1
|
Naji M, Ansari E, Besharati S, Hajiabbas M, Mohammadi Torbati P, Asghari Vostikolaee MH, Hajinasrollah M, Sharifiaghdas F. Tissue-engineered sub-urethral sling with muscle-derived cells for urethral sphincter regeneration in an animal model of stress urinary incontinence. Urologia 2024; 91:834-841. [PMID: 39193822 DOI: 10.1177/03915603241276555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
BACKGROUND Stress urinary incontinence (SUI) is a widespread condition affecting more than 200 million people worldwide. Common treatments for this condition include retropubic colposuspension, and pelvic sling methods, which use autologous grafts or synthetic materials to support the bladder neck and urethral sphincter. Although these treatments have a cure rate of over 80%, adverse effects and recurrence may still occur. Several studies have focused on the potential of cell therapy. Muscle-derived cells (MDCs) can be easily obtained from small biopsied striated muscular tissues and possess superior multi-lineage differentiation and self-renewal capacity. METHODS Based on the unique characteristics of MDCs and previous favorable results in muscle regeneration, we fabricated a chitosan-gelatin hydrogel sling loaded with MDCs in a rat model of SUI. Leak point pressure and histological indices regarding inflammation, muscular atrophy, and collagen density were assessed to compare the effectiveness of cell injection and cell-laden sling. RESULTS The level of LPP was significantly reduced in the MODEL group versus the control animals. The LPP level was considerably higher in CELL INJECTION, SLING, and CELL/SLING groups compared to the MODEL group but did not reach the significance threshold. The inflammation rate was significantly lower in the CELL/SLING group compared to the SLING group. CONCLUSION The CELL/SLING group showed less atrophy compared to the other experimental groups, indicating that the cells may have higher viability on SLING than through injection. This also suggests that in long-term studies, as the degradation rate of hydrogels increases, the function of cells will become more apparent.
Collapse
Affiliation(s)
- Mohammad Naji
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Ansari
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Sepideh Besharati
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Hajiabbas
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Peyman Mohammadi Torbati
- Department of Pathology, Faculty of medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassan Asghari Vostikolaee
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mostafa Hajinasrollah
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Farzaneh Sharifiaghdas
- Urology and Nephrology Research Center, Department of Urology, Shahid Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Tan X, Li G, Li C, Kong C, Li H, Wu S. Animal models, treatment options, and biomaterials for female stress urinary incontinence. Front Bioeng Biotechnol 2024; 12:1414323. [PMID: 39267906 PMCID: PMC11390547 DOI: 10.3389/fbioe.2024.1414323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
In the quest to tackle stress urinary incontinence (SUI), the synthesis of cutting-edge biomaterials and regenerative materials has emerged as a promising frontier. Briefly, animal models like vaginal distension and bilateral ovariectomy serve as crucial platforms for unraveling the intricacies of SUI, facilitating the evaluation of innovative treatments. The spotlight, however, shines on the development and application of novel biomaterials-ranging from urethral bulking agents to nano-gel composites-which aim to bolster urethral support and foster tissue regeneration. Furthermore, the exploration of stem cell therapies, particularly those derived from adipose tissues and urine, heralds a new era of regenerative medicine, offering potential for significant improvements in urinary function. This review encapsulates the progress in biomaterials and regenerative strategies, highlighting their pivotal role in advancing the treatment of SUI, thereby opening new avenues for effective and minimally invasive solutions.
Collapse
Affiliation(s)
- Xiyang Tan
- Shenzhen Hospital, Shanghai University of Traditional Chinese Medicine, Shenzhen, China
- Department of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
- Department of Urology, The Affiliated South China Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Guangzhi Li
- Department of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Chenchen Li
- Department of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Chenfan Kong
- Shenzhen Hospital, Shanghai University of Traditional Chinese Medicine, Shenzhen, China
- Department of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
- Department of Urology, The Affiliated South China Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Huizhen Li
- Department of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Song Wu
- Shenzhen Hospital, Shanghai University of Traditional Chinese Medicine, Shenzhen, China
- Department of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
- Department of Urology, The Affiliated South China Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| |
Collapse
|
3
|
Liu X, Li T, Zhang J, Lin X, Wang W, Fan X, Wang L. Mesenchymal stem cell-based therapy for female stress urinary incontinence. Front Cell Dev Biol 2023; 11:1007703. [PMID: 36711031 PMCID: PMC9880261 DOI: 10.3389/fcell.2023.1007703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
Stress urinary incontinence (SUI) adversely affects the quality of life of patients, while the currently available surgical and non-surgical therapies are not effective in all patients. Application of mesenchymal stem cells (MSCs) for regaining the ability to control urination has attracted interest. Herein, we reviewed the literature and analyzed recent studies on MSC-based therapies for SUI, summarized recent treatment strategies and their underlying mechanisms of action, while assessing their safety, effectiveness, and prospects. In addition, we traced and sorted the root literature and, from an experimental design perspective, divided the obtained results into four categories namely single MSC type therapy for SUI, MSC-based combination therapy for SUI, treatment of SUI with the MSC secretome, and other factors influencing MSC therapy. Although evidence demonstrates that the treatment strategies are safe and effective, the underlying mechanisms of action remain nebulous, hence more clinical trials are warranted. Therefore, future studies should focus on designing clinical trials of MSC-based therapies to determine the indications for treatment, cell dosage, appropriate surgical strategies, and optimal cell sources, and develop clinically relevant animal models to elucidate the molecular mechanisms underlying stem cell therapies improvement of SUI.
Collapse
Affiliation(s)
- Xiaochun Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China,*Correspondence: Xiaochun Liu,
| | - Tingting Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Jia Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Xiling Lin
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China,Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Wenzhen Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Xiaodong Fan
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China,School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Lili Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China,School of Biomedical Engineering at Taiyuan University of Technology, Taiyuan, China
| |
Collapse
|
4
|
Fei W, Liu M, Zhang Y, Cao S, Wang X, Xie B, Wang J. Identification of key pathways and hub genes in the myogenic differentiation of pluripotent stem cell: a bioinformatics and experimental study. J Orthop Surg Res 2021; 16:4. [PMID: 33397419 PMCID: PMC7784349 DOI: 10.1186/s13018-020-01979-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022] Open
Abstract
Background The regeneration of muscle cells from stem cells is an intricate process, and various genes are included in the process such as myoD, mf5, mf6, etc. The key genes and pathways in the differentiating stages are various. Therefore, the differential expression of key genes after 4 weeks of differentiation were investigated in our study. Method Three published gene expression profiles, GSE131125, GSE148994, and GSE149055, about the comparisons of pluripotent stem cells to differentiated cells after 4 weeks were obtained from the Gene Expression Omnibus (GEO) database. Common differentially expressed genes (DEGs) were obtained for further analysis such as protein-protein interaction (PPI) network, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and GSEA analysis. After hub genes and key pathways were obtained, we manipulated in vitro cell research for substantiation such as immunohistochemical staining and semi-quantitative analysis and quantitative real-time PCR. Results A total of 824 DEGs including 350 upregulated genes and 474 downregulated genes were identified in the three GSEs. Nineteen hub genes were identified from the PPI network. The GO and KEGG pathway analyses confirmed that myogenic differentiation at 4 weeks was strongly associated with pathway in cancer, PI3K pathway, actin cytoskeleton regulation and metabolic pathway, biosynthesis of antibodies, and cell cycle. GSEA analysis indicated the differentiated cells were enriched in muscle cell development and myogenesis. Meanwhile, the core genes in each pathway were identified from the GSEA analysis. The in vitro cell research revealed that actin cytoskeleton and myoD were upregulated after 4-week differentiation. Conclusions The research revealed the potential hub genes and key pathways after 4-week differentiation of stem cells which contribute to further study about the molecular mechanism of myogenesis regeneration, paving a way for more accurate treatment for muscle dysfunction. Supplementary Information The online version contains supplementary material available at 10.1186/s13018-020-01979-x.
Collapse
Affiliation(s)
- Wenyong Fei
- Sports Medicine Department, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, 98# Nantong xi Road, Yangzhou, 225001, China
| | - Mingsheng Liu
- Dalian Medical University, Dalian, 116044, Dalian, China
| | - Yao Zhang
- Dalian Medical University, Dalian, 116044, Dalian, China
| | - Shichao Cao
- Dalian Medical University, Dalian, 116044, Dalian, China
| | - Xuanqi Wang
- Dalian Medical University, Dalian, 116044, Dalian, China
| | - Bin Xie
- Dalian Medical University, Dalian, 116044, Dalian, China
| | - Jingcheng Wang
- Sports Medicine Department, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, 98# Nantong xi Road, Yangzhou, 225001, China.
| |
Collapse
|