METHODS Circular calvarial defects were surgically created in 18 Wistar rats, which were divided into LIPUS-applied (+) and LIPUS-non-applied (-) groups. The 36 defects in each group received ACS implantation (ACS group), ACS with rhBMP-9 (rhBMP-9/ACS group), or surgical control (control group), yielding the following six groups: ACS (+/-), rhBMP-9/ACS (+/-), and control (+/-). The LIPUS-applied groups received daily LIPUS exposure starting immediately after surgery. At 4 weeks, animals were sacrificed and their defects were investigated histologically and by microcomputed tomography. RESULTS Postoperative clinical healing was uneventful at all sites. More new bone was observed in the LIPUS-applied groups compared with the LIPUS-non-applied groups. Newly formed bone area (NBA)/total defect area (TA) in the ACS (+) group (46.49 ± 7.56%) was significantly greater than that observed in the ACS (-) (34.31 ± 5.68%) and control (-) (31.13 ± 6.74%) groups (p < 0.05). The rhBMP-9/ACS (+) group exhibited significantly greater bone volume, NBA, and NBA/TA than the rhBMP-9/ACS (-) group (2.46 ± 0.65 mm3 vs. 1.76 ± 0.44 mm3, 1.25 ± 0.31 mm2 vs. 0.88 ± 0.22 mm2, and 62.80 ± 11.87% vs. 42.66 ± 7.03%, respectively) (p < 0.05). Furthermore, the rhBMP-9/ ACS (+) group showed the highest level of bone formation among all groups. CONCLUSION Within their limits, it can be concluded that LIPUS had osteopromotive potential and enhanced rhBMP-9-induced bone formation in calvarial defects of rats. CLINICAL RELEVANCE The use of rhBMP-9 with LIPUS stimulation can be a potential bone regenerative therapy for craniofacial/peri-implant bone defects.
Collapse
Affiliation(s)
- Takatomo Imafuji
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Yoshinori Shirakata
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.
| | - Yukiya Shinohara
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Toshiaki Nakamura
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Kazuyuki Noguchi
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| |
Collapse
|
20
|
Emelianov VY, Preobrazhenskaia EV, Nikolaev NS. Evaluating the Effectiveness of Biophysical Methods of Osteogenesis Stimulation: Review. TRAUMATOLOGY AND ORTHOPEDICS OF RUSSIA 2021; 27:86-96. [DOI: https:/doi.org/10.21823/2311-2905-2021-27-1-86-96] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Background. Stimulation of osteogenesis (SO) by biophysical methods has been widely used in practice to accelerate healing or stimulate the healing of fractures with non-unions, since the middle of the XIX century. SO can be carried out by direct current electrostimulation, or indirectly by low-intensity pulsed ultrasound, capacitive electrical coupling stimulation, and pulsed electromagnetic field stimulation. SO simulates natural physiological processes: in the case of electrical stimulation, it changes the electromagnetic potential of damaged cell tissues in a manner similar to normal healing processes, or in the case of low-intensity pulsed ultrasound, it produces weak mechanical effects on the fracture area. SO increases the expression of factors and signaling pathways responsible for tissue regeneration and bone mineralization and ultimately accelerates bone union.The purpose of this review was to present the most up-to-date data from laboratory and clinical studies of the effectiveness of SO.Material and Methods. The results of laboratory studies and the final results of metaanalyses for each of the four SO methods published from 1959 to 2020 in the PubMed, EMBASE, and eLibrary databases are reviewed.Conclusion. The use of SO effectively stimulates the healing of fractures with the correct location of the sensors, compliance with the intensity and time of exposure, as well as the timing of use for certain types of fractures. In case of non-union or delayed union of fractures, spondylodesis, arthrodesis, preference should be given to non-invasive methods of SO. Invasive direct current stimulation can be useful for non-union of long bones, spondylodesis with the risk of developing pseudoarthrosis.
Collapse
|
21
|
Emelianov VY, Preobrazhenskaia EV, Nikolaev NS. Evaluating the Effectiveness of Biophysical Methods of Osteogenesis Stimulation: Review. TRAUMATOLOGY AND ORTHOPEDICS OF RUSSIA 2021; 27:86-96. [DOI: 10.21823/2311-2905-2021-27-1-86-96] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Background. Stimulation of osteogenesis (SO) by biophysical methods has been widely used in practice to accelerate healing or stimulate the healing of fractures with non-unions, since the middle of the XIX century. SO can be carried out by direct current electrostimulation, or indirectly by low-intensity pulsed ultrasound, capacitive electrical coupling stimulation, and pulsed electromagnetic field stimulation. SO simulates natural physiological processes: in the case of electrical stimulation, it changes the electromagnetic potential of damaged cell tissues in a manner similar to normal healing processes, or in the case of low-intensity pulsed ultrasound, it produces weak mechanical effects on the fracture area. SO increases the expression of factors and signaling pathways responsible for tissue regeneration and bone mineralization and ultimately accelerates bone union.The purpose of this review was to present the most up-to-date data from laboratory and clinical studies of the effectiveness of SO.Material and Methods. The results of laboratory studies and the final results of metaanalyses for each of the four SO methods published from 1959 to 2020 in the PubMed, EMBASE, and eLibrary databases are reviewed.Conclusion. The use of SO effectively stimulates the healing of fractures with the correct location of the sensors, compliance with the intensity and time of exposure, as well as the timing of use for certain types of fractures. In case of non-union or delayed union of fractures, spondylodesis, arthrodesis, preference should be given to non-invasive methods of SO. Invasive direct current stimulation can be useful for non-union of long bones, spondylodesis with the risk of developing pseudoarthrosis.
Collapse
|
22
|
Liu Q, Li M, Wang S, Xiao Z, Xiong Y, Wang G. Recent Advances of Osterix Transcription Factor in Osteoblast Differentiation and Bone Formation. Front Cell Dev Biol 2020; 8:601224. [PMID: 33384998 PMCID: PMC7769847 DOI: 10.3389/fcell.2020.601224] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022] Open
Abstract
With increasing life expectations, more and more patients suffer from fractures either induced by intensive sports or other bone-related diseases. The balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption is the basis for maintaining bone health. Osterix (Osx) has long been known to be an essential transcription factor for the osteoblast differentiation and bone mineralization. Emerging evidence suggests that Osx not only plays an important role in intramembranous bone formation, but also affects endochondral ossification by participating in the terminal cartilage differentiation. Given its essentiality in skeletal development and bone formation, Osx has become a new research hotspot in recent years. In this review, we focus on the progress of Osx's function and its regulation in osteoblast differentiation and bone mass. And the potential role of Osx in developing new therapeutic strategies for osteolytic diseases was discussed.
Collapse
Affiliation(s)
- Qian Liu
- Key Laboratory of Brain and Neuroendocrine Diseases, College of Hunan Province, Hunan University of Medicine, Huaihua, China
- Biomedical Research Center, Hunan University of Medicine, Huaihua, China
| | - Mao Li
- Biomedical Research Center, Hunan University of Medicine, Huaihua, China
| | - Shiyi Wang
- XiangYa School of Medicine, Central South University, Changsha, China
| | - Zhousheng Xiao
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Yuanyuan Xiong
- Key Laboratory of Brain and Neuroendocrine Diseases, College of Hunan Province, Hunan University of Medicine, Huaihua, China
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guangwei Wang
- Key Laboratory of Brain and Neuroendocrine Diseases, College of Hunan Province, Hunan University of Medicine, Huaihua, China
- Biomedical Research Center, Hunan University of Medicine, Huaihua, China
| |
Collapse
|
23
|
Ding L, Yin Y, Hou Y, Jiang H, Zhang J, Dai Z, Zhang G. microRNA-214-3p Suppresses Ankylosing Spondylitis Fibroblast Osteogenesis via BMP-TGF β Axis and BMP2. Front Endocrinol (Lausanne) 2020; 11:609753. [PMID: 33935961 PMCID: PMC8082363 DOI: 10.3389/fendo.2020.609753] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/21/2020] [Indexed: 11/13/2022] Open
Abstract
Recent investigations suggest microRNAs (miRs) exert functions in fibroblast osteogenesis in ankylosing spondylitis (AS), an inflammatory rheumatic disease. But the mechanism of miR-214-3p in osteogenic differentiation in AS is not clearly understood yet. In this study, fibroblasts were obtained from the capsular ligament of patients with AS and femoral neck fracture and cultured for osteogenic induction and identified. The roles of miR-214-3p and bone morphogenic protein 2 (BMP2) in AS fibroblast osteogenesis were assessed via gain- and loss-of-function, alizarin red S staining, and alkaline phosphatase (ALP) detection. Levels of miR-214-3p, BMP2, osteogenic differentiation-related proteins, and BMP-TGFβ axis-related proteins were further measured. Consequently, miR-214-3p was downregulated in AS fibroblasts, with enhanced ALP activity and calcium nodules, which were reversed by miR-214-3p overexpression. BMP2 was a target gene of miR-214-3p and promoted AS fibroblast osteogenesis by activating BMP-TGFβ axis, while miR-214-3p inhibited AS fibroblast osteogenesis by targeting BMP2. Together, miR-214-3p could prevent AS fibroblast osteogenic differentiation by targeting BMP2 and blocking BMP-TGFβ axis. This study may offer a novel insight for AS treatment.
Collapse
Affiliation(s)
- Lixiang Ding
- Department of Spine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Lixiang Ding, ; Genai Zhang,
| | - Yukun Yin
- Department of Traditional Chinese Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Hou
- Department of Spine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Haoran Jiang
- Department of Spine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Ji Zhang
- Department of Spine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Zhong Dai
- Department of General Medicine, Huanxing Cancer Hospital, Beijing, China
| | - Genai Zhang
- Department of Spine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Lixiang Ding, ; Genai Zhang,
| |
Collapse
|