1
|
Vasconcelos F, Lima AC, Bonani W, Silva CS, Reis RL, Motta A, Migliaresi C, Martins A, Neves NM. Microfluidic-assisted electrospinning, an alternative to coaxial, as a controlled dual drug release system to treat inflammatory arthritic diseases. BIOMATERIALS ADVANCES 2022; 134:112585. [PMID: 35525755 DOI: 10.1016/j.msec.2021.112585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/19/2021] [Accepted: 11/27/2021] [Indexed: 06/14/2023]
Abstract
Inflammatory arthritic diseases are characterized by a persistent inflammation of the synovial tissues where tumor necrosis factor alpha (TNFα) and interleukin-6 (IL-6) pro-inflammatory cytokines are over-expressed, leading to progressive musculoskeletal disability. Methotrexate (MTX), a disease-modifying-anti-rheumatic drug (DMARD) commonly applied in their treatment, can be used in combination with biological-DMARDs as anti-TNFα antibody to improve the treatments efficacy. However, their systemic administration comes with severe side-effects and limited therapeutic efficacy due to their off-target distribution and short half-life. To overcome such limitations, encapsulation of clinically relevant concentrations of MTX and anti-TNFα antibody into polycaprolactone (PCL) or poly(vinyl-alcohol) (PVA) microfluidic-assisted or coaxial electrospun fibrous meshes is proposed as local controlled dual drug release systems. Release studies show that microfluidic-assisted electrospinning meshes encapsulating both drugs achieved higher concentrations than coaxials. Biological assays using human articular chondrocytes (hACs) and monocytic cells (THP-1 cell line) demonstrate that fibrous meshes encapsulating the drugs are non-toxic. The systems' efficacy is proved by a significant decrease of TNFα and IL-6 concentrations in conditioned medium of lipopolysaccharide (LPS)-stimulated THP-1 cells, especially in the presence of microfluidic-assisted electrospun meshes, when compared with THP-1 conditioned medium (59.5% and 83.9% less, respectively). Therefore, microfluidic-assisted electrospinning fibrous meshes with encapsulating drugs represent an alternative to coaxial, as a local therapy for inflammatory arthritis diseases.
Collapse
Affiliation(s)
- Filipa Vasconcelos
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana C Lima
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Walter Bonani
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy; BIOtech Research Centre, University of Trento, Via delle Regole 101, 38123 Trento, Italy
| | - Catarina S Silva
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Antonella Motta
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy; BIOtech Research Centre, University of Trento, Via delle Regole 101, 38123 Trento, Italy
| | - Claudio Migliaresi
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy; BIOtech Research Centre, University of Trento, Via delle Regole 101, 38123 Trento, Italy
| | - Albino Martins
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno M Neves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
2
|
Anders S, Grifka J. [Surgical treatment of focal cartilage defects in the knee : Indications, techniques, modifications and results]. DER ORTHOPADE 2022; 51:151-164. [PMID: 35076725 DOI: 10.1007/s00132-022-04220-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The treatment strategies for focal cartilage damage in the knee are multifarious. For established procedures, such as microfracturing (MFX), autologous matrix-induced chondrogenesis (AMIC), osteochondral transplantation (OCT) and autologous chondrocyte transplantation (ACT), well-founded, partly comparative long-term studies and overlapping size-dependent differential indications are available. Innovative cell sources, the utilization of biological scaffolds as well as biologic agents and various combinations, have recently become the focus of scientific attention; however, high regulatory demands are restricting their use in Germany. The success of every procedure is dependent on the appropriate indications, the treatment of comorbidities, such as axis deviations or ligamentous instability, the surgeon's experience and an adequate follow-up treatment.
Collapse
Affiliation(s)
- S Anders
- Orthopädische Klinik für die Universität Regensburg, Asklepios Klinikum Bad Abbach, Kaiser-Karl V.-Allee 3, 93077, Bad Abbach, Deutschland.
| | - J Grifka
- Orthopädische Klinik für die Universität Regensburg, Asklepios Klinikum Bad Abbach, Kaiser-Karl V.-Allee 3, 93077, Bad Abbach, Deutschland
| |
Collapse
|
3
|
Casanova MR, Osório H, Reis RL, Martins A, Neves NM. Chondrogenic differentiation induced by extracellular vesicles bound to a nanofibrous substrate. NPJ Regen Med 2021; 6:79. [PMID: 34799583 PMCID: PMC8604977 DOI: 10.1038/s41536-021-00190-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/11/2021] [Indexed: 12/26/2022] Open
Abstract
Extracellular vesicles (EVs) are being increasingly studied owing to its regenerative potential, namely EVs derived from human bone marrow mesenchymal stem cells (hBM-MSCs). Those can be used for controlling inflammation, repairing injury, and enhancing tissue regeneration. Differently, the potential of EVs derived from human articular chondrocytes (hACs) to promote cartilage regeneration has not been thoroughly investigated. This work aims to develop an EVs immobilization system capable of selectively bind EVs present in conditioned medium obtained from cultures of hACs or hBM-MSC. For that, an anti-CD63 antibody was immobilized at the surface of an activated and functionalized electrospun nanofibrous mesh. The chondrogenic potential of bound EVs was further assessed by culturing hBM-MSCs during 28 days under basal conditions. EVs derived from hACs cultured under differentiation medium or from chondrogenically committed hBM-MSCs induced a chondrogenic phenotype characterized by marked induction of SOX9, COMP, Aggrecan and Collagen type II, and matrix glycosaminoglycans synthesis. Indeed, both EVs immobilization systems outperformed the currently used chondroinductive strategies. These data show that naturally secreted EVs can guide the chondrogenic commitment of hBM-MSCs in the absence of any other chemical or genetic chondrogenic inductors based in medium supplementation.
Collapse
Affiliation(s)
- Marta R Casanova
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco/Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Hugo Osório
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
- Ipatimup-Institute of Molecular Pathology and Immunology of the University of Porto, University of Porto, 4200-135, Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco/Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Albino Martins
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco/Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno M Neves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco/Guimarães, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
4
|
Anders S, Grifka J. [Surgical treatment of focal cartilage defects in the knee : Indications, techniques, modifications and results]. Z Rheumatol 2021; 80:855-867. [PMID: 34581873 DOI: 10.1007/s00393-021-01084-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2021] [Indexed: 11/27/2022]
Abstract
The treatment strategies for focal cartilage damage in the knee are multifarious. For established procedures, such as microfracturing (MFX), autologous matrix-induced chondrogenesis (AMIC), osteochondral transplantation (OCT) and autologous chondrocyte transplantation (ACT), well-founded, partly comparative long-term studies and overlapping size-dependent differential indications are available. Innovative cell sources, the utilization of biological scaffolds as well as biologic agents and various combinations, have recently become the focus of scientific attention; however, high regulatory demands are restricting their use in Germany. The success of every procedure is dependent on the appropriate indications, the treatment of comorbidities, such as axis deviations or ligamentous instability, the surgeon's experience and an adequate follow-up treatment.
Collapse
Affiliation(s)
- S Anders
- Orthopädische Klinik für die Universität Regensburg, Asklepios Klinikum Bad Abbach, Kaiser-Karl V.-Allee 3, 93077, Bad Abbach, Deutschland.
| | - J Grifka
- Orthopädische Klinik für die Universität Regensburg, Asklepios Klinikum Bad Abbach, Kaiser-Karl V.-Allee 3, 93077, Bad Abbach, Deutschland
| |
Collapse
|
5
|
Casanova MR, Reis RL, Martins A, Neves NM. Fibronectin Bound to a Fibrous Substrate Has Chondrogenic Induction Properties. Biomacromolecules 2020; 21:1368-1378. [DOI: 10.1021/acs.biomac.9b01546] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Marta R. Casanova
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Barco, 4805-017 Guimarães, Portugal
| | - Albino Martins
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Nuno M. Neves
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Barco, 4805-017 Guimarães, Portugal
| |
Collapse
|
6
|
Casanova MR, Alves da Silva M, Costa-Pinto AR, Reis RL, Martins A, Neves NM. Chondrogenesis-inductive nanofibrous substrate using both biological fluids and mesenchymal stem cells from an autologous source. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:1169-1178. [DOI: 10.1016/j.msec.2019.01.069] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 12/10/2018] [Accepted: 01/16/2019] [Indexed: 02/07/2023]
|
7
|
Bacelo E, Alves da Silva M, Cunha C, Faria S, Carvalho A, Reis RL, Martins A, Neves NM. Biofunctional Nanofibrous Substrate for Local TNF-Capturing as a Strategy to Control Inflammation in Arthritic Joints. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E567. [PMID: 30965588 PMCID: PMC6523323 DOI: 10.3390/nano9040567] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/15/2019] [Accepted: 03/28/2019] [Indexed: 12/29/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that affects the synovial cavity of joints, and its pathogenesis is associated with an increased expression of pro-inflammatory cytokines, namely tumour necrosis factor-alpha (TNF-α). It has been clinically shown to have an adequate response to systemic administration of TNF-α inhibitors, although with many shortcomings. To overcome such limitations, the immobilization of a TNF-α antibody on a nanofibrous substrate to promote a localized action is herein proposed. By using this approach, the antibody has its maximum therapeutic efficacy and a prolonged therapeutic benefit, avoiding the systemic side-effects associated with conventional biological agents' therapies. To technically achieve such a purpose, the surface of electrospun nanofibers is initially activated and functionalized, allowing TNF-α antibody immobilization at a maximum concentration of 6 µg/mL. Experimental results evidence that the biofunctionalized nanofibrous substrate is effective in achieving a sustained capture of soluble TNF-α over time. Moreover, cell biology assays demonstrate that this system has no deleterious effect over human articular chondrocytes metabolism and activity. Therefore, the developed TNF-capturing system may represent a potential therapeutic approach for the local management of severely affected joints.
Collapse
Affiliation(s)
- Elisa Bacelo
- 3B's Research Group, I3Bs-Research Institute of Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e Tecnologia, Zona Industrial da Gandra, University of Minho, Barco, 4805-017 Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Barco, 4805-017 Guimarães, Portugal.
| | - Marta Alves da Silva
- 3B's Research Group, I3Bs-Research Institute of Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e Tecnologia, Zona Industrial da Gandra, University of Minho, Barco, 4805-017 Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Barco, 4805-017 Guimarães, Portugal.
| | - Cristina Cunha
- ICVS/3B's-PT Government Associate Laboratory, Barco, 4805-017 Guimarães, Portugal.
- Life and Health Sciences Research Institute, Scholl of Medicine, Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal.
| | - Susana Faria
- Department of Mathematics for Science and Technology Research CMAT, Campus of Azurém, University of Minho, 4800-058 Guimarães, Portugal.
| | - Agostinho Carvalho
- ICVS/3B's-PT Government Associate Laboratory, Barco, 4805-017 Guimarães, Portugal.
- Life and Health Sciences Research Institute, Scholl of Medicine, Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal.
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute of Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e Tecnologia, Zona Industrial da Gandra, University of Minho, Barco, 4805-017 Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Barco, 4805-017 Guimarães, Portugal.
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Barco, 4805-017 Guimarães, Portugal.
| | - Albino Martins
- 3B's Research Group, I3Bs-Research Institute of Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e Tecnologia, Zona Industrial da Gandra, University of Minho, Barco, 4805-017 Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Barco, 4805-017 Guimarães, Portugal.
| | - Nuno M Neves
- 3B's Research Group, I3Bs-Research Institute of Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e Tecnologia, Zona Industrial da Gandra, University of Minho, Barco, 4805-017 Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Barco, 4805-017 Guimarães, Portugal.
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Barco, 4805-017 Guimarães, Portugal.
| |
Collapse
|
8
|
Silva SS, Oliveira NM, Oliveira MB, da Costa DPS, Naskar D, Mano JF, Kundu SC, Reis RL. Fabrication and characterization of Eri silk fibers-based sponges for biomedical application. Acta Biomater 2016; 32:178-189. [PMID: 26766632 DOI: 10.1016/j.actbio.2016.01.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 12/29/2015] [Accepted: 01/04/2016] [Indexed: 01/14/2023]
Abstract
Cocoon-derived semi-domesticated Eri silk fibers still lack exploitation for tissue engineering applications due to their poor solubility using conventional methods. The present work explores the ability to process cocoon fibers of non-mulberry Eri silk (Samia/Philosamia ricini) into sponges through a green approach using ionic liquid (IL)--1-buthyl-imidazolium acetate as a solvent. The formation of β-sheet structures during Eri silk/IL gelation was acquired by exposing the Eri silk/IL gels to a saturated atmosphere composed of two different solvents: (i) isopropanol/ethanol (physical stabilization) and (ii) genipin, a natural crosslinker, dissolved in ethanol (chemical crosslinking). The sponges were then obtained by freeze-drying. This approach promotes the formation of both stable and ordered non-crosslinked Eri silk fibroin matrices. Moreover, genipin-crosslinked silk fibroin sponges presenting high height recovery capacity after compression, high swelling degree and suitable mechanical properties for tissue engineering applications were produced. The incorporation of a model drug--ibuprofen--and the corresponding release study from the loaded sponges demonstrated the potential of using these matrices as effective drug delivery systems. The assessment of the biological performance of ATDC5 chondrocyte-like cells in contact with the developed sponges showed the promotion of cell adhesion and proliferation, as well as extracellular matrix production within 2 weeks of culture. Sponges' intrinsic properties and biological findings open up their potential use for biomedical applications. STATEMENT OF SIGNIFICANCE This work addresses the preparation and characterization of non-mulberry cocoon-derived Eri silk sponges. The insolubility of cocoons-derived non-mulberry silkworms impairs their processability and applications in the healthcare field. We used a green approach with ionic liquids to overcome the lack solubility of such silk fibers. The formation of beta-sheet structures into Eri-based sponges was physically and chemically induced. The sponges were obtained by freeze-drying. The developed structures exhibited flexibility to adapt and recover their shapes upon application and subsequent removal of load, high swelling degree, ability to load an anti-inflammatory drug and to promote its sustained release. They promoted in vitro cellular adhesion, proliferation and extracellular matrix production of a chondrocyte-like cell line, opening up their potential application for biomedical applications.
Collapse
|
9
|
Monteiro N, Martins A, Reis RL, Neves NM. Nanoparticle-based bioactive agent release systems for bone and cartilage tissue engineering. Regen Ther 2015; 1:109-118. [PMID: 31245450 PMCID: PMC6581799 DOI: 10.1016/j.reth.2015.05.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 04/07/2015] [Accepted: 05/25/2015] [Indexed: 11/22/2022] Open
Abstract
The inability to deliver bioactive agents locally in a transient but sustained manner is one of the challenges on the development of bio-functionalized scaffolds for tissue engineering (TE) and regenerative medicine. The mode of release is especially relevant when the bioactive agent is a growth factor (GF), because the dose and the spatiotemporal release of such agents at the site of injury are crucial to achieve a successful outcome. Strategies that combine scaffolds and drug delivery systems have the potential to provide more effective tissue regeneration relative to current therapies. Nanoparticles (NPs) can protect the bioactive agents, control its profile, decrease the occurrence and severity of side effects and deliver the bioactive agent to the target cells maximizing its effect. Scaffolds containing NPs loaded with bioactive agents can be used for their local delivery, enabling site-specific pharmacological effects such as the induction of cell proliferation and differentiation, and, consequently, neo-tissue formation. This review aims to describe the concept of combining NPs with scaffolds, and the current efforts aiming to develop highly multi-functional bioactive agent release systems, with the emphasis on their application in TE of connective tissues.
Collapse
Affiliation(s)
- Nelson Monteiro
- 3B's Research Group – Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra S. Cláudio do Barco, 4806-909 Caldas das Taipas, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Albino Martins
- 3B's Research Group – Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra S. Cláudio do Barco, 4806-909 Caldas das Taipas, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3B's Research Group – Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra S. Cláudio do Barco, 4806-909 Caldas das Taipas, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno M. Neves
- 3B's Research Group – Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra S. Cláudio do Barco, 4806-909 Caldas das Taipas, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
10
|
Abstract
Joint destruction occurs in both osteoarthritis and rheumatoid arthritis. Even in the era of biologic agents, this destruction can be delayed but not averted. As cartilage has limited ability to self-regenerate, joint arthroplasty is required. Here, we outline current tissue engineering procedures (including autologous chondrocyte implantation and in situ mesenchymal stem cell recruitment) that are routinely applied for the regenerative treatment of injured or early osteoarthritic cartilage. Potential future regenerative therapies, including administration of multipotent or pluripotent stem cells, are also discussed. In the future, cell-free, material-based (for cartilage lesions) or cell-free, factor-based (for osteoarthritic cartilage) therapies to facilitate the recruitment of repair cells and improve cartilage metabolism are likely to become more important. Moreover, delivery of anti-inflammatory factors or immunomodulatory cells could be a regenerative treatment option for rheumatoid arthritis. Tissue engineering faces a crucial phase to translate products into clinical routine and the regulatory framework for cell-based products in particular is an important issue.
Collapse
|
11
|
Santo VE, Gomes ME, Mano JF, Reis RL. From nano- to macro-scale: nanotechnology approaches for spatially controlled delivery of bioactive factors for bone and cartilage engineering. Nanomedicine (Lond) 2012; 7:1045-66. [DOI: 10.2217/nnm.12.78] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The field of biomaterials has advanced towards the molecular and nanoscale design of bioactive systems for tissue engineering, regenerative medicine and drug delivery. Spatial cues are displayed in the 3D extracellular matrix and can include signaling gradients, such as those observed during chemotaxis. Architectures range from the nanometer to the centimeter length scales as exemplified by extracellular matrix fibers, cells and macroscopic shapes. The main focus of this review is the application of a biomimetic approach by the combination of architectural cues, obtained through the application of micro- and nanofabrication techniques, with the ability to sequester and release growth factors and other bioactive agents in a spatiotemporal controlled manner for bone and cartilage engineering.
Collapse
Affiliation(s)
- Vítor E Santo
- 3B’s Research Group - Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal
| | - Manuela E Gomes
- 3B’s Research Group - Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal
| | - João F Mano
- 3B’s Research Group - Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal
| | - Rui L Reis
- 3B’s Research Group - Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal
| |
Collapse
|
12
|
Miao B, Song C, Ma G. Injectable thermosensitive hydrogels for intra-articular delivery of methotrexate. J Appl Polym Sci 2011. [DOI: 10.1002/app.34332] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|