1
|
Zambuto SG, Scott AK, Oyen ML. Beyond 2D: Novel biomaterial approaches for modeling the placenta. Placenta 2024; 157:55-66. [PMID: 38514278 PMCID: PMC11399328 DOI: 10.1016/j.placenta.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/09/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
This review considers fully three-dimensional biomaterial environments of varying complexity as these pertain to research on the placenta. The developments in placental cell sources are first considered, along with the corresponding maternal cells with which the trophoblast interact. We consider biomaterial sources, including hybrid and composite biomaterials. Properties and characterization of biomaterials are discussed in the context of material design for specific placental applications. The development of increasingly complicated three-dimensional structures includes examples of advanced fabrication methods such as microfluidic device fabrication and 3D bioprinting, as utilized in a placenta context. The review finishes with a discussion of the potential for in vitro, three-dimensional placenta research to address health disparities and sexual dimorphism, especially in light of the exciting recent changes in the regulatory environment for in vitro devices.
Collapse
Affiliation(s)
- Samantha G Zambuto
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Women's Health Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Adrienne K Scott
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Women's Health Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Regenerative Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Michelle L Oyen
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Women's Health Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Regenerative Medicine, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
2
|
Zambuto SG, Kolluru SS, Harley BAC, Oyen ML. Gelatin methacryloyl biomaterials and strategies for trophoblast research. Placenta 2024; 157:67-75. [PMID: 39341721 DOI: 10.1016/j.placenta.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/08/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Rising maternal mortality rates in the U.S. are a significant public health issue that must be addressed; however, much of the basic science information required to target pregnancy-related pathologies have not yet been defined. Placental and blastocyst implantation research are challenging to perform in humans because of the early time frame of these processes in pregnancy and limited access to first trimester tissues. As a result, there is a critical need to develop model systems capable of studying these processes in increasing mechanistic detail. With the recent passing of the FDA Modernization Act 2.0 and advances in tissue engineering methods, three-dimensional microphysiological model systems offer an exciting opportunity to model early stages of placentation. Here, we detail the synthesis, characterization, and application of gelatin methacryloyl (GelMA) hydrogel platforms for studying trophoblast behavior in three-dimensional hydrogel systems. Photopolymerization strategies to fabricate GelMA hydrogels render the hydrogels homogeneous in terms of structure and stable under physiological temperatures, allowing for rigorous fabrication of reproducible hydrogel variants. Unlike other natural polymers that have minimal opportunity to tune their properties, GelMA hydrogel properties can be tuned across many axes of variation, including polymer degree of functionalization, gelatin bloom strength, light exposure time and intensity, polymer weight percent, photoinitiator concentration, and physical geometry. In this work, we aim to inspire and instruct the field to utilize GelMA biomaterial strategies for future placental research. With enhanced microphysiological models of pregnancy, we can now generate the basic science information required to address problems in pregnancy.
Collapse
Affiliation(s)
- Samantha G Zambuto
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, 63130, USA; Dept. of Biomedical Engineering, USA; Center for Women's Health Engineering, USA.
| | - Samyuktha S Kolluru
- Center for Women's Health Engineering, USA; The Institute of Materials Science & Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Brendan A C Harley
- Dept. Chemical and Biomolecular Engineering, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Michelle L Oyen
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, 63130, USA; Dept. of Biomedical Engineering, USA; Center for Women's Health Engineering, USA; The Institute of Materials Science & Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| |
Collapse
|
3
|
Zambuto SG, Theriault H, Jain I, Crosby CO, Pintescu I, Chiou N, Oyen ML, Zoldan J, Underhill GH, Harley BAC, Clancy KBH. Endometrial decidualization status modulates endometrial microvascular complexity and trophoblast outgrowth in gelatin methacryloyl hydrogels. NPJ WOMEN'S HEALTH 2024; 2:22. [PMID: 39036057 PMCID: PMC11259096 DOI: 10.1038/s44294-024-00020-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/20/2024] [Indexed: 07/23/2024]
Abstract
The endometrium undergoes rapid cycles of vascular growth, remodeling, and breakdown during the menstrual cycle and pregnancy. Decidualization is an endometrial differentiation process driven by steroidal sex hormones that is critical for blastocyst-uterine interfacing and blastocyst implantation. Certain pregnancy disorders may be linked to decidualization processes. However, much remains unknown regarding the role of decidualization and reciprocal trophoblast-endometrial interactions on endometrial angiogenesis and trophoblast invasion. Here, we report an engineered endometrial microvascular network embedded in gelatin hydrogels that displays morphological and functional patterns of decidualization. Vessel complexity and biomolecule secretion are sensitive to decidualization and affect trophoblast motility, but that signaling between endometrial and trophoblast cells was not bi-directional. Although endometrial microvascular network decidualization status influences trophoblast cells, trophoblast cells did not induce structural changes in the endometrial microvascular networks. These findings add to a growing literature that the endometrium has biological agency at the uterine-trophoblast interface during implantation. Finally, we form a stratified endometrial tri-culture model, combining engineered microvascular networks with epithelial cells. These endometrial microvascular networks provide a well-characterized platform to investigate dynamic changes in angiogenesis in response to pathological and physiological endometrial states.
Collapse
Affiliation(s)
- Samantha G. Zambuto
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Hannah Theriault
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Ishita Jain
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Cody O. Crosby
- Department of Physics, Southwestern University, Georgetown, TX 78626, USA
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Ioana Pintescu
- Department of Molecular and Cellular Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Noah Chiou
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Michelle L. Oyen
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
- Center for Women’s Health Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Janet Zoldan
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Gregory H. Underhill
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Brendan A. C. Harley
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Kathryn B. H. Clancy
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Anthropology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science & Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
4
|
Zambuto SG, Kolluru SS, Ferchichi E, Rudewick HF, Fodera DM, Myers KM, Zustiak SP, Oyen ML. Evaluation of gelatin bloom strength on gelatin methacryloyl hydrogel properties. J Mech Behav Biomed Mater 2024; 154:106509. [PMID: 38518513 DOI: 10.1016/j.jmbbm.2024.106509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/07/2024] [Accepted: 03/16/2024] [Indexed: 03/24/2024]
Abstract
Gelatin methacryloyl (GelMA) hydrogels are widely used for a variety of tissue engineering applications. The properties of gelatin can affect the mechanical properties of gelatin gels; however, the role of gelatin properties such as bloom strength on GelMA hydrogels has not yet been explored. Bloom strength is a food industry standard for describing the quality of gelatin, where higher bloom strength is associated with higher gelatin molecular weight. Here, we evaluate the role of bloom strength on GelMA hydrogel mechanical properties. We determined that both bloom strength of gelatin and weight percent of GelMA influenced both stiffness and viscoelastic ratio; however, only bloom strength affected diffusivity, permeability, and pore size. With this library of GelMA hydrogels of varying properties, we then encapsulated Swan71 trophoblast spheroids in these hydrogel variants to assess how bloom strength affects trophoblast spheroid morphology. Overall, we observed a decreasing trend of spheroid area and Feret diameter as bloom strength increased. In identifying clear relationships between bloom strength, hydrogel mechanical properties, and trophoblast spheroid morphology, we demonstrate that bloom strength should considered when designing tissue engineered constructs.
Collapse
Affiliation(s)
- Samantha G Zambuto
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, 63130, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA; Center for Women's Health Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Samyuktha S Kolluru
- Center for Women's Health Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA; The Institute of Materials Science & Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Eya Ferchichi
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO, 63103, USA
| | - Hannah F Rudewick
- Department of Chemical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Daniella M Fodera
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Kristin M Myers
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Silviya P Zustiak
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO, 63103, USA
| | - Michelle L Oyen
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, 63130, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA; Center for Women's Health Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
5
|
Zambuto SG, Jain I, Theriault HS, Underhill GH, Harley BAC. Cell Chirality of Micropatterned Endometrial Microvascular Endothelial Cells. Adv Healthc Mater 2024; 13:e2303928. [PMID: 38291861 PMCID: PMC11076162 DOI: 10.1002/adhm.202303928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/14/2024] [Indexed: 02/01/2024]
Abstract
Chirality is an intrinsic cellular property that describes cell polarization biases along the left-right axis, apicobasal axis, or front-rear axes. Cell chirality plays a significant role in the arrangement of organs in the body as well as in the orientation of organelles, cytoskeletons, and cells. Vascular networks within the endometrium, the mucosal inner lining of the uterus, commonly display spiral architectures that rapidly form across the menstrual cycle. Herein, the role of endometrial-relevant extracellular matrix stiffness, composition, and soluble signals on endometrial endothelial cell chirality is systematically examined using a high-throughput microarray. Endometrial endothelial cells display marked patterns of chirality as individual cells and as cohorts in response to substrate stiffness and environmental cues. Vascular networks formed from endometrial endothelial cells also display shifts in chirality as a function of exogenous hormones. Changes in cellular-scale chirality correlate with changes in vascular network parameters, suggesting a critical role for cellular chirality in directing endometrial vessel network organization.
Collapse
Affiliation(s)
- Samantha G Zambuto
- Dept. of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ishita Jain
- Dept. of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Hannah S Theriault
- Dept. of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Gregory H Underhill
- Dept. of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Brendan A C Harley
- Dept. Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
6
|
Slaby EM, Plaisier SB, Brady SR, Hiremath SC, Weaver JD. Controlling placental spheroid growth and phenotype using engineered synthetic hydrogel matrices. Biomater Sci 2024; 12:933-948. [PMID: 38204396 PMCID: PMC10922805 DOI: 10.1039/d3bm01393f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
The human placenta is a complex organ comprised of multiple trophoblast subtypes, and inadequate models to study the human placenta in vitro limit the current understanding of human placental behavior and development. Common in vitro placental models rely on two-dimensional culture of cell lines and primary cells, which do not replicate the native tissue microenvironment, or poorly defined three-dimensional hydrogel matrices such as Matrigel™ that provide limited environmental control and suffer from high batch-to-batch variability. Here, we employ a highly defined, synthetic poly(ethylene glycol)-based hydrogel system with tunable degradability and presentation of extracellular matrix-derived adhesive ligands native to the placenta microenvironment to generate placental spheroids. We evaluate the capacity of a hydrogel library to support the viability, function, and phenotypic protein expression of three human trophoblast cell lines modeling varied trophoblast phenotypes and find that degradable synthetic hydrogels support the greatest degree of placental spheroid viability, proliferation, and function relative to standard Matrigel controls. Finally, we show that trophoblast culture conditions modulate cell functional phenotype as measured by proteomics analysis and functional secretion assays. Engineering precise control of placental spheroid development in vitro may provide an important new tool for the study of early placental behavior and development.
Collapse
Affiliation(s)
- Emily M Slaby
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, 85287, USA.
| | - Seema B Plaisier
- School of Life Sciences, Arizona State University, Tempe, Arizona, 85287, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, 85287, USA
| | - Sarah R Brady
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, 85287, USA.
| | - Shivani C Hiremath
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, 85287, USA.
| | - Jessica D Weaver
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, 85287, USA.
| |
Collapse
|
7
|
Zambuto SG, Kolluru SS, Ferchichi E, Rudewick HF, Fodera DM, Myers KM, Zustiak SP, Oyen ML. Evaluation of gelatin bloom strength on gelatin methacryloyl hydrogel properties. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.13.566924. [PMID: 38014304 PMCID: PMC10680736 DOI: 10.1101/2023.11.13.566924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Gelatin methacryloyl (GelMA) hydrogels are widely used for a variety of tissue engineering applications. The properties of gelatin can affect the mechanical properties of gelatin gels; however, the role of gelatin properties such as bloom strength on GelMA hydrogels has not yet been explored. Bloom strength is a food industry standard for describing the quality of gelatin, where higher bloom strength is associated with higher gelatin molecular weight. Here, we evaluate the role of bloom strength on GelMA hydrogel mechanical properties. We determined that both bloom strength of gelatin and weight percent of GelMA influenced both stiffness and viscoelastic ratio; however, only bloom strength affected diffusivity, permeability, and pore size. With this library of GelMA hydrogels of varying properties, we then encapsulated Swan71 trophoblast spheroids in these hydrogel variants to assess how bloom strength affects trophoblast spheroid morphology. Overall, we observed a decreasing trend of spheroid area and Feret diameter as bloom strength increased. In identifying clear relationships between bloom strength, hydrogel mechanical properties, and trophoblast spheroid morphology, we demonstrate that bloom strength should considered when designing tissue engineered constructs.
Collapse
|
8
|
Zambuto SG, Jain I, Theriault HS, Underhill GH, Harley BAC. Cell Chirality of Micropatterned Endometrial Microvascular Endothelial Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.20.563368. [PMID: 37961315 PMCID: PMC10634711 DOI: 10.1101/2023.10.20.563368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Chirality is an intrinsic cellular property that describes cell polarization biases along the left-right axis, apicobasal axis, or front-rear axes. Cell chirality plays a significant role in the arrangement of organs in the body as well as the orientation of organelles, cytoskeletons, and cells. Vascular networks within the endometrium, the mucosal inner lining of the uterus, commonly display spiral architectures that rapidly form across the menstrual cycle. Herein, we systematically examine the role of endometrial-relevant extracellular matrix stiffness, composition, and soluble signals on endometrial endothelial cell chirality using a high-throughput microarray. Endometrial endothelial cells display marked patterns of chirality as individual cells and as cohorts in response to substrate stiffness and environmental cues. Vascular networks formed from endometrial endothelial cells also display shifts in chirality as a function of exogenous hormones. Changes in cellular-scale chirality correlate with changes in vascular network parameters, suggesting a critical role for cellular chirality in directing endometrial vessel network organization.
Collapse
|
9
|
Xu KL, Mauck RL, Burdick JA. Modeling development using hydrogels. Development 2023; 150:dev201527. [PMID: 37387575 PMCID: PMC10323241 DOI: 10.1242/dev.201527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
The development of multicellular complex organisms relies on coordinated signaling from the microenvironment, including both biochemical and mechanical interactions. To better understand developmental biology, increasingly sophisticated in vitro systems are needed to mimic these complex extracellular features. In this Primer, we explore how engineered hydrogels can serve as in vitro culture platforms to present such signals in a controlled manner and include examples of how they have been used to advance our understanding of developmental biology.
Collapse
Affiliation(s)
- Karen L. Xu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert L. Mauck
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
| | - Jason A. Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
| |
Collapse
|
10
|
Oyen ML. Biomaterials science and engineering to address unmet needs in women's health. MRS BULLETIN 2022; 47:864-871. [PMID: 36196217 PMCID: PMC9521852 DOI: 10.1557/s43577-022-00389-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 07/21/2022] [Indexed: 06/16/2023]
Abstract
Medical conditions that primarily or disproportionately affect women have historically been poorly studied. In contrast to the musculoskeletal and cardiovascular systems, there is no lengthy record of biomaterials research addressing women's health needs. In this article, the historical reasons for this discrepancy are examined. The anatomy of both the nonpregnant and pregnant reproductive tissues is reviewed, including the ovaries, uterus, and (fetal) placenta. Examples of biomaterials-related women's health research are described, including tissue engineering, organoids, and microphysiological systems. The future of the field is considered with dual focuses. First, there is a significant need for novel approaches to advance women's health through materials and biomaterials, particularly in complex biomimetic hydrogels. Second, there is an exciting opportunity to enlarge the community of biomaterials scientists and engineers working in women's health to encourage more contributions to its rapidly emerging product development pipeline. Graphical abstract
Collapse
Affiliation(s)
- Michelle L. Oyen
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO USA
| |
Collapse
|
11
|
Zambuto SG, Jain I, Clancy KBH, Underhill GH, Harley BAC. Role of Extracellular Matrix Biomolecules on Endometrial Epithelial Cell Attachment and Cytokeratin 18 Expression on Gelatin Hydrogels. ACS Biomater Sci Eng 2022; 8:3819-3830. [PMID: 35994527 PMCID: PMC9581737 DOI: 10.1021/acsbiomaterials.2c00247] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The endometrium undergoes profound changes in tissue architecture and composition, both during the menstrual cycle as well as in the context of pregnancy. Dynamic remodeling processes of the endometrial extracellular matrix (ECM) are a major element of endometrial homeostasis, including changes across the menstrual cycle. A critical element of this tissue microenvironment is the endometrial basement membrane, a specialized layer of proteins that separates the endometrial epithelium from the underlying endometrial ECM. Bioengineering models of the endometrial microenvironment that present an appropriate endometrial ECM and basement membrane may provide an improved environment to study endometrial epithelial cell (EEC) function. Here, we exploit a tiered approach using two-dimensional high-throughput microarrays and three-dimensional gelatin hydrogels to define patterns of EEC attachment and cytokeratin 18 (CK18) expression in response to combinations of endometrial basement membrane proteins. We identify combinations (collagen IV + tenascin C; collagen I + collagen III; hyaluronic acid + tenascin C; collagen V; collagen V + hyaluronic acid; collagen III; and collagen I) that facilitate increased EEC attachment, increased CK18 intensity, or both. We also identify significant EEC mediated remodeling of the methacrylamide-functionalized gelatin matrix environment via analysis of nascent protein deposition. Together, we report efforts to tailor the localization of basement membrane-associated proteins and proteoglycans in order to investigate tissue-engineered models of the endometrial microenvironment.
Collapse
Affiliation(s)
- Samantha G Zambuto
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ishita Jain
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Kathryn B H Clancy
- Department of Anthropology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science & Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Gregory H Underhill
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Brendan A C Harley
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
12
|
Chen JWE, Leary S, Barnhouse V, Sarkaria JN, Harley BA. Matrix Hyaluronic Acid and Hypoxia Influence a CD133 + Subset of Patient-Derived Glioblastoma Cells. Tissue Eng Part A 2022; 28:330-340. [PMID: 34435883 PMCID: PMC9057908 DOI: 10.1089/ten.tea.2021.0117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/24/2021] [Indexed: 11/12/2022] Open
Abstract
Glioblastoma (GBM) displays diffusive invasion throughout the brain microenvironment, which is partially responsible for its short median survival rate (<15 months). Stem-like subpopulations (GBM stem-like cells, GSCs) are believed to play a central role in therapeutic resistance and poor patient prognosis. Given the extensive tissue remodeling and processes such as vessel co-option and regression that occur in the tumor microenvironment, it is essential to understand the role of metabolic constraint such as hypoxia on GBM cell populations. This work describes the use of a multidimensional gelatin hydrogel to culture patient-derived GBM cells, to evaluate the influence of hypoxia and the inclusion brain-mimetic hyaluronic acid on the relative activity of GSCs versus overall GBM cells. Notably, CD133+ GBM cell fraction is crucial for robust formation of tumor spheroids in multidimensional cultures. In addition, while the relative size of the CD133+ GBM subpopulation increased in response to both hypoxia and matrix-bound hyaluronan, we did not observe cell subtype-specific changes in invasion signaling pathway activation. Taken together, this study highlights the potential of biomimetic culture systems for resolving changes in the population dynamics and behavior of subsets of GBM specimens for the future development of precision medicine applications. Impact Statement This study describes a gelatin hydrogel platform to investigate the role of extracellular hyaluronic acid and hypoxia on the behavior of a CD133+ subset of cells within patient-derived glioblastoma (GBM) specimens. We report that the relative expansion of the CD133+ GBM stem cell-like population is strongly responsive to extracellular cues, highlighting the significance of biomimetic hydrogel models of the tumor microenvironment to investigate invasion and therapeutic response.
Collapse
Affiliation(s)
- Jee-Wei Emily Chen
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Sarah Leary
- Department of Chemistry, and University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Victoria Barnhouse
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jann N. Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Brendan A.C. Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
13
|
Li L, Feng T, Zhou W, Liu Y, Li H. miRNAs in decidual NK cells: regulators worthy of attention during pregnancy. Reprod Biol Endocrinol 2021; 19:150. [PMID: 34600537 PMCID: PMC8486626 DOI: 10.1186/s12958-021-00812-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/27/2021] [Indexed: 12/23/2022] Open
Abstract
The critical immune effectors, including T, B, and natural killer (NK) cells, dendritic cells, and macrophages participate in regulating immune responses during pregnancy. Among these immune cells, decidual NK (dNK) cells are involved in key placental development processes at the maternal-fetal interface, such as uterine spiral artery remodeling, trophoblast invasion, and decidualization. Mechanistically, dNK cells significantly influence pregnancy outcome by secreting cytokines, chemokines, and angiogenic mediators and by their interactions with trophoblasts and other decidual cells. MicroRNAs (miRNAs) are small non-coding RNA molecules that participate in the initiation and progression of human diseases. Although the functions of circulating miRNAs in pathological mechanism has been extensively studied, the regulatory roles of miRNAs in NK cells, especially in dNK cells, have been rarely reported. In this review, we analyze the effects of miRNA regulations of dNK cell functions on the immune system during gestation. We discuss aberrant expressions of certain miRNAs in dNK cells that may lead to pathological consequences, such as recurrent pregnancy loss (RPL). Interestingly, miRNA expression patterns are also different between dNK cells and peripheral NK (pNK) cells, and pNK cells in the first- and third-trimester of gestation. The dysregulation of miRNA plays a pivotal regulatory role in driving immune functions of dNK and pNK cells. Further understanding of the molecular mechanisms of miRNAs in dNK cells may provide new insights into the development of therapeutics to prevent pregnancy failure.
Collapse
Affiliation(s)
- Liman Li
- Center of Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ting Feng
- Center of Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Weijie Zhou
- Center of Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yuan Liu
- Center of Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hong Li
- Center of Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|