1
|
Natsir Kalla DS, Alkaabi SA, Hendra FN, Nasrun NE, Ruslin M, Forouzanfar T, Helder MN. Stem Cell-Based Tissue Engineering for Cleft Defects: Systematic Review and Meta-Analysis. Cleft Palate Craniofac J 2024; 61:1439-1460. [PMID: 37203174 PMCID: PMC11323438 DOI: 10.1177/10556656231175278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023] Open
Abstract
This study aimed to analyze the efficacy of stem cell-based tissue engineering for the treatment of alveolar cleft (AC) and cleft palate (CP) defects in animal models. Systematic review and meta-analysis. Preclinical studies on alveolar cleft repair in maxillofacial practice. Electronic search was performed using PubMed, Embase, and Cochrane databases. Pre-clinical studies, where stem cell-based tissue engineering was used in the reconstruction of AC and CP in animal models were included. Quality of the selected articles was evaluated using SYRCLE (SYstematic Review Centre for Laboratory animal Experimentation). Review of alveolar cleft bone augmentation interventions in preclinical models. Outcome parameters registered were new bone formation (NBF) and/or bone mineral density (BMD). Thirteen large and twelve small animal studies on AC (21) and CP (4) reconstructions were included. Studies had an unclear-to-high risk of bias. Bone marrow mesenchymal stem cells were the most widely used cell source. Meta-analyses for AC indicated non-significant benefits in favor of: (1) scaffold + cells over scaffold-only (NBF P = .13); and (2) scaffold + cells over empty control (NBF P = .66; BMD P = .31). Interestingly, dog studies using regenerative grafts showed similar to superior bone formation compared to autografts. Meta analysis for the CP group was not possible. AC and CP reconstructions are enhanced by addition of osteogenic cells to biomaterials. Directions and estimates of treatment effect are useful to predict therapeutic efficacy and guide future clinical trials of bone tissue engineering.
Collapse
Affiliation(s)
- Diandra S. Natsir Kalla
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
- Department of Biochemistry, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Salem A. Alkaabi
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
- Department of Oral and Maxillofacial Surgery, Fujairah Hospital, Ministry of Health, Fujairah, UAE
| | - Faqi N. Hendra
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
- Department of Anatomy, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Nisrina E. Nasrun
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Muhammad Ruslin
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Hasanuddin University, Makassar, Indonesia
| | - Tymour Forouzanfar
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
- Department of Oral and Maxillofacial Surgery, Leiden University Medical Centre (LUMC), Leiden, The Netherlands
| | - Marco N. Helder
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Raouf EA, Elsherbini AM, Yousef EAS, Abdulrahman M, Zaher AR. Evaluation of the Regenerative Capacity of Demineralized Bone Matrix vs Fat Graft in Alveolar Cleft Model in Albino Rats. J Contemp Dent Pract 2024; 25:554-562. [PMID: 39364822 DOI: 10.5005/jp-journals-10024-3706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
AIM This study was performed to evaluate the regenerative capacity of demineralized bone matrix vs fat graft, both guided by pericardium membrane in alveolar cleft model in albino rats. MATERIALS AND METHODS A total of 72 rats were required in this study. A surgical bone defect with a 7 mm length × 4 mm width × 3 mm depth was created as a model of an alveolar cleft, then the rats were divided randomly into four equal groups each group contained 18 rats: control group (defect only), the membrane group (the defect was covered by the pericardium membrane), the demineralized bone matrix (DBM) group (the defect was filled with DBM guided by pericardium membrane) and fat group (the defect was filled with a fat graft guided by the pericardium membrane). Around 6 rats from each group were euthanized after 2, 4, and 8 weeks. Skulls were scanned with cone beam computed tomography (CBCT) and harvested for histological evaluation with routine H&E immunohistochemical stains (Anti-osteocalcin and Anti-Wnt5a). The data was recorded and statistically analyzed by a two-way ANOVA. RESULTS The study showed a notable formation of new bone, and expression of OCN and Wnt5a were notably increased by time in the fat group. However, the density of bone grafts and OCN and Wnt5a expression decreased with time in the DBM group. Control and membrane groups showed negative OCN and Wnt5a immune-reactivity in the cleft site. CONCLUSION Fat graft results were superior to DBM results with regard to mucosal closure and accelerated bone regeneration, and may represent an effective treatment for alveolar cleft reconstruction. CLINICAL SIGNIFICANCE Finding an inexpensive, accessible, biocompatible and easily manipulated treatment for craniofacial reconstruction and fat graft fulfilled the desired aims. Further investigations with prolonged evaluation periods are needed. How to cite this article: Abdel Raouf E, Elsherbini AM, Abdel Salam Yousef Y, et al. Evaluation of the Regenerative Capacity of Demineralized Bone Matrix vs Fat Graft in Alveolar Cleft Model in Albino Rats. J Contemp Dent Pract 2024;25(6):554-562.
Collapse
Affiliation(s)
- Esraa Abdel Raouf
- Department of Oral Biology Faculty of Dentistry, Mansoura University, Mansoura, Egypt, Phone: +20 1097493193, e-mail: , Orcid: https://orcid.org/0000-0002-8678-7363
| | - Amira M Elsherbini
- Department of Oral Biology Faculty of Dentistry, Mansoura University, Mansoura, Egypt, Orcid: https://orcid.org/0000-0001-7960-3557
| | - Eman Abdel Salam Yousef
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Mansoura University, Mansoura; Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Horus University, New Damietta, Egypt
| | - Mohamed Abdulrahman
- Department of Oral Biology Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Ahmed Ragheb Zaher
- Department of Oral Biology Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| |
Collapse
|
3
|
Sun H, Luan J, Dong S. Hydrogels promote periodontal regeneration. Front Bioeng Biotechnol 2024; 12:1411494. [PMID: 38827033 PMCID: PMC11140061 DOI: 10.3389/fbioe.2024.1411494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/06/2024] [Indexed: 06/04/2024] Open
Abstract
Periodontal defects involve the damage and loss of periodontal tissue, primarily caused by periodontitis. This inflammatory disease, resulting from various factors, can lead to irreversible harm to the tissues supporting the teeth if not treated effectively, potentially resulting in tooth loss or loosening. Such outcomes significantly impact a patient's facial appearance and their ability to eat and speak. Current clinical treatments for periodontitis, including surgery, root planing, and various types of curettage, as well as local antibiotic injections, aim to mitigate symptoms and halt disease progression. However, these methods fall short of fully restoring the original structure and functionality of the affected tissue, due to the complex and deep structure of periodontal pockets and the intricate nature of the supporting tissue. To overcome these limitations, numerous biomaterials have been explored for periodontal tissue regeneration, with hydrogels being particularly noteworthy. Hydrogels are favored in research for their exceptional absorption capacity, biodegradability, and tunable mechanical properties. They have shown promise as barrier membranes, scaffolds, carriers for cell transplantation and drug delivery systems in periodontal regeneration therapy. The review concludes by discussing the ongoing challenges and future prospects for hydrogel applications in periodontal treatment.
Collapse
Affiliation(s)
- Huiying Sun
- The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Jiayi Luan
- Foshan Stomatology Hospital and School of Medicine, Foshan, Guangdong, China
| | - Shujun Dong
- The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
4
|
Tu CC, Zheng ZC, Cheng NC, Yu J, Tai WC, Pan YX, Chang PC. Alveolar mucosal cell spheroids promote extraction socket healing and osseous defect regeneration. J Periodontol 2024; 95:372-383. [PMID: 37531239 DOI: 10.1002/jper.23-0283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/07/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND Alveolar mucosa could be a promising source of mesenchymal stem cells (MSCs) for regeneration therapeutics because it exhibits faster healing potential and can be easily collected with minimal periodontal disturbance. This study aimed to evaluate the potential of alveolar mucosal cell (AMC) spheroids for promoting extraction socket healing and calvarial osseous defect regeneration. METHODS AMCs were isolated from Sprague-Dawley rats. Antigenic and MSC surface marker expressions and trilineage differentiation capability were assessed. AMCs were then osteogenically stimulated (OAs) or unstimulated (UAs), self-aggregated to form spheroids, and encapsulated in gelatin hydrogel to fill rat extraction sockets or combined with freeze-dried bone graft (FDBG) to fill rat calvarial osseous defects. The outcome was assessed by gross observation, micro-CT imaging, and immunohistochemistry. RESULTS AMCs highly expressed MSC surface markers, showed weak antigenicity, and were capable of trilineage differentiation at Passage 3. In the extraction sockets, wound closure, socket fill, keratinization, and proliferative activities were accelerated in those with AMC spheroids treatment. Socket fill and maturation were further promoted by OA spheroids. In the calvarial osseous defects, the mineralized tissue ratio was promoted with AMC spheroids/FDBG treatment, and bone sialoprotein expression and cell proliferation were more evident with OA spheroids/FDBG treatment. CONCLUSION AMCs exhibited MSC properties with weak antigenicity. AMC spheroids promoted extraction socket healing, AMC spheroids/FDBG promoted calvarial osseous defect regeneration, and the outcomes were further enhanced by osteogenically stimulation of AMCs.
Collapse
Affiliation(s)
- Che-Chang Tu
- Graduate Institute of Clinical Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
- Division of Periodontics, Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Zhao-Cheng Zheng
- Graduate Institute of Clinical Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
- Division of Periodontics, Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Nai-Chen Cheng
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Jiashing Yu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Wei-Chiu Tai
- Graduate Institute of Clinical Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Xuan Pan
- Graduate Institute of Clinical Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
- Division of Periodontics, Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Po-Chun Chang
- Graduate Institute of Clinical Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
- Division of Periodontics, Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
5
|
Ponnaiyan D, Rughwani RR, Victor DJ, Shetty G. Stem Cells in the Periodontium-Anatomically Related Yet Physiologically Diverse. Eur J Dent 2024; 18:1-13. [PMID: 36588293 PMCID: PMC10959637 DOI: 10.1055/s-0042-1759487] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Periodontitis is a complex chronic disease discernible by the deterioration of periodontal tissue. The goal of periodontal therapy is to achieve complete tissue regeneration, and one of the most promising treatment options is to harness the regenerative potential of stem cells available within the periodontal complex. Periodontal ligament stem cells, gingival mesenchymal stem cells, oral periosteal stem cells, and dental follicle stem cells have structural similarities, but their immunological responses and features differ. The qualities of diverse periodontal stem cells, their immune-modulatory effects, and variances in their phenotypes and characteristics will be discussed in this review. Although there is evidence on each stem cell population in the periodontium, understanding the differences in markers expressed, the various research conducted so far on their regenerative potential, will help in understanding which stem cell population will be a better candidate for tissue engineering. The possibility of selecting the most amenable stem cell population for optimal periodontal regeneration and the development and current application of superior tissue engineering treatment options such as autologous transplantation, three-dimensional bioengineered scaffolds, dental stem cell-derived extracellular vesicles will be explored.
Collapse
Affiliation(s)
- Deepa Ponnaiyan
- Department of Periodontics and Oral Implantology, SRM Dental College and Hospital, Ramapuram, Chennai, Tamil Nadu, India
| | - Roshan R. Rughwani
- Department of Periodontics and Oral Implantology, SRM Dental College and Hospital, Ramapuram, Chennai, Tamil Nadu, India
| | - Dhayanand John Victor
- Department of Periodontics and Oral Implantology, SRM Dental College and Hospital, Ramapuram, Chennai, Tamil Nadu, India
| | - Ganesh Shetty
- Dental and Orthodontic Clinic, Bangalore, Karnataka, India
| |
Collapse
|
6
|
Huang F, Wei G, Wang H, Zhang Y, Lan W, Xie Y, Wu G. Fibroblasts inhibit osteogenesis by regulating nuclear-cytoplasmic shuttling of YAP in mesenchymal stem cells and secreting DKK1. Biol Res 2024; 57:4. [PMID: 38245803 PMCID: PMC10799393 DOI: 10.1186/s40659-023-00481-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 12/04/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Fibrous scars frequently form at the sites of bone nonunion when attempts to repair bone fractures have failed. However, the detailed mechanism by which fibroblasts, which are the main components of fibrous scars, impede osteogenesis remains largely unknown. RESULTS In this study, we found that fibroblasts compete with osteogenesis in both human bone nonunion tissues and BMP2-induced ectopic osteogenesis in a mouse model. Fibroblasts could inhibit the osteoblastic differentiation of mesenchymal stem cells (MSCs) via direct and indirect cell competition. During this process, fibroblasts modulated the nuclear-cytoplasmic shuttling of YAP in MSCs. Knocking down YAP could inhibit osteoblast differentiation of MSCs, while overexpression of nuclear-localized YAP-5SA could reverse the inhibition of osteoblast differentiation of MSCs caused by fibroblasts. Furthermore, fibroblasts secreted DKK1, which further inhibited the formation of calcium nodules during the late stage of osteogenesis but did not affect the early stage of osteogenesis. Thus, fibroblasts could inhibit osteogenesis by regulating YAP localization in MSCs and secreting DKK1. CONCLUSIONS Our research revealed that fibroblasts could modulate the nuclear-cytoplasmic shuttling of YAP in MSCs, thereby inhibiting their osteoblast differentiation. Fibroblasts could also secrete DKK1, which inhibited calcium nodule formation at the late stage of osteogenesis.
Collapse
Affiliation(s)
- Fei Huang
- Central Laboratory, First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Guozhen Wei
- Department of Orthopaedics, The First Affiliated Hospital, Fujian Medical University, No. 20, Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
- Department of Orthopaedics, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, Fujian, China
| | - Hai Wang
- Department of Orthopaedics, The First Affiliated Hospital, Fujian Medical University, No. 20, Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
- Department of Orthopaedics, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, Fujian, China
| | - Ying Zhang
- Central Laboratory, First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Wenbin Lan
- Department of Orthopaedics, The First Affiliated Hospital, Fujian Medical University, No. 20, Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
- Department of Orthopaedics, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, Fujian, China
| | - Yun Xie
- Department of Orthopaedics, The First Affiliated Hospital, Fujian Medical University, No. 20, Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China.
- Department of Orthopaedics, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, Fujian, China.
| | - Gui Wu
- Department of Orthopaedics, The First Affiliated Hospital, Fujian Medical University, No. 20, Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China.
- Department of Orthopaedics, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, Fujian, China.
| |
Collapse
|
7
|
Cabaña-Muñoz ME, Pelaz Fernández MJ, Parmigiani-Cabaña JM, Parmigiani-Izquierdo JM, Merino JJ. Adult Mesenchymal Stem Cells from Oral Cavity and Surrounding Areas: Types and Biomedical Applications. Pharmaceutics 2023; 15:2109. [PMID: 37631323 PMCID: PMC10459416 DOI: 10.3390/pharmaceutics15082109] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Adult mesenchymal stem cells are those obtained from the conformation of dental structures (DMSC), such as deciduous and permanent teeth and other surrounding tissues. Background: The self-renewal and differentiation capacities of these adult stem cells allow for great clinical potential. Because DMSC are cells of ectomesenchymal origin, they reveal a high capacity for complete regeneration of dental pulp, periodontal tissue, and other biomedical applications; their differentiation into other types of cells promotes repair in muscle tissue, cardiac, pancreatic, nervous, bone, cartilage, skin, and corneal tissues, among others, with a high predictability of success. Therefore, stem and progenitor cells, with their exosomes of dental origin and surrounding areas in the oral cavity due to their plasticity, are considered a fundamental pillar in medicine and regenerative dentistry. Tissue engineering (MSCs, scaffolds, and bioactive molecules) sustains and induces its multipotent and immunomodulatory effects. It is of vital importance to guarantee the safety and efficacy of the procedures designed for patients, and for this purpose, more clinical trials are needed to increase the efficacy of several pathologies. Conclusion: From a bioethical and transcendental anthropological point of view, the human person as a unique being facilitates better clinical and personalized therapy, given the higher prevalence of dental and chronic systemic diseases.
Collapse
Affiliation(s)
- María Eugenia Cabaña-Muñoz
- CIROM—Centro de Rehabilitación Oral Multidisciplinaria, 30001 Murcia, Spain; (M.E.C.-M.); (J.M.P.-C.); (J.M.P.-I.)
| | | | - José María Parmigiani-Cabaña
- CIROM—Centro de Rehabilitación Oral Multidisciplinaria, 30001 Murcia, Spain; (M.E.C.-M.); (J.M.P.-C.); (J.M.P.-I.)
| | | | - José Joaquín Merino
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid (U.C.M), 28040 Madrid, Spain
| |
Collapse
|
8
|
Alamán‐Díez P, García‐Gareta E, Arruebo M, Pérez MÁ. A bone-on-a-chip collagen hydrogel-based model using pre-differentiated adipose-derived stem cells for personalized bone tissue engineering. J Biomed Mater Res A 2023; 111:88-105. [PMID: 36205241 PMCID: PMC9828068 DOI: 10.1002/jbm.a.37448] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/24/2022] [Accepted: 09/13/2022] [Indexed: 01/12/2023]
Abstract
Mesenchymal stem cells have contributed to the continuous progress of tissue engineering and regenerative medicine. Adipose-derived stem cells (ADSC) possess many advantages compared to other origins including easy tissue harvesting, self-renewal potential, and fast population doubling time. As multipotent cells, they can differentiate into osteoblastic cell linages. In vitro bone models are needed to carry out an initial safety assessment in the study of novel bone regeneration therapies. We hypothesized that 3D bone-on-a-chip models containing ADSC could closely recreate the physiological bone microenvironment and promote differentiation. They represent an intermedium step between traditional 2D-in vitro and in vivo experiments facilitating the screening of therapeutic molecules while saving resources. Herein, we have differentiated ADSC for 7 and 14 days and used them to fabricate in vitro bone models by embedding the pre-differentiated cells in a 3D collagen matrix placed in a microfluidic chip. Osteogenic markers such as alkaline phosphatase activity, calcium mineralization, changes on cell morphology, and expression of specific proteins (bone sialoprotein 2, dentin matrix acidic phosphoprotein-1, and osteocalcin) were evaluated to determine cell differentiation potential and evolution. This is the first miniaturized 3D-in vitro bone model created from pre-differentiated ADSC embedded in a hydrogel collagen matrix which could be used for personalized bone tissue engineering.
Collapse
Affiliation(s)
- Pilar Alamán‐Díez
- Multiscale in Mechanical and Biological Engineering, Aragón Institute of Engineering Research (I3A), Aragón Institute of Healthcare Research (IIS Aragón)University of ZaragozaZaragozaSpain
| | - Elena García‐Gareta
- Multiscale in Mechanical and Biological Engineering, Aragón Institute of Engineering Research (I3A), Aragón Institute of Healthcare Research (IIS Aragón)University of ZaragozaZaragozaSpain,Division of Biomaterials and Tissue Engineering, UCL Eastman Dental InstituteUniversity College LondonLondonUK
| | - Manuel Arruebo
- Aragón Institute of Nanoscience and Materials (INMA), Consejo Superior de Investigaciones Científicas (CSIC)University of ZaragozaZaragozaSpain,Department of Chemical EngineeringUniversity of ZaragozaZaragozaSpain
| | - María Ángeles Pérez
- Multiscale in Mechanical and Biological Engineering, Aragón Institute of Engineering Research (I3A), Aragón Institute of Healthcare Research (IIS Aragón)University of ZaragozaZaragozaSpain
| |
Collapse
|
9
|
Combining Bone Collagen Matrix with hUC-MSCs for Application to Alveolar Process Cleft in a Rabbit Model. Stem Cell Rev Rep 2023; 19:133-154. [PMID: 34420159 DOI: 10.1007/s12015-021-10221-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2021] [Indexed: 01/29/2023]
Abstract
BACKGROUND Most materials used clinically for filling severe bone defects either cannot induce bone re-generation or exhibit low bone conversion, therefore, their therapeutic effects are limited. Human umbilical cord mesenchymal stem cells (hUC-MSCs) exhibit good osteoinduction. However, the mechanism by which combining a heterogeneous bone collagen matrix with hUC-MSCs to repair the bone defects of alveolar process clefts remains unclear. METHODS A rabbit alveolar process cleft model was established by removing the bone tissue from the left maxillary bone. Forty-eight young Japanese white rabbits (JWRs) were divided into normal, control, material and MSCs groups. An equal volume of a bone collagen matrix alone or combined with hUC-MSCs was implanted in the defect. X-ray, micro-focus computerized tomography (micro-CT), blood analysis, histochemical staining and TUNEL were used to detect the newly formed bone in the defect area at 3 and 6 months after the surgery. RESULTS The bone formation rate obtained from the skull tissue in MSCs group was significantly higher than that in control group at 3 months (P < 0.01) and 6 months (P < 0.05) after the surgery. The apoptosis rate in the MSCs group was significantly higher at 3 months after the surgery (P < 0.05) and lower at 6 months after the surgery (P < 0.01) than those in the normal group. CONCLUSIONS Combining bone collagen matrix with hUC-MSCs promoted the new bone regeneration in the rabbit alveolar process cleft model through promoting osteoblasts formations and chondrocyte growth, and inducing type I collagen formation and BMP-2 generation.
Collapse
|
10
|
Study on the Mechanism of miR-146a in Gingival Mesenchymal Stem Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1630260. [PMID: 36425259 PMCID: PMC9681548 DOI: 10.1155/2022/1630260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022]
Abstract
This study aimed to investigate the molecular mechanisms of microRNA-146a (miR-146a) on gingival mesenchymal stem cells (MSCs). Gingival MSCs were isolated from the gingiva tissues of patients with periodontal disease to reveal the function of miR-146a in regulating osteoblast differentiation. miR-146a inhibits osteoblast differentiation by inhibiting phosphorylated cyclic-AMP response binding (CREB) protein translocation into the nucleus and ultimately attenuating runt-related transcription factor 2 (Runx2) expression. Furthermore, silencing miR-146a promotes the proliferation of gingival MSCs. Of note, targeted inhibition of miR-146a also inhibited LPS-induced inflammatory response and promoted the proliferation of gingival MSCs via CREB/Runx2 axis. MiR-146a is a key negative regulator of gingival MSCs proliferation and osteogenic differentiation, and targeting to reduce the miR-146a expression is essential for bone formation signaling. Therefore, we propose that miR-146a is a useful therapeutic target for the development of bone anabolic strategies.
Collapse
|
11
|
Ahuja A, Tyagi PK, Kumar M, Sharma N, Prakash S, Radha, Chandran D, Dhumal S, Rais N, Singh S, Dey A, Senapathy M, Saleena LAK, Shanavas A, Mohankumar P, Rajalingam S, Murugesan Y, Vishvanathan M, Sathyaseelan SK, Viswanathan S, Kumar KK, Natta S, Mekhemar M. Botanicals and Oral Stem Cell Mediated Regeneration: A Paradigm Shift from Artificial to Biological Replacement. Cells 2022; 11:2792. [PMID: 36139367 PMCID: PMC9496740 DOI: 10.3390/cells11182792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/03/2022] [Accepted: 09/04/2022] [Indexed: 11/23/2022] Open
Abstract
Stem cells are a well-known autologous pluripotent cell source, having excellent potential to develop into specialized cells, such as brain, skin, and bone marrow cells. The oral cavity is reported to be a rich source of multiple types of oral stem cells, including the dental pulp, mucosal soft tissues, periodontal ligament, and apical papilla. Oral stem cells were useful for both the regeneration of soft tissue components in the dental pulp and mineralized structure regeneration, such as bone or dentin, and can be a viable substitute for traditionally used bone marrow stem cells. In recent years, several studies have reported that plant extracts or compounds promoted the proliferation, differentiation, and survival of different oral stem cells. This review is carried out by following the PRISMA guidelines and focusing mainly on the effects of bioactive compounds on oral stem cell-mediated dental, bone, and neural regeneration. It is observed that in recent years studies were mainly focused on the utilization of oral stem cell-mediated regeneration of bone or dental mesenchymal cells, however, the utility of bioactive compounds on oral stem cell-mediated regeneration requires additional assessment beyond in vitro and in vivo studies, and requires more randomized clinical trials and case studies.
Collapse
Affiliation(s)
- Anami Ahuja
- Department of Biotechnology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow 226031, India
- Department of Biotechnology, Meerut Institute of Engineering and Technology, Meerut 250005, India
| | - Pankaj Kumar Tyagi
- Department of Biotechnology, Noida Institute of Engineering & Technology, Greater Noida 201306, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR–Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Naveen Sharma
- Division of Biomedical Informatics, Indian Council of Medical Research, New Delhi 110029, India
| | - Suraj Prakash
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sci-ences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Sangram Dhumal
- Division of Horticulture, RCSM College of Agriculture, Kolhapur 416004, India
| | - Nadeem Rais
- Department of Pharmacy, Bhagwant University, Ajmer 305004, India
| | - Surinder Singh
- Dr. S. S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh 160014, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, India
| | - Marisennayya Senapathy
- Department of Rural Development and Agricultural Extension, College of Agriculture, Wolaita Sodo University, Wolaita Sodo P.O. Box 138, Ethiopia
| | - Lejaniya Abdul Kalam Saleena
- Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University, Kuala Lampur 56000, Malaysia
| | - Arjun Shanavas
- Division of Medicine, Indian Veterinary Research Institute, Bareilly 243122, India
| | - Pran Mohankumar
- School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences, Coimbatore 641114, India
| | - Sureshkumar Rajalingam
- Department of Agronomy, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Yasodha Murugesan
- Department of Agronomy, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Marthandan Vishvanathan
- Department of Seed Science and Technology, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | | | - Sabareeshwari Viswanathan
- Department of Soil Science and Agricultural Chemistry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Keerthana Krishna Kumar
- Department of Soil Science and Agricultural Chemistry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Suman Natta
- ICAR—National Research Centre for Orchids, Pakyong 737106, India
| | - Mohamed Mekhemar
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Chris-tian-Albrecht’s University, 24105 Kiel, Germany
| |
Collapse
|
12
|
Xu F, Tan F, Zheng Z, Zhou X. Effects of pre-osteogenic differentiation on the bone regeneration potentiality of marrow mesenchymal stem cells/poly(ethylene glycol)-diacrylate hydrogel using a rat cranial defect model. J Biomater Appl 2022; 37:786-794. [PMID: 35793113 DOI: 10.1177/08853282221112999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transplanting cell/hydrogel constructs into a bone defect site is an effective strategy to repair the damaged tissues. However, before transplantation, there are various methods to culture cell/hydrogel constructs. Especially, the preferred pre-osteogenic differentiation period to achieve satisfied bone regeneration should be determined. To this end, Bone marrow mesenchymal stem cells (BMSCs) were firstly photo-encapsulated into poly(ethylene glycol)-diacrylate (PEGDA) hydrogel. Then the constructs were implanted in rat calvarial defects after being osteogenically induced for 0, 7, 14, and 21 days. In vitro experiments demonstrated that the proliferation of BMSCs in the hydrogels deceased significantly from 0 day to 7 days. The activity and the gene expression of alkaline phosphatase, besides the gene expression of bone morphogenetic protein-2 peaked at day 14, whereas the gene expression of osteocalcin and the formation of calcium nodules increased with the prolongation of differentiation time. In vivo results showed that limited areas of newly formed bone were found in the day0 and day21 groups. In the day7 group, obvious new bone with bone marrow space was found, while the day14 group nearly achieved complete bone healing. Our data suggested that the period of in vitro pre-osteogenic differentiation played a crucial role for the osteogenesis of BMSCs/PEGDA hydrogels. Furthermore, we found that a pre-differentiation for 14 days is preferable for bone regeneration in the rat cranial defects.
Collapse
Affiliation(s)
- Fei Xu
- 47904Department of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Fei Tan
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ziran Zheng
- 47904Department of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiongwen Zhou
- 47904Department of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
Miao Y, Chang YC, Tanna N, Almer N, Chung CH, Zou M, Zheng Z, Li C. Impact of Frontier Development of Alveolar Bone Grafting on Orthodontic Tooth Movement. Front Bioeng Biotechnol 2022; 10:869191. [PMID: 35845390 PMCID: PMC9280714 DOI: 10.3389/fbioe.2022.869191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Sufficient alveolar bone is a safeguard for achieving desired outcomes in orthodontic treatment. Moving a tooth into an alveolar bony defect may result in a periodontal defect or worse–tooth loss. Therefore, when facing a pathologic situation such as periodontal bone loss, alveolar clefts, long-term tooth loss, trauma, and thin phenotype, bone grafting is often necessary to augment bone for orthodontic treatment purposes. Currently, diverse bone grafts are used in clinical practice, but no single grafting material shows absolutely superior results over the others. All available materials demonstrate pros and cons, most notably donor morbidity and adverse effects on orthodontic treatment. Here, we review newly developed graft materials that are still in the pre-clinical stage, as well as new combinations of existing materials, by highlighting their effects on alveolar bone regeneration and orthodontic tooth movement. In addition, novel manufacturing techniques, such as bioprinting, will be discussed. This mini-review article will provide state-of-the-art information to assist clinicians in selecting grafting material(s) that enhance alveolar bone augmentation while avoiding unfavorable side effects during orthodontic treatment.
Collapse
Affiliation(s)
- Yilan Miao
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yu-Cheng Chang
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Nipul Tanna
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Nicolette Almer
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Chun-Hsi Chung
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Min Zou
- Key Laboratory of Shannxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- Clinical Research Center of Shannxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- Department of Orthodontics, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Zhong Zheng
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
- *Correspondence: Zhong Zheng, ; Chenshuang Li,
| | - Chenshuang Li
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Zhong Zheng, ; Chenshuang Li,
| |
Collapse
|
14
|
Fonticoli L, Della Rocca Y, Rajan TS, Murmura G, Trubiani O, Oliva S, Pizzicannella J, Marconi GD, Diomede F. A Narrative Review: Gingival Stem Cells as a Limitless Reservoir for Regenerative Medicine. Int J Mol Sci 2022; 23:ijms23084135. [PMID: 35456951 PMCID: PMC9024914 DOI: 10.3390/ijms23084135] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022] Open
Abstract
The gingival tissue can be collected in an easy way and represent an accessible source to isolate gingival-derived mesenchymal stem cells (GMSCs). GMSCs are a subpopulation of dental-derived mesenchymal stem cells that show the mesenchymal stem cells (MSCs) features, such as differentiation abilities and immunomodulatory properties. Dental-derived stem cells are also expandable in vitro with genomic stability and the possibility to maintain the stemness properties over a prolonged period of passages. Moreover, several preclinical studies have documented that the extracellular vesicles (EVs) released from GMSCs possess similar biological functions and therapeutic effects. The EVs may represent a promising tool in the cell-free regenerative therapy approach. The present review paper summarized the GMSCs, their multi-lineage differentiation capacities, immunomodulatory features, and the potential use in the treatment of several diseases in order to stimulate tissue regeneration. GMSCs should be considered a good stem cell source for potential applications in tissue engineering and regenerative dentistry.
Collapse
Affiliation(s)
- Luigia Fonticoli
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Ylenia Della Rocca
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| | | | - Giovanna Murmura
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Oriana Trubiani
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Stefano Oliva
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| | | | - Guya Diletta Marconi
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Francesca Diomede
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| |
Collapse
|
15
|
Stem Cells and Their Derivatives-Implications for Alveolar Bone Regeneration: A Comprehensive Review. Int J Mol Sci 2021; 22:ijms222111746. [PMID: 34769175 PMCID: PMC8583713 DOI: 10.3390/ijms222111746] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023] Open
Abstract
Oral and craniofacial bone defects caused by congenital disease or trauma are widespread. In the case of severe alveolar bone defect, autologous bone grafting has been considered a “gold standard”; however, the procedure has several disadvantages, including limited supply, resorption, donor site morbidity, deformity, infection, and bone graft rejection. In the last few decades, bone tissue engineering combined with stem cell-based therapy may represent a possible alternative to current bone augmentation techniques. The number of studies investigating different cell-based bone tissue engineering methods to reconstruct alveolar bone damage is rapidly rising. As an interdisciplinary field, bone tissue engineering combines the use of osteogenic cells (stem cells/progenitor cells), bioactive molecules, and biocompatible scaffolds, whereas stem cells play a pivotal role. Therefore, our work highlights the osteogenic potential of various dental tissue-derived stem cells and induced pluripotent stem cells (iPSCs), the progress in differentiation techniques of iPSCs into osteoprogenitor cells, and the efforts that have been made to fabricate the most suitable and biocompatible scaffold material with osteoinductive properties for successful bone graft generation. Moreover, we discuss the application of stem cell-derived exosomes as a compelling new form of “stem-cell free” therapy.
Collapse
|
16
|
Chen MH, Tai WC, Cheng NC, Chang CH, Chang PC. Characterization of the stemness and osteogenic potential of oral and sinus mucosal cells. J Formos Med Assoc 2021; 121:652-659. [PMID: 34233852 DOI: 10.1016/j.jfma.2021.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND/PURPOSE Covering the wounds from guided bone regeneration and sinus floor elevation with oral and sinus mucosa is a fundamental criterion for success. This study aimed to verify the regeneration capability of the mucosal connective tissue stromal cells by characterizing their stemness and osteogenic potentials. METHODS Bone marrow stromal cells (BMSCs), alveolar mucosa cells (AMCs), keratinized gingival cells (KGCs), and sinus mucosal cells (SMCs), were isolated from four Sprague-Dawley rats. The morphology and viability of the cells were investigated under a confocal microscope and by Alamar Blue. Stem cell surface markers were evaluated by flow cytometry. Expressions of pluripotent factors after initial seeding and an early osteogenic gene following 24 h of osteoinduction were evaluated by realtime PCR. Trilineage differentiation capability in long-term inductive cell culture was assessed by Alizarin Red, Alcian Blue, and Oil Red O staining. RESULTS BMSCs and AMCs were larger cells with smaller aspect ratios relative to KGCs and SMCs, and BMSCs revealed the greatest initial viability but the slowest proliferation. More than 94% of BMSCs, AMCs, and KGCs were double-positive for CD73 and CD90. Compared with BMSCs, AMCs expressed significantly higher Oct4 but reduced Cbfa1 after initial seeding, and AMCs and SMCs expressed significantly higher Cbfa1 following 24 h of osteoinduction. In long-term inductive cell culture, osteogenesis was observed in BMSCs, AMCs, and SMCs, chondrogenesis was observed in BMSCs, AMCs, and KGCs, and adipogenesis was evident in only BMSCs. CONCLUSION AMCs contain a high percentage of stem/progenitor cells and show differentiation capability toward osteogenic lineage.
Collapse
Affiliation(s)
- Ming-Hsu Chen
- Department of Otorhinolaryngology, Cathay General Hospital, Taipei, Taiwan
| | - Wei-Chiu Tai
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Nai-Chen Cheng
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Ching-He Chang
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Po-Chun Chang
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan; Division of Periodontics, Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
17
|
Li B, Ouchi T, Cao Y, Zhao Z, Men Y. Dental-Derived Mesenchymal Stem Cells: State of the Art. Front Cell Dev Biol 2021; 9:654559. [PMID: 34239870 PMCID: PMC8258348 DOI: 10.3389/fcell.2021.654559] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) could be identified in mammalian teeth. Currently, dental-derived MSCs (DMSCs) has become a collective term for all the MSCs isolated from dental pulp, periodontal ligament, dental follicle, apical papilla, and even gingiva. These DMSCs possess similar multipotent potential as bone marrow-derived MSCs, including differentiation into cells that have the characteristics of odontoblasts, cementoblasts, osteoblasts, chondrocytes, myocytes, epithelial cells, neural cells, hepatocytes, and adipocytes. Besides, DMSCs also have powerful immunomodulatory functions, which enable them to orchestrate the surrounding immune microenvironment. These properties enable DMSCs to have a promising approach in injury repair, tissue regeneration, and treatment of various diseases. This review outlines the most recent advances in DMSCs' functions and applications and enlightens how these advances are paving the path for DMSC-based therapies.
Collapse
Affiliation(s)
- Bo Li
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Takehito Ouchi
- Department of Dentistry and Oral Surgery, School of Medicine, Keio University, Tokyo, Japan
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Yubin Cao
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Head and Neck Oncology, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Yi Men
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Head and Neck Oncology, West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Šimoliūnas E, Ivanauskienė I, Bagdzevičiūtė L, Rinkūnaitė I, Alksnė M, Baltriukienė D. Surface stiffness depended gingival mesenchymal stem cell sensitivity to oxidative stress. Free Radic Biol Med 2021; 169:62-73. [PMID: 33862162 DOI: 10.1016/j.freeradbiomed.2021.04.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/16/2022]
Abstract
Mesenchymal stem cells (MSCs) are widely used in the fields of cell therapy and tissue engineering, due to their wide spectrum of differentiation potential, immunomodulation function and ongoing oxidative stress (OS) reduction. Nevertheless, OS impact is often overlooked in these research fields. It is not only responsible for the induction and development of many ailments, e.g., diabetes, lung fibrosis, and cancer, moreover, OS causes stem cell death and senescence during cell therapy and tissue engineering practices. As MSCs are used to treat various tissues, they interact with different tissue-specific mechanical environments, thus it is important to understand how the mechanical environment impacts MSC sensitivity to OS. In this work, for the first time, as known to the authors, it was shown that gingival MSCs (GMSCs) sensitivity to OS depends on the stiffness of the surface, on which the cells are grown. Furthermore, the activity and expression of mitogen activated protein kinases ERK, JNK, and p38 were surface stiffness dependent. GMSCs isolated from intermediate/stiff gingiva tissue (~20 kPa) have shown the best proliferative and survival properties, then grown on the stiffest tissues mimicking polyacrylamide hydrogels (40 kPa). Therefore, MSC source might determine their sensitivity to OS in different stiffness environments and should be accounted when developing a treatment strategy.
Collapse
Affiliation(s)
- Egidijus Šimoliūnas
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania.
| | - Indrė Ivanauskienė
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Lina Bagdzevičiūtė
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Ieva Rinkūnaitė
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Milda Alksnė
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Daiva Baltriukienė
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
19
|
Key Markers and Epigenetic Modifications of Dental-Derived Mesenchymal Stromal Cells. Stem Cells Int 2021; 2021:5521715. [PMID: 34046069 PMCID: PMC8128613 DOI: 10.1155/2021/5521715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/08/2021] [Accepted: 04/17/2021] [Indexed: 12/13/2022] Open
Abstract
As a novel research hotspot in tissue regeneration, dental-derived mesenchymal stromal cells (MSCs) are famous for their accessibility, multipotent differentiation ability, and high proliferation. However, cellular heterogeneity is a major obstacle to the clinical application of dental-derived MSCs. Here, we reviewed the heterogeneity of dental-derived MSCs firstly and then discussed the key markers and epigenetic modifications related to the proliferation, differentiation, immunomodulation, and aging of dental-derived MSCs. These messages help to control the composition and function of dental-derived MSCs and thus accelerate the translation of cell therapy into clinical practice.
Collapse
|
20
|
Kim D, Lee AE, Xu Q, Zhang Q, Le AD. Gingiva-Derived Mesenchymal Stem Cells: Potential Application in Tissue Engineering and Regenerative Medicine - A Comprehensive Review. Front Immunol 2021; 12:667221. [PMID: 33936109 PMCID: PMC8085523 DOI: 10.3389/fimmu.2021.667221] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/30/2021] [Indexed: 12/15/2022] Open
Abstract
A unique subpopulation of mesenchymal stem cells (MSCs) has been isolated and characterized from human gingival tissues (GMSCs). Similar to MSCs derived from other sources of tissues, e.g. bone marrow, adipose or umbilical cord, GMSCs also possess multipotent differentiation capacities and potent immunomodulatory effects on both innate and adaptive immune cells through the secretion of various types of bioactive factors with immunosuppressive and anti-inflammatory functions. Uniquely, GMSCs are highly proliferative and have the propensity to differentiate into neural cell lineages due to the neural crest-origin. These properties have endowed GMSCs with potent regenerative and therapeutic potentials in various preclinical models of human disorders, particularly, some inflammatory and autoimmune diseases, skin diseases, oral and maxillofacial disorders, and peripheral nerve injuries. All types of cells release extracellular vesicles (EVs), including exosomes, that play critical roles in cell-cell communication through their cargos containing a variety of bioactive molecules, such as proteins, nucleic acids, and lipids. Like EVs released by other sources of MSCs, GMSC-derived EVs have been shown to possess similar biological functions and therapeutic effects on several preclinical diseases models as GMSCs, thus representing a promising cell-free platform for regenerative therapy. Taken together, due to the easily accessibility and less morbidity of harvesting gingival tissues as well as the potent immunomodulatory and anti-inflammatory functions, GMSCs represent a unique source of MSCs of a neural crest-origin for potential application in tissue engineering and regenerative therapy.
Collapse
Affiliation(s)
- Dane Kim
- Department of Oral & Maxillofacial Surgery & Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Alisa E Lee
- Department of Oral & Maxillofacial Surgery & Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Qilin Xu
- Department of Oral & Maxillofacial Surgery & Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Qunzhou Zhang
- Department of Oral & Maxillofacial Surgery & Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Anh D Le
- Department of Oral & Maxillofacial Surgery & Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Center of Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States.,Department of Oral & Maxillofacial Surgery, Penn Medicine Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
21
|
Huang X, Xie M, Xie Y, Mei F, Lu X, Li X, Chen L. The roles of osteocytes in alveolar bone destruction in periodontitis. J Transl Med 2020; 18:479. [PMID: 33308247 PMCID: PMC7733264 DOI: 10.1186/s12967-020-02664-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023] Open
Abstract
Periodontitis, a bacterium-induced inflammatory disease that is characterized by alveolar bone loss, is highly prevalent worldwide. Elucidating the underlying mechanisms of alveolar bone loss in periodontitis is crucial for understanding its pathogenesis. Classically, bone cells, such as osteoclasts, osteoblasts and bone marrow stromal cells, are thought to dominate the development of bone destruction in periodontitis. Recently, osteocytes, the cells embedded in the mineral matrix, have gained attention. This review demonstrates the key contributing role of osteocytes in periodontitis, especially in alveolar bone loss. Osteocytes not only initiate physiological bone remodeling but also assist in inflammation-related changes in bone remodeling. The latest evidence suggests that osteocytes are involved in regulating bone anabolism and catabolism in the progression of periodontitis. The altered secretion of receptor activator of NF-κB ligand (RANKL), sclerostin and Dickkopf-related protein 1 (DKK1) by osteocytes affects the balance of bone resorption and formation and promotes bone loss. In addition, the accumulation of prematurely senescent and apoptotic osteocytes observed in alveolar bone may exacerbate local destruction. Based on their communication with the bloodstream, it is noteworthy that osteocytes may participate in the interaction between local periodontitis lesions and systemic diseases. Overall, further investigations of osteocytes may provide vital insights that improve our understanding of the pathophysiology of periodontitis.
Collapse
Affiliation(s)
- Xiaofei Huang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Mengru Xie
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yanling Xie
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Feng Mei
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Xiaofeng Lu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Xiaoshuang Li
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| |
Collapse
|