1
|
Assefa F. The role of sensory and sympathetic nerves in craniofacial bone regeneration. Neuropeptides 2023; 99:102328. [PMID: 36827755 DOI: 10.1016/j.npep.2023.102328] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/21/2023]
Abstract
Multiple factors regulate the regeneration of craniofacial bone defects. The nervous system is recognized as one of the critical regulators of bone mass, thereby suggesting a role for neuronal pathways in bone regeneration. However, in the context of craniofacial bone regeneration, little is known about the interplay between the nervous system and craniofacial bone. Sensory and sympathetic nerves interact with the bone through their neuropeptides, neurotransmitters, proteins, peptides, and amino acid derivates. The neuron-derived factors, such as semaphorin 3A (SEMA3A), substance P (SP), calcitonin gene-related peptide (CGRP), neuropeptide Y (NPY), and vasoactive intestinal peptide (VIP), possess a remarkable role in craniofacial regeneration. This review summarizes the roles of these factors and recently published factors such as secretoneurin (SN) and spexin (SPX) in the osteoblast and osteoclast differentiation, bone metabolism, growth, remodeling and discusses the novel application of nerve-based craniofacial bone regeneration. Moreover, the review will facilitate understanding the mechanism of action and provide potential treatment direction for the craniofacial bone defect.
Collapse
Affiliation(s)
- Freshet Assefa
- Department of Biochemistry, Collage of Medicine and Health Sciences, Hawassa University, P.O.Box 1560, Hawassa, Ethiopia.
| |
Collapse
|
2
|
Wang Y, Li Z, Mo F, Chen-Mayfield TJ, Saini A, LaMere AM, Hu Q. Chemically engineering cells for precision medicine. Chem Soc Rev 2023; 52:1068-1102. [PMID: 36633324 DOI: 10.1039/d2cs00142j] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cell-based therapy holds great potential to address unmet medical needs and revolutionize the healthcare industry, as demonstrated by several therapeutics such as CAR-T cell therapy and stem cell transplantation that have achieved great success clinically. Nevertheless, natural cells are often restricted by their unsatisfactory in vivo trafficking and lack of therapeutic payloads. Chemical engineering offers a cost-effective, easy-to-implement engineering tool that allows for strengthening the inherent favorable features of cells and confers them new functionalities. Moreover, in accordance with the trend of precision medicine, leveraging chemical engineering tools to tailor cells to accommodate patients individual needs has become important for the development of cell-based treatment modalities. This review presents a comprehensive summary of the currently available chemically engineered tools, introduces their application in advanced diagnosis and precision therapy, and discusses the current challenges and future opportunities.
Collapse
Affiliation(s)
- Yixin Wang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA. .,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zhaoting Li
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA. .,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Fanyi Mo
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Ting-Jing Chen-Mayfield
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Aryan Saini
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Afton Martin LaMere
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA. .,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
3
|
Dalir Abdolahinia E, Safari Z, Sadat Kachouei SS, Zabeti Jahromi R, Atashkar N, Karbalaeihasanesfahani A, Alipour M, Hashemzadeh N, Sharifi S, Maleki Dizaj S. Cell homing strategy as a promising approach to the vitality of pulp-dentin complexes in endodontic therapy: focus on potential biomaterials. Expert Opin Biol Ther 2022; 22:1405-1416. [DOI: 10.1080/14712598.2022.2142466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Elaheh Dalir Abdolahinia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Safari
- Faculty of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Nastaran Atashkar
- Department of Orthodontics, Faculty of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Mahdieh Alipour
- Center for Craniofacial Regeneration, Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, United States
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nastaran Hashemzadeh
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Dental Biomaterials, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Yu P, Yu F, Xiang J, Zhou K, Zhou L, Zhang Z, Rong X, Ding Z, Wu J, Li W, Zhou Z, Ye L, Yang W. Mechanistically Scoping Cell-Free and Cell-Dependent Artificial Scaffolds in Rebuilding Skeletal and Dental Hard Tissues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 34:e2107922. [PMID: 34837252 DOI: 10.1002/adma.202107922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/11/2021] [Indexed: 02/06/2023]
Abstract
Rebuilding mineralized tissues in skeletal and dental systems remains costly and challenging. Despite numerous demands and heavy clinical burden over the world, sources of autografts, allografts, and xenografts are far limited, along with massive risks including viral infections, ethic crisis, and so on. Per such dilemma, artificial scaffolds have emerged to provide efficient alternatives. To date, cell-free biomimetic mineralization (BM) and cell-dependent scaffolds have both demonstrated promising capabilities of regenerating mineralized tissues. However, BM and cell-dependent scaffolds have distinctive mechanisms for mineral genesis, which makes them methodically, synthetically, and functionally disparate. Herein, these two strategies in regenerative dentistry and orthopedics are systematically summarized at the level of mechanisms. For BM, methodological and theoretical advances are focused upon; and meanwhile, for cell-dependent scaffolds, it is demonstrated how scaffolds orchestrate osteogenic cell fate. The summary of the experimental advances and clinical progress will endow researchers with mechanistic understandings of artificial scaffolds in rebuilding hard tissues, by which better clinical choices and research directions may be approached.
Collapse
Affiliation(s)
- Peng Yu
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 China
- College of Polymer Science and Engineering Sichuan University Chengdu 610017 China
| | - Fanyuan Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 China
- Department of Endodontics West China Stomatology Hospital Sichuan University Chengdu 610041 China
| | - Jie Xiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 China
| | - Kai Zhou
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 China
- Department of Orthopedics West China Hospital Sichuan University Chengdu 610041 China
| | - Ling Zhou
- College of Polymer Science and Engineering Sichuan University Chengdu 610017 China
| | - Zhengmin Zhang
- College of Polymer Science and Engineering Sichuan University Chengdu 610017 China
| | - Xiao Rong
- Department of Orthopedics West China Hospital Sichuan University Chengdu 610041 China
| | - Zichuan Ding
- Department of Orthopedics West China Hospital Sichuan University Chengdu 610041 China
| | - Jiayi Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 China
- Department of Endodontics West China Stomatology Hospital Sichuan University Chengdu 610041 China
| | - Wudi Li
- College of Polymer Science and Engineering Sichuan University Chengdu 610017 China
| | - Zongke Zhou
- Department of Orthopedics West China Hospital Sichuan University Chengdu 610041 China
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 China
- Department of Endodontics West China Stomatology Hospital Sichuan University Chengdu 610041 China
| | - Wei Yang
- College of Polymer Science and Engineering Sichuan University Chengdu 610017 China
| |
Collapse
|
5
|
Alsahafi RA, Mitwalli HA, Balhaddad AA, Weir MD, Xu HHK, Melo MAS. Regenerating Craniofacial Dental Defects With Calcium Phosphate Cement Scaffolds: Current Status and Innovative Scope Review. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.743065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The management and treatment of dental and craniofacial injuries have continued to evolve throughout the last several decades. Limitations with autograft, allograft, and synthetics created the need for more advanced approaches in tissue engineering. Calcium phosphate cements (CPC) are frequently used to repair bone defects. Since their discovery in the 1980s, extensive research has been conducted to improve their properties, and emerging evidence supports their increased application in bone tissue engineering. This review focuses on the up-to-date performance of calcium phosphate cement (CPC) scaffolds and upcoming promising dental and craniofacial bone regeneration strategies. First, we summarized the barriers encountered in CPC scaffold development. Second, we compiled the most up to date in vitro and in vivo literature. Then, we conducted a systematic search of scientific articles in MEDLINE and EMBASE to screen the related studies. Lastly, we revealed the current developments to effectively design CPC scaffolds and track the enhanced viability and therapeutic efficacy to overcome the current limitations and upcoming perspectives. Finally, we presented a timely and opportune review article focusing on the significant potential of CPC scaffolds for dental and craniofacial bone regeneration, which will be discussed thoroughly. CPC offers multiple capabilities that may be considered toward the oral defects, expecting a future outlook in nanotechnology design and performance.
Collapse
|
6
|
Zhang W, Yelick PC. Tooth Repair and Regeneration: Potential of Dental Stem Cells. Trends Mol Med 2021; 27:501-511. [PMID: 33781688 PMCID: PMC9907435 DOI: 10.1016/j.molmed.2021.02.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023]
Abstract
Tooth defects are an extremely common health condition that affects millions of individuals. Currently used dental repair treatments include fillings for caries, endodontic treatment for pulp necrosis, and dental implants to replace missing teeth, all of which rely on the use of synthetic materials. By contrast, the fields of tissue engineering and regenerative medicine and dentistry (TERMD) use biologically based therapeutic strategies for vital tissue regeneration, and thus have the potential to regenerate living tissues. Methods to create bioengineered replacement teeth benefit from a detailed understanding of the molecular signaling networks regulating natural tooth development. We discuss how key signaling pathways regulating natural tooth development are being exploited for applications in TERMD approaches for vital tooth regeneration.
Collapse
Affiliation(s)
- Weibo Zhang
- Department of Orthodontics, Division of Craniofacial and Molecular Genetics, Tufts University School of Dental Medicine, Boston, MA, USA
| | - Pamela C Yelick
- Department of Orthodontics, Division of Craniofacial and Molecular Genetics, Tufts University School of Dental Medicine, Boston, MA, USA.
| |
Collapse
|
7
|
Rodriguez BL, Vega-Soto EE, Kennedy CS, Nguyen MH, Cederna PS, Larkin LM. A tissue engineering approach for repairing craniofacial volumetric muscle loss in a sheep following a 2, 4, and 6-month recovery. PLoS One 2020; 15:e0239152. [PMID: 32956427 PMCID: PMC7505427 DOI: 10.1371/journal.pone.0239152] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/31/2020] [Indexed: 01/02/2023] Open
Abstract
Volumetric muscle loss (VML) is the loss of skeletal muscle that results in significant and persistent impairment of function. The unique characteristics of craniofacial muscle compared trunk and limb skeletal muscle, including differences in gene expression, satellite cell phenotype, and regenerative capacity, suggest that VML injuries may affect craniofacial muscle more severely. However, despite these notable differences, there are currently no animal models of craniofacial VML. In a previous sheep hindlimb VML study, we showed that our lab’s tissue engineered skeletal muscle units (SMUs) were able to restore muscle force production to a level that was statistically indistinguishable from the uninjured contralateral muscle. Thus, the goals of this study were to: 1) develop a model of craniofacial VML in a large animal model and 2) to evaluate the efficacy of our SMUs in repairing a 30% VML in the ovine zygomaticus major muscle. Overall, there was no significant difference in functional recovery between the SMU-treated group and the unrepaired control. Despite the use of the same injury and repair model used in our previous study, results showed differences in pathophysiology between craniofacial and hindlimb VML. Specifically, the craniofacial model was affected by concomitant denervation and ischemia injuries that were not exhibited in the hindlimb model. While clinically realistic, the additional ischemia and denervation likely created an injury that was too severe for our SMUs to repair. This study highlights the importance of balancing the use of a clinically realistic model while also maintaining control over variables related to the severity of the injury. These variables include the volume of muscle removed, the location of the VML injury, and the geometry of the injury, as these affect both the muscle’s ability to self-regenerate as well as the probability of success of the treatment.
Collapse
Affiliation(s)
- Brittany L. Rodriguez
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Emmanuel E. Vega-Soto
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Christopher S. Kennedy
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Matthew H. Nguyen
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Paul S. Cederna
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Plastic Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Lisa M. Larkin
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
8
|
Haugen HJ, Basu P, Sukul M, Mano JF, Reseland JE. Injectable Biomaterials for Dental Tissue Regeneration. Int J Mol Sci 2020; 21:E3442. [PMID: 32414077 PMCID: PMC7279163 DOI: 10.3390/ijms21103442] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022] Open
Abstract
Injectable biomaterials scaffolds play a pivotal role for dental tissue regeneration, as such materials are highly applicable in the dental field, particularly when compared to pre-formed scaffolds. The defects in the maxilla-oral area are normally small, confined and sometimes hard to access. This narrative review describes different types of biomaterials for dental tissue regeneration, and also discusses the potential use of nanofibers for dental tissues. Various studies suggest that tissue engineering approaches involving the use of injectable biomaterials have the potential of restoring not only dental tissue function but also their biological purposes.
Collapse
Affiliation(s)
- Håvard Jostein Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Odontology, University of Oslo, 0317 Oslo, Norway; (P.B.); (M.S.); (J.E.R.)
| | - Poulami Basu
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Odontology, University of Oslo, 0317 Oslo, Norway; (P.B.); (M.S.); (J.E.R.)
| | - Mousumi Sukul
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Odontology, University of Oslo, 0317 Oslo, Norway; (P.B.); (M.S.); (J.E.R.)
| | - João F Mano
- CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Janne Elin Reseland
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Odontology, University of Oslo, 0317 Oslo, Norway; (P.B.); (M.S.); (J.E.R.)
| |
Collapse
|
9
|
Rodriguez BL, Nguyen MH, Armstrong RE, Vega-Soto EE, Polkowski PM, Larkin LM. A Comparison of Ovine Facial and Limb Muscle as a Primary Cell Source for Engineered Skeletal Muscle. Tissue Eng Part A 2019; 26:167-177. [PMID: 31469044 DOI: 10.1089/ten.tea.2019.0087] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Volumetric muscle loss (VML) contributes to the number of soft tissue injuries that necessitate reconstructive surgery, but treatment options are often limited by tissue availability and donor site morbidity. To combat these issues, our laboratory has developed scaffold-free tissue-engineered skeletal muscle units (SMUs) as a novel treatment for VML injuries. Recently, we have begun experiments addressing VML in facial muscle, and the optimal starting cell population for engineered skeletal muscle tissue for this application may not be cells derived from hindlimb muscles due to reported heterogeneity of cell populations. Thus, the purpose of this study was to compare SMUs fabricated from both craniofacial and hindlimb sources to determine which cell source is best suited for the engineering of skeletal muscle. Herein, we assessed the development, structure, and function of SMUs derived from four muscle sources, including two hindlimb muscles (i.e., soleus and semimembranosus [SM]) and two craniofacial muscles (i.e., zygomaticus major and masseter). Overall, the zygomaticus major exhibited the least efficient digestion, and SMUs fabricated from this muscle exhibited the least aligned myosin heavy chain staining and consequently, the lowest average force production. Conversely, the SM muscle exhibited the most efficient digestion and the highest number of myotubes/mm2; however, the SM, masseter, and soleus groups were roughly equivalent in terms of force production and histological structure. Impact Statement An empirical comparison of the development, structure, and function of engineered skeletal muscle tissue fabricated from different muscles, including both craniofacial and hindlimb sources, will not only provide insight into innate regenerative mechanisms of skeletal muscle but also will give our team and other researchers the information necessary to determine which cell sources are best suited for the skeletal muscle tissue engineering.
Collapse
Affiliation(s)
| | - Matthew H Nguyen
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Rachel E Armstrong
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Emmanuel E Vega-Soto
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Phillip M Polkowski
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Lisa M Larkin
- Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
10
|
Yao X, Ning LJ, He SK, Cui J, Hu RN, Zhang Y, Zhang YJ, Luo JC, Ding W, Qin TW. Stem Cell Extracellular Matrix-Modified Decellularized Tendon Slices Facilitate the Migration of Bone Marrow Mesenchymal Stem Cells. ACS Biomater Sci Eng 2019; 5:4485-4495. [DOI: 10.1021/acsbiomaterials.9b00064] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
He XT, Wang J, Li X, Yin Y, Sun HH, Chen FM. The Critical Role of Cell Homing in Cytotherapeutics and Regenerative Medicine. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xiao-Tao He
- State Key Laboratory of Military Stomatology; School of Stomatology; Fourth Military Medical University; 710032 Xi'an P. R. China
- National Clinical Research Center for Oral Diseases; Department of Periodontology; School of Stomatology; Fourth Military Medical University; 710032 Xi'an P. R. China
- Shaanxi Engineering Research Center for Dental Materials, and Advanced Manufacture; Biomaterials Unit; School of Stomatology; Fourth Military Medical University; 710032 Xi'an P. R. China
| | - Jia Wang
- State Key Laboratory of Military Stomatology; School of Stomatology; Fourth Military Medical University; 710032 Xi'an P. R. China
- Shaanxi Engineering Research Center for Dental Materials, and Advanced Manufacture; Biomaterials Unit; School of Stomatology; Fourth Military Medical University; 710032 Xi'an P. R. China
| | - Xuan Li
- State Key Laboratory of Military Stomatology; School of Stomatology; Fourth Military Medical University; 710032 Xi'an P. R. China
- National Clinical Research Center for Oral Diseases; Department of Periodontology; School of Stomatology; Fourth Military Medical University; 710032 Xi'an P. R. China
- Shaanxi Engineering Research Center for Dental Materials, and Advanced Manufacture; Biomaterials Unit; School of Stomatology; Fourth Military Medical University; 710032 Xi'an P. R. China
| | - Yuan Yin
- State Key Laboratory of Military Stomatology; School of Stomatology; Fourth Military Medical University; 710032 Xi'an P. R. China
- Shaanxi Engineering Research Center for Dental Materials, and Advanced Manufacture; Biomaterials Unit; School of Stomatology; Fourth Military Medical University; 710032 Xi'an P. R. China
| | - Hai-Hua Sun
- National Clinical Research Center for Oral Diseases; Department of Periodontology; School of Stomatology; Fourth Military Medical University; 710032 Xi'an P. R. China
| | - Fa-Ming Chen
- State Key Laboratory of Military Stomatology; School of Stomatology; Fourth Military Medical University; 710032 Xi'an P. R. China
- National Clinical Research Center for Oral Diseases; Department of Periodontology; School of Stomatology; Fourth Military Medical University; 710032 Xi'an P. R. China
- Shaanxi Engineering Research Center for Dental Materials, and Advanced Manufacture; Biomaterials Unit; School of Stomatology; Fourth Military Medical University; 710032 Xi'an P. R. China
| |
Collapse
|
12
|
Zhang Y, An S, Hao J, Tian F, Fang X, Wang J. Systemic Injection of Substance P Promotes Murine Calvarial Repair Through Mobilizing Endogenous Mesenchymal Stem Cells. Sci Rep 2018; 8:12996. [PMID: 30158583 PMCID: PMC6115436 DOI: 10.1038/s41598-018-31414-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/20/2018] [Indexed: 02/05/2023] Open
Abstract
Craniofacial defect is a critical problem in dental clinic, which has a tremendous impact on patients’ quality of life. Mesenchymal stem cell-based therapy has emerged as a promising approach for tissue defect repair. However, reduced survival after mesenchymal stem cells (MSCs) transplantation remains as a major problem in this area, which hampers the outcome of regeneration. Recently, the mechanism to mobilize endogenous MSCs for tissue regeneration has received increasing attentions, as it does not require exogenous cell transplantation. The primary goal of this study was to confirm the role of intravenous substance P in mobilizing endogenous CD45−CD11b−CD29+ MSCs in critical-sized bone defect animals and to investigate the effects of substance P on calvarial bone repair. Flow cytometry analyses revealed that intravenous substance P promoted the mobilization of endogenous CD45−CD11b−CD29+ MSCs after bone defect. In addition, Micro-CT showed that intravenous substance P improved the outcomes of calvarial bone repair. Furthermore, we discovered that systemic injection of substance P attenuated inflammation and enhanced the survival of the local-transplanted GFP+ MSCs. Our findings suggested that substance P together with its mobilized CD45−CD11b−CD29+ MSCs helped improve calvarial defect repair through regulating inflammatory conditions and promoting the survival of local-transplanted cells.
Collapse
Affiliation(s)
- Yueling Zhang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China School of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Shu An
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China School of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jin Hao
- Harvard School of Dental Medicine, Harvard University, Boston, MA, 02115, USA
| | - Feng Tian
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Xinyi Fang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China School of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China School of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
13
|
Zhang B, Li H, He L, Han Z, Zhou T, Zhi W, Lu X, Lu X, Weng J. Surface-decorated hydroxyapatite scaffold with on-demand delivery of dexamethasone and stromal cell derived factor-1 for enhanced osteogenesis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 89:355-370. [DOI: 10.1016/j.msec.2018.04.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 03/17/2018] [Accepted: 04/09/2018] [Indexed: 12/17/2022]
|
14
|
Mechanically Robust 3D Graphene–Hydroxyapatite Hybrid Bioscaffolds with Enhanced Osteoconductive and Biocompatible Performance. CRYSTALS 2018. [DOI: 10.3390/cryst8020105] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Soft Tissue Repair with Easy-Accessible Autologous Newborn Placenta or Umbilical Cord Blood in Severe Malformations: A Primary Evaluation. Stem Cells Int 2018; 2017:1626741. [PMID: 29403534 PMCID: PMC5748284 DOI: 10.1155/2017/1626741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/12/2017] [Accepted: 10/22/2017] [Indexed: 11/25/2022] Open
Abstract
Disrupted organogenesis leads to permanent malformations that may require surgical correction. Autologous tissue grafts may be needed in severe lack of orthotopic tissue but include donor site morbidity. The placenta is commonly discarded after birth and has a therapeutic potential. The aim of this study was to determine if the amnion from placenta or plasma rich of growth factors (PRGF) with mononuclear cells (MNC) from umbilical cord blood (UCB), collected noninvasively, could be used as bio-constructs for autologous transplantation as an easy-accessible no cell culture-required method. Human amnion and PRGF gel were isolated and kept in culture for up to 21 days with or without small intestine submucosa (SIS). The cells in the constructs showed a robust phenotype without induced increased proliferation (Ki67) or apoptosis (caspase 3), but the constructs showed decreased integrity of the amnion-epithelial layer at the end of culture. Amnion-residing cells in the SIS constructs expressed CD73 or pan-cytokeratin, and cells in the PRGF-SIS constructs expressed CD45 and CD34. This study shows that amnion and UCB are potential sources for production of autologous grafts in the correction of congenital soft tissue defects. The constructs can be made promptly after birth with minimal handling or cell expansion needed.
Collapse
|
16
|
Latifi N, Asgari M, Vali H, Mongeau L. A tissue-mimetic nano-fibrillar hybrid injectable hydrogel for potential soft tissue engineering applications. Sci Rep 2018; 8:1047. [PMID: 29348423 PMCID: PMC5773686 DOI: 10.1038/s41598-017-18523-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 12/13/2017] [Indexed: 01/19/2023] Open
Abstract
While collagen type I (Col-I) is commonly used as a structural component of biomaterials, collagen type III (Col-III), another fibril forming collagen ubiquitous in many soft tissues, has not previously been used. In the present study, the novel concept of an injectable hydrogel with semi-interpenetrating polymeric networks of heterotypic collagen fibrils, with tissue-specific Col-III to Col-I ratios, in a glycol-chitosan matrix was investigated. Col-III was introduced as a component of the novel hydrogel, inspired by its co-presence with Col-I in many soft tissues, its influence on the Col-I fibrillogenesis in terms of diameter and mechanics, and its established role in regulating scar formation. The hydrogel has a nano-fibrillar porous structure, and is mechanically stable under continuous dynamic stimulation. It was found to provide a longer half-life of about 35 days than similar hyaluronic acid-based hydrogels, and to support cell implantation in terms of viability, metabolic activity, adhesion and migration. The specific case of pure Col-III fibrils in a glycol-chitosan matrix was investigated. The proposed hydrogels meet many essential requirements for soft tissue engineering applications, particularly for mechanically challenged tissues such as vocal folds and heart valves.
Collapse
Affiliation(s)
- Neda Latifi
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke street west, Montreal, QC H3A 0C3, Canada.
| | - Meisam Asgari
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke street west, Montreal, QC H3A 0C3, Canada
| | - Hojatollah Vali
- Department of Anatomy & Cell Biology, McGill University, 3640 University street, Montreal, QC H3A 2B2, Canada
| | - Luc Mongeau
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke street west, Montreal, QC H3A 0C3, Canada
| |
Collapse
|
17
|
|
18
|
Li X, He X, Yin Y, Wu R, Tian B, Chen F. Administration of signalling molecules dictates stem cell homing for in situ regeneration. J Cell Mol Med 2017; 21:3162-3177. [PMID: 28767189 PMCID: PMC5706509 DOI: 10.1111/jcmm.13286] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 05/29/2017] [Indexed: 12/13/2022] Open
Abstract
Ex vivo-expanded stem cells have long been a cornerstone of biotherapeutics and have attracted increasing attention for treating intractable diseases and improving tissue regeneration. However, using exogenous cellular materials to develop restorative treatments for large numbers of patients has become a major concern for both economic and safety reasons. Advances in cell biological research over the past two decades have expanded the potential for using endogenous stem cells during wound healing processes, and in particular, recent insight into stem cell movement and homing has prompted regenerative research and therapy based on recruiting endogenous cells. Inspired by the natural healing process, artificial administration of specific chemokines as signals systemically or at the injury site, typically using biomaterials as vehicles, is a state-of-the-art strategy that potentiates stem cell homing and recreates an anti-inflammatory and immunomodulatory microenvironment to enhance in situ tissue regeneration. However, pharmacologically coaxing endogenous stem cells to act as therapeutics in the field of biomedicine remains in the early stages; its efficacy is limited by the lack of innovative methodologies for chemokine presentation and release. This review describes how to direct the homing of endogenous stem cells via the administration of specific signals, with a particular emphasis on targeted signalling molecules that regulate this homing process, to enhance in situ tissue regeneration. We also provide an outlook on and critical considerations for future investigations to enhance stem cell recruitment and harness the reparative potential of these recruited cells as a clinically relevant cell therapy.
Collapse
Affiliation(s)
- Xuan Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral DiseasesDepartment of PeriodontologySchool of StomatologyFourth Military Medical UniversityXi'anChina
| | - Xiao‐Tao He
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral DiseasesDepartment of PeriodontologySchool of StomatologyFourth Military Medical UniversityXi'anChina
| | - Yuan Yin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral DiseasesDepartment of PeriodontologySchool of StomatologyFourth Military Medical UniversityXi'anChina
| | - Rui‐Xin Wu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral DiseasesDepartment of PeriodontologySchool of StomatologyFourth Military Medical UniversityXi'anChina
| | - Bei‐Min Tian
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral DiseasesDepartment of PeriodontologySchool of StomatologyFourth Military Medical UniversityXi'anChina
| | - Fa‐Ming Chen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral DiseasesDepartment of PeriodontologySchool of StomatologyFourth Military Medical UniversityXi'anChina
| |
Collapse
|
19
|
Eramo S, Natali A, Pinna R, Milia E. Dental pulp regeneration via cell homing. Int Endod J 2017; 51:405-419. [PMID: 29047120 DOI: 10.1111/iej.12868] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/14/2017] [Indexed: 12/11/2022]
Abstract
The typical treatment for irreversibly inflamed/necrotic pulp tissue is root canal treatment. As an alternative approach, regenerative endodontics aims to regenerate dental pulp-like tissues using two possible strategies: cell transplantation and cell homing. The former requires exogenously transplanted stem cells, complex procedures and high costs; the latter employs the host's endogenous cells to achieve tissue repair/regeneration, which is more clinically translatable. This systematic review examines cell homing for dental pulp regeneration, selecting articles on in vitro experiments, in vivo ectopic transplantation models and in situ pulp revascularization. MEDLINE/PubMed and Scopus databases were electronically searched for articles without limits in publication date. Two reviewers independently screened and included papers according to the predefined selection criteria. The electronic searches identified 46 studies. After title, abstract and full-text examination, 10 articles met the inclusion criteria. In vitro data highlighted that multiple cytokines have the capacity to induce migration, proliferation and differentiation of dental pulp stem/progenitor cells. The majority of the in vivo studies obtained regenerated connective pulp-like tissues with neovascularization. In some cases, the samples showed new innervation and new dentine deposition. The in situ pulp revascularization regenerated intracanal pulp-like tissues with neovascularization, innervation and dentine formation. Cell homing strategies for pulp regeneration need further understanding and improvement if they are to become a reliable and effective approach in endodontics. Nevertheless, cell homing currently represents the most clinically viable pathway for dental pulp regeneration.
Collapse
Affiliation(s)
- S Eramo
- Department of Surgery and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - A Natali
- Department of Surgery and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - R Pinna
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - E Milia
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
20
|
Monteiro N, Yelick PC. Advances and perspectives in tooth tissue engineering. J Tissue Eng Regen Med 2017; 11:2443-2461. [PMID: 27151766 PMCID: PMC6625321 DOI: 10.1002/term.2134] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 11/30/2015] [Accepted: 12/10/2015] [Indexed: 12/20/2022]
Abstract
Bio-engineered teeth that can grow and remodel in a manner similar to that of natural teeth have the potential to serve as permanent replacements to the currently used prosthetic teeth, such as dental implants. A major challenge in designing functional bio-engineered teeth is to mimic both the structural and anisotropic mechanical characteristics of the native tooth. Therefore, the field of dental and whole tooth regeneration has advanced towards the molecular and nanoscale design of bio-active, biomimetic systems, using biomaterials, drug delivery systems and stem cells. The focus of this review is to discuss recent advances in tooth tissue engineering, using biomimetic scaffolds that provide proper architectural cues, exhibit the capacity to support dental stem cell proliferation and differentiation and sequester and release bio-active agents, such as growth factors and nucleic acids, in a spatiotemporal controlled manner. Although many in vitro and in vivo studies on tooth regeneration appear promising, before tooth tissue engineering becomes a reality for humans, additional research is needed to perfect methods that use adult human dental stem cells, as opposed to embryonic dental stem cells, and to devise the means to generate bio-engineered teeth of predetermined size and shape. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Nelson Monteiro
- Department of Oral and Maxillofacial Pathology, Tufts University, Boston, MA, USA
| | - Pamela C. Yelick
- Department of Oral and Maxillofacial Pathology, Tufts University, Boston, MA, USA
| |
Collapse
|
21
|
Parlato M, Molenda J, Murphy WL. Specific recruitment of circulating angiogenic cells using biomaterials as filters. Acta Biomater 2017; 56:65-79. [PMID: 28373084 DOI: 10.1016/j.actbio.2017.03.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/03/2017] [Accepted: 03/28/2017] [Indexed: 02/08/2023]
Abstract
Endogenous recruitment of circulating angiogenic cells (CACs) is an emerging strategy to induce angiogenesis within a defect site, and multiple recent strategies have deployed soluble protein releasing biomaterials for this purpose. However, the way in which the design of biomaterials affects CAC recruitment and invasion are poorly understood. Here we used an enhanced-throughput cell invasion assay to systematically examine the effects of biomaterial design on CAC recruitment. The screens co-optimized hydrogel presentation of a stromal-derived factor-1α (SDF-1α) gradient, hydrogel degradability, and hydrogel stiffness for maximal CAC invasion. We also examined the specificity of this invasion by assessing dermal fibroblast, mesenchymal stem cell, and lymphocyte invasion individually and in co-culture with CACs to identify hydrogels specific to CAC invasion. These screens suggested a subset of MMP-degradable hydrogels presenting a specific range of SDF-1α gradient slopes that induced specific invasion of CACs, and we posit that the design parameters of this subset of hydrogels may serve as instructive templates for the future design of biomaterials to specifically recruit CACs. We also posit that this design concept may be applied more broadly in that it may be possible to utilize these specific subsets of biomaterials as "filters" to control which types of cell populations invade into and populate the biomaterial. STATEMENT OF SIGNIFICANCE The recruitment of specific cell types for cell-based therapies in vivo is of great interest to the regenerative medicine community. Circulating angiogenic cells (CACs), CD133+ cells derived from the blood stream, are of particular interest for induction of angiogenesis in ischemic tissues, and recent studies utilizing soluble-factor releasing biomaterials to recruit these cells in vivo show great promise. However, these studies are largely "proof of concept" and are not systematic in nature. Thus, little is currently known about how biomaterial design affects the recruitment of CACs. In the present work, we use a high throughput cell invasion screening platform to systematically examine the effects of biomaterial design on circulating angiogenic cell (CAC) recruitment, and we successfully screened 263 conditions at 3 replicates each. Our results identify a particular subset of conditions that robustly recruit CACs. Additionally, we found that these conditions also specifically recruited CACs and excluded the other tested cells types of dermal fibroblasts, mesenchymal stem cells, and lymphocytes. This suggests an intriguing new role for biomaterials as "filters" to control the types of cells that invade and populate that biomaterial.
Collapse
|
22
|
Abstract
BACKGROUND Clinically relevant regenerative medicine is still in its early stages of development. Difficulties in regenerating large-scale and complex structures, the lack of safety data, and the paucity of clinical trials have slowed the process of technological advance. OBJECTIVE To familiarize the clinician with techniques available in the laboratory and experimental approaches being tested clinically. In addition, a layout is discussed for how dermatologists can lead the way in bringing regenerative medicine to clinical reality. METHODS This article reviews the relevant literature on regenerative medicine for dermatological applications and discusses findings and techniques in a clinically relevant context. RESULTS Multiple cell-free and cell-based approaches for regenerating dermatologic tissues have been reported in the basic science and clinical literature. These are reviewed in the order of complexity. CONCLUSION Incremental steps are needed to apply the principles of regenerative medicine to simple medical problems first. Such a stepwise approach would commence, for example, with creation of single-function tissues that could fill soft-tissue defects and proceed to the development of fully functional skin grafts. Likewise, cell-free approaches can build the foundation for the more technically demanding cell-based strategies that are likely necessary for achieving the ultimate goal of regenerative dermatology.
Collapse
|
23
|
Yin Y, Li X, He XT, Wu RX, Sun HH, Chen FM. Leveraging Stem Cell Homing for Therapeutic Regeneration. J Dent Res 2017; 96:601-609. [PMID: 28414563 DOI: 10.1177/0022034517706070] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Resident stem cell pools in many tissues/organs are responsible not only for tissue maintenance during physiologic turnover but also for the process of wound repair following injury. With inspiration from stem cell trafficking within the body under physiologic and pathologic conditions, recent advances have been made toward inducing stem cell mobilization and directing patients' own cells to sites of interest for treating a broad spectrum of diseases. An evolving body of work corroborates that delivering guidance cues can mobilize stem cells from the bone marrow and drive these cells toward a specific region. In addition, the transplantation of cell-friendly biomaterials incorporating certain biomolecules has led to the regeneration of lost/damaged tissue without the need for delivering cellular materials manipulated ex vivo. Recently, cell homing has resulted in remarkable biological discoveries in the laboratory as well as great curative successes in preclinical scenarios. Here, we review the biological evidence underlying in vivo cell mobilization and homing with the aim of leveraging endogenous reparative cells for therapeutic applications. Considering both the promise and the obstacles of this approach, we discuss how matrix components of the in vivo milieu can be modified to promote the native regenerative process and inspire future tissue-engineering design.
Collapse
Affiliation(s)
- Y Yin
- 1 State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - X Li
- 1 State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - X T He
- 1 State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - R X Wu
- 1 State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - H H Sun
- 1 State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - F M Chen
- 1 State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
24
|
Wu RX, Yin Y, He XT, Li X, Chen FM. Engineering a Cell Home for Stem Cell Homing and Accommodation. ACTA ACUST UNITED AC 2017; 1:e1700004. [PMID: 32646164 DOI: 10.1002/adbi.201700004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/27/2017] [Indexed: 12/14/2022]
Abstract
Distilling complexity to advance regenerative medicine from laboratory animals to humans, in situ regeneration will continue to evolve using biomaterial strategies to drive endogenous cells within the human body for therapeutic purposes; this approach avoids the need for delivering ex vivo-expanded cellular materials. Ensuring the recruitment of a significant number of reparative cells from an endogenous source to the site of interest is the first step toward achieving success. Subsequently, making the "cell home" cell-friendly by recapitulating the natural extracellular matrix (ECM) in terms of its chemistry, structure, dynamics, and function, and targeting specific aspects of the native stem cell niche (e.g., cell-ECM and cell-cell interactions) to program and steer the fates of those recruited stem cells play equally crucial roles in yielding a therapeutically regenerative solution. This review addresses the key aspects of material-guided cell homing and the engineering of novel biomaterials with desirable ECM composition, surface topography, biochemistry, and mechanical properties that can present both biochemical and physical cues required for in situ tissue regeneration. This growing body of knowledge will likely become a design basis for the development of regenerative biomaterials for, but not limited to, future in situ tissue engineering and regeneration.
Collapse
Affiliation(s)
- Rui-Xin Wu
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P. R. China.,National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
| | - Yuan Yin
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P. R. China.,National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
| | - Xiao-Tao He
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P. R. China.,National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
| | - Xuan Li
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P. R. China.,National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
| | - Fa-Ming Chen
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P. R. China.,National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
| |
Collapse
|
25
|
Pyrintegrin Induces Soft Tissue Formation by Transplanted or Endogenous Cells. Sci Rep 2017; 7:36402. [PMID: 28128224 PMCID: PMC5269584 DOI: 10.1038/srep36402] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/16/2016] [Indexed: 12/11/2022] Open
Abstract
Focal adipose deficiency, such as lipoatrophy, lumpectomy or facial trauma, is a formidable challenge in reconstructive medicine, and yet scarcely investigated in experimental studies. Here, we report that Pyrintegrin (Ptn), a 2,4-disubstituted pyrimidine known to promote embryonic stem cells survival, is robustly adipogenic and induces postnatal adipose tissue formation in vivo of transplanted adipose stem/progenitor cells (ASCs) and recruited endogenous cells. In vitro, Ptn stimulated human adipose tissue derived ASCs to differentiate into lipid-laden adipocytes by upregulating peroxisome proliferator-activated receptor (PPARγ) and CCAAT/enhancer-binding protein-α (C/EBPα), with differentiated cells increasingly secreting adiponectin, leptin, glycerol and total triglycerides. Ptn-primed human ASCs seeded in 3D-bioprinted biomaterial scaffolds yielded newly formed adipose tissue that expressed human PPARγ, when transplanted into the dorsum of athymic mice. Remarkably, Ptn-adsorbed 3D scaffolds implanted in the inguinal fat pad had enhanced adipose tissue formation, suggesting Ptn’s ability to induce in situ adipogenesis of endogenous cells. Ptn promoted adipogenesis by upregulating PPARγ and C/EBPα not only in adipogenesis induction medium, but also in chemically defined medium specifically for osteogenesis, and concurrently attenuated Runx2 and Osx via BMP-mediated SMAD1/5 phosphorylation. These findings suggest Ptn’s novel role as an adipogenesis inducer with a therapeutic potential in soft tissue reconstruction and augmentation.
Collapse
|
26
|
Lucaciu O, Crisan B, Crisan L, Baciut M, Soritau O, Bran S, Biris AR, Hurubeanu L, Hedesiu M, Vacaras S, Kretschmer W, Dirzu N, Campian RS, Baciut G. In quest of optimal drug-supported and targeted bone regeneration in the cranio facial area: a review of techniques and methods. Drug Metab Rev 2016; 47:455-69. [PMID: 26689239 DOI: 10.3109/03602532.2015.1124889] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Craniofacial bone structures are frequently and extensively affected by trauma, tumors, bone infections and diseases, age-related degeneration and atrophy, as well as congenital malformations and developmental anomalies. Consequently, severe encumbrances are imposed on both patients and healthcare systems due to the complex and lengthy treatment duration. The search for alternative methods to bone transplantation, grafting and the use of homologous or heterologous bone thus responds to one of the most significant problems in human medicine. This review focuses on the current consensus of bone-tissue engineering in the craniofacial area with emphasis on drug-induced stem cell differentiation and induced bone regeneration.
Collapse
Affiliation(s)
- Ondine Lucaciu
- a Department of Maxillofacial Surgery and Oral Implantology , "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Bogdan Crisan
- a Department of Maxillofacial Surgery and Oral Implantology , "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Liana Crisan
- a Department of Maxillofacial Surgery and Oral Implantology , "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Mihaela Baciut
- a Department of Maxillofacial Surgery and Oral Implantology , "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Olga Soritau
- b "Ion Chiricuta" Oncological Institute , Cluj-Napoca , Romania
| | - Simion Bran
- a Department of Maxillofacial Surgery and Oral Implantology , "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Alexandru Radu Biris
- c National Institute for Research and Development of Isotopic and Molecular Technologies , Cluj-Napoca , Romania
| | - Lucia Hurubeanu
- a Department of Maxillofacial Surgery and Oral Implantology , "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Mihaela Hedesiu
- a Department of Maxillofacial Surgery and Oral Implantology , "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Sergiu Vacaras
- a Department of Maxillofacial Surgery and Oral Implantology , "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | | | - Noemi Dirzu
- e Technical University of Cluj-Napoca , Cluj-Napoca , Romania
| | - Radu Septimiu Campian
- a Department of Maxillofacial Surgery and Oral Implantology , "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Grigore Baciut
- a Department of Maxillofacial Surgery and Oral Implantology , "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca , Romania
| |
Collapse
|
27
|
Peters OA. Translational opportunities in stem cell-based endodontic therapy: where are we and what are we missing? J Endod 2016; 40:S82-5. [PMID: 24698700 DOI: 10.1016/j.joen.2014.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Pulp regeneration is a biologic process occurring under specific circumstances. An endodontic treatment modality to accomplish pulp regeneration has emerged based on the response of undifferentiated cells that are often referred to as stem cells. The treatment itself is currently empirical based on clinicians' thoughts and observations. The demonstration of a variety of dental stem cells initiated basic research detailing the properties and behavior of these cells. Attempts are made to bridge gaps in knowledge regarding treatment strategies by translating basic stem cell research into practice. However, neither the patient population likely to benefit from pulp regeneration nor most clinical parameters are well described. Classic topics in endodontics (eg, indication/clinical diagnosis, disinfection/irrigation, and root canal preparation/pretreatment) have to be revisited under the premises of pulp regeneration. Furthermore, new topics like the development of new diagnostic tools or new clinical success criteria will emerge, and the translational research itself will generate new insight into pulp regeneration mechanisms.
Collapse
Affiliation(s)
- Ove A Peters
- Department of Endodontics, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, California.
| |
Collapse
|
28
|
Kitami M, Kaku M, Rocabado JMR, Ida T, Akiba N, Uoshima K. Prolonged Survival of Transplanted Osteoblastic Cells Does Not Directly Accelerate the Healing of Calvarial Bone Defects. J Cell Physiol 2016; 231:1974-82. [PMID: 26754153 DOI: 10.1002/jcp.25302] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/06/2016] [Indexed: 12/12/2022]
Abstract
Considering the increased interest in cell-based bone regeneration, it is necessary to reveal the fate of transplanted cells and their substantive roles in bone regeneration. The aim of this study was to analyze the fate of transplanted cells and the effect of osteogenic cell transplantation on calvarial bone defect healing. An anti-apoptotic protein, heat shock protein (HSP) 27, was overexpressed in osteoblasts. Then, the treated osteoblasts were transplanted to calvarial bone defect and their fate was analyzed to evaluate the significance of transplanted cell survival. Transient overexpression of Hsp27 rescued MC3T3-E1 osteoblastic cells from H2 O2 -induced apoptosis without affecting osteoblastic differentiation in culture. Transplantation of Hsp27-overexpressing cells, encapsulated in collagen gel, showed higher proliferative activity, and fewer apoptotic cells in comparison with control cells. After 4-week of transplantation, both control cell- and Hsp27 overexpressed cell-transplanted groups showed significantly higher new bone formation in comparison with cell-free gel-transplantation group. Interestingly, the prolonged survival of transplanted osteoblastic cells by Hsp27 did not provide additional effect on bone healing. The transplanted cells in collagen gel survived for up to 4-week but did not differentiate into bone-forming osteoblasts. In conclusion, cell-containing collagen gel accelerated calvarial bone defect healing in comparison with cell-free collagen gel. However, prolonged survival of transplanted cells by Hsp27 overexpression did not provide additional effect. These results strongly indicate that cell transplantation-based bone regeneration cannot be explained only by the increment of osteogenic cells. Further studies are needed to elucidate the practical roles of transplanted cells that will potentiate successful bone regeneration. J. Cell. Physiol. 231: 1974-1982, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Megumi Kitami
- Division of Bio-Prosthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Research Fellow of Japan Society for the Promotion of Science
| | - Masaru Kaku
- Division of Bio-Prosthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | - Takako Ida
- Division of Bio-Prosthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Nami Akiba
- Division of Bio-Prosthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Katsumi Uoshima
- Division of Bio-Prosthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
29
|
Abstract
Biomaterials have played an increasingly prominent role in the success of biomedical devices and in the development of tissue engineering, which seeks to unlock the regenerative potential innate to human tissues/organs in a state of deterioration and to restore or reestablish normal bodily function. Advances in our understanding of regenerative biomaterials and their roles in new tissue formation can potentially open a new frontier in the fast-growing field of regenerative medicine. Taking inspiration from the role and multi-component construction of native extracellular matrices (ECMs) for cell accommodation, the synthetic biomaterials produced today routinely incorporate biologically active components to define an artificial in vivo milieu with complex and dynamic interactions that foster and regulate stem cells, similar to the events occurring in a natural cellular microenvironment. The range and degree of biomaterial sophistication have also dramatically increased as more knowledge has accumulated through materials science, matrix biology and tissue engineering. However, achieving clinical translation and commercial success requires regenerative biomaterials to be not only efficacious and safe but also cost-effective and convenient for use and production. Utilizing biomaterials of human origin as building blocks for therapeutic purposes has provided a facilitated approach that closely mimics the critical aspects of natural tissue with regard to its physical and chemical properties for the orchestration of wound healing and tissue regeneration. In addition to directly using tissue transfers and transplants for repair, new applications of human-derived biomaterials are now focusing on the use of naturally occurring biomacromolecules, decellularized ECM scaffolds and autologous preparations rich in growth factors/non-expanded stem cells to either target acceleration/magnification of the body's own repair capacity or use nature's paradigms to create new tissues for restoration. In particular, there is increasing interest in separating ECMs into simplified functional domains and/or biopolymeric assemblies so that these components/constituents can be discretely exploited and manipulated for the production of bioscaffolds and new biomimetic biomaterials. Here, following an overview of tissue auto-/allo-transplantation, we discuss the recent trends and advances as well as the challenges and future directions in the evolution and application of human-derived biomaterials for reconstructive surgery and tissue engineering. In particular, we focus on an exploration of the structural, mechanical, biochemical and biological information present in native human tissue for bioengineering applications and to provide inspiration for the design of future biomaterials.
Collapse
|
30
|
Yu Y, Wu RX, Yin Y, Chen FM. Directing immunomodulation using biomaterials for endogenous regeneration. J Mater Chem B 2016; 4:569-584. [PMID: 32262939 DOI: 10.1039/c5tb02199e] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Stem cell therapy and tissue engineering hold considerable potential for innovative and transformative strategies to repair damaged tissue form and function. Although many approaches are adopting ex vivo expanded cells for transplantation, an alternative is to manipulate the biomaterial-host interactions that recruit the patients' own stem cells endogenously for regeneration. There are several considerations in targeting the biomaterial-host interactions therapeutically, not the least of which is the biomimetic design of extracellular matrix (ECM)-mimicking materials and the administration of navigation cues and small molecules that target specific aspects of the native healing cascades to stimulate homing of endogenous stem cells and, thereafter, their expansion and differentiation. A sequence of coordinated interactions between the local niche cells and implanted biomaterials offers signals and sign posts that may instruct the cells traveling toward the injured tissues. Furthermore, stem cell function is critically influenced by extrinsic signals provided by the niche as well as by the implanted biomaterials. Novel strategies harnessing growth factors and immunological cues to design materials not only can modulate the behavior of stem cells but also can alter innate and adaptive immunity in a controlled manner. We envisage that successful and safe endogenous regeneration will involve at least three aspects, i.e., homing of sufficient stem cells, controlling cell fate determination, and blunting host immune responses to outside biomaterial devices. Improving our understanding of the biological and physicochemical signals of biomimetic biomaterials that govern immunomodulation for in situ tissue regeneration, particularly context-dependent macrophage (Mφ) polarization, will lead to a concurrent improvement in clinical outcomes.
Collapse
Affiliation(s)
- Yang Yu
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Shaanxi, Xi'an 710032, P. R. China.
| | | | | | | |
Collapse
|
31
|
Ciporen J, Lucke-Wold BP, Mendez G, Chen A, Banerjee A, Akins PT, Balough BJ. Single-staged resections and 3D reconstructions of the nasion, glabella, medial orbital wall, and frontal sinus and bone: Long-term outcome and review of the literature. Surg Neurol Int 2016; 7:S1107-S1112. [PMID: 28194296 PMCID: PMC5299155 DOI: 10.4103/2152-7806.196773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 09/10/2016] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Aesthetic facial appearance following neurosurgical ablation of frontal fossa tumors is a primary concern for patients and neurosurgeons alike. Craniofacial reconstruction procedures have drastically evolved since the development of three-dimensional computed tomography imaging and computer-assisted programming. Traditionally, two-stage approaches for resection and reconstruction were used; however, these two-stage approaches have many complications including cerebrospinal fluid leaks, necrosis, and pneumocephalus. CASE DESCRIPTION We present two successful cases of single-stage osteoma resection and craniofacial reconstruction in a 26-year-old female and 65-year-old male. The biopolymer implants were preselected and contoured based on imaging prior to surgery. The ideal selection of appropriate flaps for reconstruction was imperative. The flaps were well vascularized and included a pedicle for easy translocation. Using a titanium mesh biopolymer implant for reconstruction in conjunction with a forehead flap proved advantageous, and the benefits of single-stage approaches were apparent. The patients recovered quickly after the surgery with complete resection of the osteoma and good aesthetic appearance. The flap adhered to the biopolymer implant, and the cosmetic appearance years after surgery remained decent. The gap between the bone and implant was less than 2 mm. The patients are highly satisfied with the symmetrical appearance of the reconstruction. CONCLUSIONS Advances in technology are allowing neurosurgeons unprecedented opportunities to design complex yet feasible single-stage craniofacial reconstructions that improve a patient's quality of life by enhancing facial contours, aesthetics, and symmetry.
Collapse
Affiliation(s)
- Jeremy Ciporen
- Department of Neurological Surgery, Oregon Health and Science University, Portland, Oregon, USA
- Corresponding author
| | - Brandon P. Lucke-Wold
- Department of Neurosurgery, West Virginia University, Morgantown, West Virginia, USA
| | - Gustavo Mendez
- Department of Diagnostic Radiology, Oregon Health and Science University, Portland, Oregon, USA
| | - Anton Chen
- Department of ENT, Kaiser Permanente, Sacramento, California, USA
| | - Amit Banerjee
- Department of Neurosurgery, Kaiser Permanente, Sacramento, California, USA
| | - Paul T. Akins
- Department of Neurosurgery, Kaiser Permanente, Sacramento, California, USA
| | - Ben J. Balough
- Department of ENT, Kaiser Permanente, Sacramento, California, USA
| |
Collapse
|
32
|
Zhu W, Zhang Q, Zhang Y, Cen L, Wang J. PDL regeneration via cell homing in delayed replantation of avulsed teeth. J Transl Med 2015; 13:357. [PMID: 26572489 PMCID: PMC4647325 DOI: 10.1186/s12967-015-0719-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/31/2015] [Indexed: 01/10/2023] Open
Abstract
Background This study was aimed to investigate whether regeneration of periodontal ligament (PDL) like tissue could be promoted by stromal cell-derived factor-1 (SDF1) and bone morphogenetic protein-7 (BMP7) induced cell homing in delayed replantation of avulsed teeth. Methods Canine mandibular premolar teeth were first extracted and air-dried for 2 h followed by complete detachment of their PDL tissues. The crown and pulp of the teeth were also removed. Twenty-four roots divided into two groups (n = 12/group) were used for the following in vivo transplantation. The roots of Group A were treated with 17 % EDTA for 24 h to achieve demineralization, and then coated with SDF1 and BMP7 supplemented collagen solution. The roots of Group B were similarly treated except being coated with a pristine collagen solution. The above roots were transplanted in the sockets that formed previously during tooth extraction. At 6 months’ post-operation, PDL-like tissue composed of spindle-shaped cells, capillaries and highly organized collagen fibers was observed in the interstitial space between the avulsed root surface and surrounding alveolar bone in Group A. The neo-fibers inserted deeply and perpendicularly into the cementum and adjacent bone. The periodontium-like characteristics of the neo-tissue was confirmed by immunohistochemical staining for collagen I, fibronectin and osteocalcin. Results A high incidence of PDL re-establishment as 42 % was achieved for samples of Group A. However, no PDL-like tissue was found but root ankylosis and replacement resorption as well as inflammatory resorption was observed in the replanted roots of Group B. Conclusions It can be confirmed that avulsed teeth could be successfully rescued even in delayed transplantation to avoid dentoalveolar ankylosis or replacement resorption via the current developed cell homing method. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0719-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenting Zhu
- Department of Pediatric Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, No. 639, Zhi Zao Ju Road, Shanghai, 200011, China.
| | - Qian Zhang
- Department of Pediatric Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, No. 639, Zhi Zao Ju Road, Shanghai, 200011, China.
| | - Yang Zhang
- Department of Pediatric Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, No. 639, Zhi Zao Ju Road, Shanghai, 200011, China.
| | - Lian Cen
- School of Chemical Engineering, East China University of Science and Technology, No. 130, Mei Long Road, Shanghai, 200237, China. .,National Tissue Engineering Center of China, No. 68, East Jiang Chuan Road, Shanghai, 200241, China.
| | - Jun Wang
- Department of Pediatric Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, No. 639, Zhi Zao Ju Road, Shanghai, 200011, China.
| |
Collapse
|
33
|
High Tibial Osteotomy in Combination With Chondrogenesis After Stem Cell Therapy: A Histologic Report of 8 Cases. Arthroscopy 2015; 31:1909-20. [PMID: 26008951 DOI: 10.1016/j.arthro.2015.03.038] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 03/04/2015] [Accepted: 03/19/2015] [Indexed: 02/02/2023]
Abstract
PURPOSE To histologically evaluate the quality of articular cartilage regeneration from the medial compartment after arthroscopic subchondral drilling followed by postoperative intra-articular injections of autologous peripheral blood stem cells (PBSCs) and hyaluronic acid with concomitant medial open-wedge high tibial osteotomy (HTO) in patients with varus deformity of the knee joint. METHODS Eight patients with varus deformity of the knee joint underwent arthroscopic subchondral drilling of International Cartilage Repair Society (ICRS) grade 4 bone-on-bone lesions of the medial compartment with concomitant HTO. These patients were part of a larger pilot study in which 18 patients underwent the same procedure. PBSCs were harvested and cryopreserved preoperatively. At 1 week after surgery, 8 mL of PBSCs was mixed with 2 mL of hyaluronic acid and injected intra-articularly into the knee joint; this was repeated once a week for 5 consecutive weeks. Three additional intra-articular injections were administered weekly at intervals of 6, 12, and 18 months postoperatively. Informed consent was obtained at the time of hardware removal for opportunistic second-look arthroscopy and chondral biopsy. Biopsy specimens were stained with H&E, safranin O, and immunohistochemical staining for type I and II collagen. Specimens were graded using the 14 components of the ICRS Visual Assessment Scale II, and a total score was obtained. RESULTS Second-look arthroscopy showed satisfactory healing of the regenerated cartilage. Histologic analysis showed significant amounts of proteoglycan and type II collagen. The total ICRS Visual Assessment Scale II histologic scores comparing the regenerated articular cartilage (mean, 1,274) with normal articular cartilage (mean, 1,340) indicated that the repair cartilage score approached 95% of the normal articular cartilage score. There were no infections, delayed unions, or nonunions. CONCLUSIONS Chondrogenesis with stem cells in combination with medial open-wedge HTO for varus deformity correction of the knee joint regenerates cartilage that closely resembles the native articular cartilage. LEVEL OF EVIDENCE Level IV, therapeutic case series.
Collapse
|
34
|
Lee CH, Lee FY, Tarafder S, Kao K, Jun Y, Yang G, Mao JJ. Harnessing endogenous stem/progenitor cells for tendon regeneration. J Clin Invest 2015; 125:2690-701. [PMID: 26053662 DOI: 10.1172/jci81589] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/30/2015] [Indexed: 12/24/2022] Open
Abstract
Current stem cell-based strategies for tissue regeneration involve ex vivo manipulation of these cells to confer features of the desired progenitor population. Recently, the concept that endogenous stem/progenitor cells could be used for regenerating tissues has emerged as a promising approach that potentially overcomes the obstacles related to cell transplantation. Here we applied this strategy for the regeneration of injured tendons in a rat model. First, we identified a rare fraction of tendon cells that was positive for the known tendon stem cell marker CD146 and exhibited clonogenic capacity, as well as multilineage differentiation ability. These tendon-resident CD146+ stem/progenitor cells were selectively enriched by connective tissue growth factor delivery (CTGF delivery) in the early phase of tendon healing, followed by tenogenic differentiation in the later phase. The time-controlled proliferation and differentiation of CD146+ stem/progenitor cells by CTGF delivery successfully led to tendon regeneration with densely aligned collagen fibers, normal level of cellularity, and functional restoration. Using siRNA knockdown to evaluate factors involved in tendon generation, we demonstrated that the FAK/ERK1/2 signaling pathway regulates CTGF-induced proliferation and differentiation of CD146+ stem/progenitor cells. Together, our findings support the use of endogenous stem/progenitor cells as a strategy for tendon regeneration without cell transplantation and suggest this approach warrants exploration in other tissues.
Collapse
|
35
|
Kaku M, Akiba Y, Akiyama K, Akita D, Nishimura M. Cell-based bone regeneration for alveolar ridge augmentation--cell source, endogenous cell recruitment and immunomodulatory function. J Prosthodont Res 2015; 59:96-112. [PMID: 25749435 DOI: 10.1016/j.jpor.2015.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/05/2015] [Indexed: 11/30/2022]
Abstract
Alveolar ridge plays a pivotal role in supporting dental prosthesis particularly in edentulous and semi-dentulous patients. However the alveolar ridge undergoes atrophic change after tooth loss. The vertical and horizontal volume of the alveolar ridge restricts the design of dental prosthesis; thus, maintaining sufficient alveolar ridge volume is vital for successful oral rehabilitation. Recent progress in regenerative approaches has conferred marked benefits in prosthetic dentistry, enabling regeneration of the atrophic alveolar ridge. In order to achieve successful alveolar ridge augmentation, sufficient numbers of osteogenic cells are necessary; therefore, autologous osteoprogenitor cells are isolated, expanded in vitro, and transplanted to the specific anatomical site where the bone is required. Recent studies have gradually elucidated that transplanted osteoprogenitor cells are not only a source of bone forming osteoblasts, they appear to play multiple roles, such as recruitment of endogenous osteoprogenitor cells and immunomodulatory function, at the forefront of bone regeneration. This review focuses on the current consensus of cell-based bone augmentation therapies with emphasis on cell sources, transplanted cell survival, endogenous stem cell recruitment and immunomodulatory function of transplanted osteoprogenitor cells. Furthermore, if we were able to control the mobilization of endogenous osteoprogenitor cells, large-scale surgery may no longer be necessary. Such treatment strategy may open a new era of safer and more effective alveolar ridge augmentation treatment options.
Collapse
Affiliation(s)
- Masaru Kaku
- Division of Bioprosthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| | - Yosuke Akiba
- Division of Bioprosthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kentaro Akiyama
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Daisuke Akita
- Department of Partial Denture Prosthodontics, Nihon University School of Dentistry, Tokyo, Japan
| | - Masahiro Nishimura
- Department of Oral Maxillofacial Prosthodontics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
36
|
Experimental and clinical methods used for fat volume maintenance after autologous fat grafting. Ann Plast Surg 2014; 72:475-83. [PMID: 24618741 DOI: 10.1097/sap.0000000000000117] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Management of soft tissue deficits resulting from congenital abnormalities, trauma, systemic disease, and tumors is a particularly challenging field of plastic and reconstructive surgery. Fat grafting, a technique traditionally used in the correction of facial asymmetry, is commonly seen in aesthetic procedures which use the grafted fat for soft tissue augmentation and recontouring. Despite its widespread use in reconstruction and aesthetic surgery, therapeutic modalities applied in fat grafting are crude and the results of this intervention are unpredictable. The aim of this review was to present the most recent evidence regarding experimental studies and designs which confirmed or disproved fat volume expansion or fat maintenance after autologous fat grafting.
Collapse
|
37
|
|
38
|
Lee K, Weir MD, Lippens E, Mehta M, Wang P, Duda GN, Kim WS, Mooney DJ, Xu HHK. Bone regeneration via novel macroporous CPC scaffolds in critical-sized cranial defects in rats. Dent Mater 2014; 30:e199-207. [PMID: 24768062 DOI: 10.1016/j.dental.2014.03.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 11/20/2013] [Accepted: 03/25/2014] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Calcium phosphate cement (CPC) is promising for dental and craniofacial applications due to its ability to be injected or filled into complex-shaped bone defects and molded for esthetics, and its resorbability and replacement by new bone. The objective of this study was to investigate bone regeneration via novel macroporous CPC containing absorbable fibers, hydrogel microbeads and growth factors in critical-sized cranial defects in rats. METHODS Mannitol porogen and alginate hydrogel microbeads were incorporated into CPC. Absorbable fibers were used to provide mechanical reinforcement to CPC scaffolds. Six CPC groups were tested in rats: (1) control CPC without macropores and microbeads; (2) macroporous CPC+large fiber; (3) macroporous CPC+large fiber+nanofiber; (4) same as (3), but with rhBMP2 in CPC matrix; (5) same as (3), but with rhBMP2 in CPC matrix+rhTGF-β1 in microbeads; (6) same as (3), but with rhBMP2 in CPC matrix+VEGF in microbeads. Rats were sacrificed at 4 and 24 weeks for histological and micro-CT analyses. RESULTS The macroporous CPC scaffolds containing porogen, absorbable fibers and hydrogel microbeads had mechanical properties similar to cancellous bone. At 4 weeks, the new bone area fraction (mean±sd; n=5) in CPC control group was the lowest at (14.8±3.3)%, and that of group 6 (rhBMP2+VEGF) was (31.0±13.8)% (p<0.05). At 24 weeks, group 4 (rhBMP2) had the most new bone of (38.8±15.6)%, higher than (12.7±5.3)% of CPC control (p<0.05). Micro-CT revealed nearly complete bridging of the critical-sized defects with new bone for several macroporous CPC groups, compared to much less new bone formation for CPC control. SIGNIFICANCE Macroporous CPC scaffolds containing porogen, fibers and microbeads with growth factors were investigated in rat cranial defects for the first time. Macroporous CPCs had new bone up to 2-fold that of traditional CPC control at 4 weeks, and 3-fold that of traditional CPC at 24 weeks, and hence may be useful for dental, craniofacial and orthopedic applications.
Collapse
Affiliation(s)
- Kangwon Lee
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Michael D Weir
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Evi Lippens
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Manav Mehta
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Ping Wang
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Georg N Duda
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin and Berlin-Brandenburg Center for Regenerative Therapies, Berlin, Germany
| | - Woo S Kim
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - David J Mooney
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Hockin H K Xu
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Mechanical Engineering, University of Maryland, Baltimore County, MD 21250, USA.
| |
Collapse
|
39
|
Abstract
Large soft tissue defects involve significant tissue loss, requiring surgical reconstruction. Autologous flaps are occasionally scant, demand prolonged transfer surgery, and induce donor site morbidity. The present work set out to fabricate an engineered muscle flap bearing its own functional vascular pedicle for repair of a large soft tissue defect in mice. Full-thickness abdominal wall defect was reconstructed using this engineered vascular muscle flap. A 3D engineered tissue constructed of a porous, biodegradable polymer scaffold embedded with endothelial cells, fibroblasts, and/or myoblasts was cultured in vitro and then implanted around the femoral artery and veins before being transferred, as an axial flap, with its vascular pedicle to reconstruct a full-thickness abdominal wall defect in the same mouse. Within 1 wk of implantation, scaffolds showed extensive functional vascular density and perfusion and anastomosis with host vessels. At 1 wk posttransfer, the engineered muscle flaps were highly vascularized, were well-integrated within the surrounding tissue, and featured sufficient mechanical strength to support the abdominal viscera. Thus, the described engineered muscle flap, equipped with an autologous vascular pedicle, constitutes an effective tool for reconstruction of large defects, thereby circumventing the need for both harvesting autologous flaps and postoperative scarification.
Collapse
|
40
|
Lee CH, Hajibandeh J, Suzuki T, Fan A, Shang P, Mao JJ. Three-dimensional printed multiphase scaffolds for regeneration of periodontium complex. Tissue Eng Part A 2014; 20:1342-51. [PMID: 24295512 DOI: 10.1089/ten.tea.2013.0386] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Tooth-supporting periodontium forms a complex with multiple tissues, including cementum, periodontal ligament (PDL), and alveolar bone. In this study, we developed multiphase region-specific microscaffolds with spatiotemporal delivery of bioactive cues for integrated periodontium regeneration. Polycarprolactione-hydroxylapatite (90:10 wt%) scaffolds were fabricated using three-dimensional printing seamlessly in three phases: 100-μm microchannels in Phase A designed for cementum/dentin interface, 600-μm microchannels in Phase B designed for the PDL, and 300-μm microchannels in Phase C designed for alveolar bone. Recombinant human amelogenin, connective tissue growth factor, and bone morphogenetic protein-2 were spatially delivered and time-released in Phases A, B, and C, respectively. Upon 4-week in vitro incubation separately with dental pulp stem/progenitor cells (DPSCs), PDL stem/progenitor cells (PDLSCs), or alveolar bone stem/progenitor cells (ABSCs), distinctive tissue phenotypes were formed with collagen I-rich fibers especially by PDLSCs and mineralized tissues by DPSCs, PDLSCs, and ABSCs. DPSC-seeded multiphase scaffolds upon in vivo implantation yielded aligned PDL-like collagen fibers that inserted into bone sialoprotein-positive bone-like tissue and putative cementum matrix protein 1-positive/dentin sialophosphoprotein-positive dentin/cementum tissues. These findings illustrate a strategy for the regeneration of multiphase periodontal tissues by spatiotemporal delivery of multiple proteins. A single stem/progenitor cell population appears to differentiate into putative dentin/cementum, PDL, and alveolar bone complex by scaffold's biophysical properties and spatially released bioactive cues.
Collapse
Affiliation(s)
- Chang H Lee
- Center for Craniofacial Regeneration (CCR), Columbia University Medical Center , New York, New York
| | | | | | | | | | | |
Collapse
|
41
|
Nosrat A, Kim JR, Verma P, S. Chand P. Tissue engineering considerations in dental pulp regeneration. IRANIAN ENDODONTIC JOURNAL 2014; 9:30-9. [PMID: 24396373 PMCID: PMC3881299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 09/09/2013] [Accepted: 09/28/2013] [Indexed: 10/31/2022]
Abstract
Regenerative endodontic procedure is introduced as a biologically based treatment for immature teeth with pulp necrosis. Successful clinical and radiographic outcomes following regenerative procedures have been reported in landmark case reports. Retrospective studies have shown that this conservative treatment allows for continued root development and increases success and survival rate of the treated teeth compared to other treatment options. Although the goal of treatment is regeneration of a functional pulp tissue, histological analyses show a different outcome. Developing predictable protocols would require the use of key elements for tissue engineering: stem cells, bioactive scaffolds, and growth factors. In this study we will review the evidence based steps and outcomes of regenerative endodontics.
Collapse
Affiliation(s)
- Ali Nosrat
- Department of Endodontics, Prosthodontics and Operative Dentistry, School of Dentistry, University of Maryland, Baltimore, MD, USA; ,Iranian Center for Endodontic Research, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Corresponding author: Ali Nosrat, Department of Endodontics, Prosthodontics, and Operative Dentistry, School of Dentistry, University of Maryland, 650 West Baltimore Street, Room 4445, Baltimore, MD 21201. Tel: +1-410-706-2860
| | - Jong Ryul Kim
- Department of Endodontics, Prosthodontics and Operative Dentistry, School of Dentistry, University of Maryland, Baltimore, MD, USA;
| | - Prashant Verma
- Department of Endodontics, Prosthodontics and Operative Dentistry, School of Dentistry, University of Maryland, Baltimore, MD, USA;
| | - Priya S. Chand
- Department of Endodontics, Prosthodontics and Operative Dentistry, School of Dentistry, University of Maryland, Baltimore, MD, USA;
| |
Collapse
|
42
|
Evolution and trends in reconstructive facial surgery: an update. J Maxillofac Oral Surg 2013; 11:466-72. [PMID: 24293942 DOI: 10.1007/s12663-012-0363-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 03/01/2012] [Indexed: 10/28/2022] Open
Abstract
Surgical correction of congenital and acquired facial deformities has transcended the primitive era of using non biologic materials to current attempts at own face growing through biotechnology. A summative account of this trend is still lacking in the literature. The objective of this article is to present an update on current knowledge in the strides to achieve functionally and aesthetically perfect facial reconstruction. It highlights the impact of advancements in 3D imaging, stereolithographic biomodelling, microvascular surgical tissue transplantation and tissue biotechnology in the surgical efforts to solve the problems of facial disfigurement whether congenital or acquired.
Collapse
|
43
|
Ajay Sharma L, Sharma A, Dias GJ. Advances in regeneration of dental pulp--a literature review. ACTA ACUST UNITED AC 2013; 6:85-98. [PMID: 23946258 DOI: 10.1111/jicd.12064] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 06/19/2013] [Indexed: 12/29/2022]
Abstract
This review summarizes the biological response of dentin-pulp complexes to a variety of stimuli and responses to current treatment therapies and reviews the role of tissue engineering and its application in regenerative endodontics. An electronic search was undertaken based on keywords using Medline/PubMed, Embase, Web of Science and Ovid database resources up to March 2012 to identify appropriate articles, supplemented by a manual search using reference lists from relevant articles. Inclusion criteria were mainly based on different combinations of keywords and restricted to articles published in English language only. Biological approaches based on tissue engineering principles were found to offer the possibility of restoring natural tooth vitality, with distinct evidence that regeneration of lost dental tissues is possible. Studies to formulate an ideal restorative material with regenerative properties, however, are still under way. Further research with supporting clinical studies is required to identify the most effective and safe treatment therapy.
Collapse
Affiliation(s)
- Lavanya Ajay Sharma
- Department of Anatomy and Structural Biology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
44
|
Huang GTJ, Al-Habib M, Gauthier P. Challenges of stem cell-based pulp and dentin regeneration: a clinical perspective. ACTA ACUST UNITED AC 2013; 28:51-60. [PMID: 23914150 DOI: 10.1111/etp.12035] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There are two types of approaches to regenerate tissues: cell-based and cell-free. The former approach is to introduce exogenous cells into the host to regenerate tissues, and the latter is to use materials other than cells in an attempt to regenerate tissues. There has been a significant advancement in stem cell-based pulp and dentin regeneration research in the past few years. Studies in small and large animals have demonstrated that pulp/dentin-like tissues can be regenerated partially or completely in the root canal space with apical openings of 0.7-3.0 mm using dental pulp stem cells, including stem cells from apical papilla (SCAP) and subpopulations of pulp stem cells. Bone marrow mesenchymal stem cells (BMMSCs) and adipose tissue-derived MSCs (ADMSCs) have also been shown to regenerate pulp-like tissue. In contrast, the cell-free approach has not produced convincing evidence on pulp regeneration. However, one crucial concept has not been considered nor defined in the field of pulp/dentin regeneration and that is the critical size defect of dentin and pulp. Without such consideration and definition, it is difficult to predict or anticipate the extent of cell-free pulp regeneration that would occur. By reasoning, cell-free therapy is unlikely to regenerate an organ/tissue after total loss. Similarly, after a total loss of pulp, it is unlikely to regenerate without using exogenously introduced cells. A cell homing approach may provide a limited amount of tissue regeneration. Although stem cell-based pulp/dentin regeneration has shown great promise, clinical trials are difficult to launch at present. This article will address several issues that challenge and hinder the clinical applications of pulp/dentin regeneration which need to be overcome before stem cell-based pulp/dentin regeneration can occur in the clinic.
Collapse
|
45
|
Tomson PL, Lumley PJ, Alexander MY, Smith AJ, Cooper PR. Hepatocyte growth factor is sequestered in dentine matrix and promotes regeneration-associated events in dental pulp cells. Cytokine 2013; 61:622-9. [DOI: 10.1016/j.cyto.2012.11.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 11/09/2012] [Accepted: 11/16/2012] [Indexed: 10/27/2022]
|
46
|
Ji W, Yang F, Ma J, Bouma MJ, Boerman OC, Chen Z, van den Beucken JJJP, Jansen JA. Incorporation of stromal cell-derived factor-1α in PCL/gelatin electrospun membranes for guided bone regeneration. Biomaterials 2012; 34:735-45. [PMID: 23117215 DOI: 10.1016/j.biomaterials.2012.10.016] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 10/08/2012] [Indexed: 01/07/2023]
Abstract
The goal of this work was to evaluate the effect of membrane functionalization with a chemotactic factor on cell recruitment and bone formation in order to develop a bioactive membrane for guided bone regeneration (GBR) applications. To this end, GBR membranes were prepared by electrospinning using poly(ε-caprolactone) (PCL) blended with type B-gelatin, and functionalized with stromal cell derived factor-1α (SDF-1α) via physical adsorption. Firstly, the obtained membranes were evaluated in vitro for SDF-1α release and chemotactic effect on bone marrow stromal cells (BMSCs). Subsequently, in vivo BMSCs recruitment and bone regeneration in response to SDF-1α loaded PCL/gelatin electrospun membranes were assessed in rat cranial defects. The results showed that PCL/gelatin electrospun membranes provided a diffusion-controlled SDF-1α release profile. Furthermore, the membranes loaded with different amounts of SDF-1α (50-400 ng) significantly induced stimulated chemotactic migration of BMSCs in vitro without dose-dependent effects. Eight weeks after implantation in rat cranial defects, SDF-1α loaded membranes yielded a 6-fold increase in the amount of bone formation compared to the bare membranes, albeit that contribution of in vivo BMSCs recruitment to the bone regeneration could not be ascertained. In conclusion, the results of current study indicate the potential for using SDF-1α loaded PCL/gelatin electrospun membrane as a bioactive membrane, which is beneficial for optimizing clinical application of GBR strategies.
Collapse
Affiliation(s)
- Wei Ji
- Department of Biomaterials, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Niu LN, Jiao K, Qi YP, Nikonov S, Yiu CKY, Arola DD, Gong SQ, El-Marakby A, Carrilho MRO, Hamrick MW, Hargreaves KM, Diogenes A, Chen JH, Pashley DH, Tay FR. Intrafibrillar silicification of collagen scaffolds for sustained release of stem cell homing chemokine in hard tissue regeneration. FASEB J 2012; 26:4517-29. [PMID: 22859369 DOI: 10.1096/fj.12-210211] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Traditional bone regeneration strategies relied on supplementation of biomaterials constructs with stem or progenitor cells or growth factors. By contrast, cell homing strategies employ chemokines to mobilize stem or progenitor cells from host bone marrow and tissue niches to injured sites. Although silica-based biomaterials exhibit osteogenic and angiogenic potentials, they lack cell homing capability. Stromal cell-derived factor-1 (SDF-1) plays a pivotal role in mobilization and homing of stem cells to injured tissues. In this work, we demonstrated that 3-dimensional collagen scaffolds infiltrated with intrafibrillar silica are biodegradable and highly biocompatible. They exhibit improved compressive stress-strain responses and toughness over nonsilicified collagen scaffolds. They are osteoconductive and up-regulate expressions of osteogenesis- and angiogenesis-related genes more significantly than nonsilicified collagen scaffolds. In addition, these scaffolds reversibly bind SDF-1α for sustained release of this chemokine, which exhibits in vitro cell homing characteristics. When implanted subcutaneously in an in vivo mouse model, SDF-1α-loaded silicified collagen scaffolds stimulate the formation of ectopic bone and blood capillaries within the scaffold and abrogate the need for cell seeding or supplementation of osteogenic and angiogenic growth factors. Intrafibrillar-silicified collagen scaffolds with sustained SDF-1α release represent a less costly and complex alternative to contemporary cell seeding approaches and provide new therapeutic options for in situ hard tissue regeneration.
Collapse
Affiliation(s)
- Li-Na Niu
- School of Stomatology, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Liu B, Tan XY, Liu YP, Xu XF, Li L, Xu HY, An R, Chen FM. The adjuvant use of stromal vascular fraction and platelet-rich fibrin for autologous adipose tissue transplantation. Tissue Eng Part C Methods 2012; 19:1-14. [PMID: 22681647 DOI: 10.1089/ten.tec.2012.0126] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Autologous adipose transplantation is rapidly gaining popularity for the restoration of soft tissue defects and lipoatrophy as well as for aesthetic improvements (e.g., facial reconstruction and rejuvenation). However, the current technique is crude that suffers from serious demerits, particularly the long-term unpredictability of volume maintenance due to resorption of the grafted adipose tissue and limited adipogenesis. We hypothesized that the adjuvant use of patient-derived adipose stromal vascular fraction (SVF) and platelet-rich fibrin (PRF) may enhance the overall outcome of autologous fat grafting in plastic and reconstructive surgery. Autologous SVF, with a mean cell number of (4.8±3.79)×10⁷ cells/mL and a mean cell viability of 71.8%, and autologous PRF, with sustained release of multiple angiogenic growth factors, were created before surgical use. The following adipose tissue implants were injected subcutaneously into a rabbit ear's auricula according to the following study design: 2 mL adipose granules and 0.2 mL normal saline solution (AG+NS group), 2 mL adipose granules and 0.2 mL SVF (AG+SVF group), 2 mL adipose granules and 0.2 mL PRF (AG+PRF group), or 2 mL adipose granules combined with 0.1 mL SVF and 0.1 mL PRF (AG+SVF+PRF group). Histological examinations showed that the implanted adipose granules were well engrafted in the AG+SVF+PRF group, with a higher microvessel density 4 weeks postimplantation compared with the other three groups (p<0.01). Twenty-four weeks postimplantation, the resorption rates of implanted tissue in each group were 49.39%±9.47%, 27.25%±4.37%, 36.41%±8.47%, and 17.37%±6.22%, respectively, and were significantly different (p<0.01). The results demonstrated that the efficacy of adipose tissue implantation can be enhanced by using autologous PRF and SVF as therapeutic adjuvants, offering a clinically translatable strategy for soft tissue augmentation and reconstruction.
Collapse
Affiliation(s)
- Bin Liu
- Department of Oral Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Yuan Z, Nie H, Wang S, Lee CH, Li A, Fu SY, Zhou H, Chen L, Mao JJ. Biomaterial selection for tooth regeneration. TISSUE ENGINEERING PART B-REVIEWS 2012; 17:373-88. [PMID: 21699433 DOI: 10.1089/ten.teb.2011.0041] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Biomaterials are native or synthetic polymers that act as carriers for drug delivery or scaffolds for tissue regeneration. When implanted in vivo, biomaterials should be nontoxic and exert intended functions. For tooth regeneration, biomaterials have primarily served as a scaffold for (1) transplanted stem cells and/or (2) recruitment of endogenous stem cells. This article critically synthesizes our knowledge of biomaterial use in tooth regeneration, including the selection of native and/or synthetic polymers, three-dimensional scaffold fabrication, stem cell transplantation, and stem cell homing. A tooth is a complex biological organ. Tooth loss represents the most common organ failure. Tooth regeneration encompasses not only regrowth of an entire tooth as an organ, but also biological restoration of individual components of the tooth including enamel, dentin, cementum, or dental pulp. Regeneration of tooth root represents perhaps more near-term opportunities than the regeneration of the whole tooth. In the adult, a tooth owes its biological vitality, arguably more, to the root than the crown. Biomaterials are indispensible for the regeneration of tooth root, tooth crown, dental pulp, or an entire tooth.
Collapse
Affiliation(s)
- Zhenglin Yuan
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Chen FM, Zhao YM, Jin Y, Shi S. Prospects for translational regenerative medicine. Biotechnol Adv 2011; 30:658-72. [PMID: 22138411 DOI: 10.1016/j.biotechadv.2011.11.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 11/12/2011] [Accepted: 11/15/2011] [Indexed: 02/06/2023]
Abstract
Translational medicine is an evolutional concept that encompasses the rapid translation of basic research for use in clinical disease diagnosis, prevention and treatment. It follows the idea "from bench to bedside and back", and hence relies on cooperation between laboratory research and clinical care. In the past decade, translational medicine has received unprecedented attention from scientists and clinicians and its fundamental principles have penetrated throughout biomedicine, offering a sign post that guides modern medical research toward a patient-centered focus. Translational regenerative medicine is still in its infancy, and significant basic research investment has not yet achieved satisfactory clinical outcomes for patients. In particular, there are many challenges associated with the use of cell- and tissue-based products for clinical therapies. This review summarizes the transformation and global progress in translational medicine over the past decade. The current obstacles and opportunities in translational regenerative medicine are outlined in the context of stem cell therapy and tissue engineering for the safe and effective regeneration of functional tissue. This review highlights the requirement for multi-disciplinary and inter-disciplinary cooperation to ensure the development of the best possible regenerative therapies within the shortest timeframe possible for the greatest patient benefit.
Collapse
Affiliation(s)
- Fa-Ming Chen
- Department of Periodontology & Oral Medicine, School of Stomatology, Fourth Military Medical University, Xi'an 710032, Shaanxi, PR China.
| | | | | | | |
Collapse
|