1
|
Zhou Y, Hu Z, Ge M, Jin W, Tang R, Li Q, Xu W, Shi J, Xie Z. Intraosseous Injection of Calcium Phosphate Polymer-Induced Liquid Precursor Increases Bone Density and Improves Early Implant Osseointegration in Ovariectomized Rats. Int J Nanomedicine 2021; 16:6217-6229. [PMID: 34531654 PMCID: PMC8439716 DOI: 10.2147/ijn.s321882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
PURPOSE Osteoporosis, due to bone loss and structural deterioration, is a risk factor for dental implant failure, as it impedes initial stability and osseointegration. We aim to assess the effects of calcium phosphate polymer-induced liquid precursor (CaP-PILP) treatment, which significantly increases bone density and improves early implant osseointegration in ovariectomized rats. METHODS In this study, CaP-PILP was synthesized and characterized through TEM, FTIR and XRD. A rat model of osteoporosis was generated by ovariectomy. CaP-PILP or hydroxyapatite (HAP, negative control) was injected into the tibia, and the resulting changes in bone quality were determined. Further, implants were installed in the treated tibias, and implantation characteristics were assessed after 4 weeks. RESULTS The CaP-PILP group had superior bone repair. Importantly, CaP-PILP had excellent properties, similar to those of normal bone, in terms of implant osseointegration. In vivo experiment displayed that CaP-PILP group had better bone contact rate (65.97±3.176) than HAP and OVX groups. Meanwhile, a mound of mature and continuous new bone formed. Moreover, the values of BIC and BA showed no significant difference between the CaP-PILP group and the sham group. CONCLUSION In summary, CaP-PILP is a promising material for application in poor-quality bones to improve implant success rates in patients with osteoporosis. This research provides new perspectives on the application of nano-apatite materials in bone repair.
Collapse
Affiliation(s)
- Yanyan Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People’s Republic of China
| | - Zihe Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People’s Republic of China
| | - Mingjie Ge
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People’s Republic of China
| | - Wenjing Jin
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People’s Republic of China
| | - Ruikang Tang
- Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, Hangzhou, 310027, People’s Republic of China
| | - Qi Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People’s Republic of China
| | - Weijian Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People’s Republic of China
| | - Jue Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People’s Republic of China
| | - Zhijian Xie
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People’s Republic of China
| |
Collapse
|
2
|
Rajan RK, Chandran S, Sreelatha HV, John A, Parameswaran R. Pamidronate-Encapsulated Electrospun Polycaprolactone-Based Composite Scaffolds for Osteoporotic Bone Defect Repair. ACS APPLIED BIO MATERIALS 2020; 3:1924-1933. [PMID: 35025315 DOI: 10.1021/acsabm.9b01077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bone fractures associated with osteoporosis are a major concern all over the world especially among the elderly population and postmenopausal women. Bisphosphonates (BPs) are widely used clinically for both treatment and prevention of osteoporosis despite their poor oral bioavailability and undesired side effects. Local delivery of BPs from polymeric scaffolds can improve the efficacy and overcome the undesirable side effects associated with oral bisphosphonate therapy. The aim of the present study is to explore the effectiveness of pamidronate (PDS) encapsulated electrospun polycaprolactone/polycaprolactone-polyethyleneglycol-polycaprolactone/nanohydroxyapatite (PCH) scaffolds in healing critical-size calvarial defects in an osteoporotic rat animal model. Prior to implantation studies, the effect of PDS on the fiber architecture, mechanical properties, and in vitro degradation behavior was evaluated. The in vitro release of PDS from PCH scaffolds in phosphate buffer saline (PBS) at 37 °C was monitored for a period of 21 days. An osteoporotic animal model was successfully developed in Wistar rats by bilateral ovariectomy. Results of micro CT (computed tomography) and blood serum analysis confirmed the osteoporotic model induction in rats. Critical-size calvarial defects of 8 mm size were created in osteoporotic rats, and the in vivo osteogenic efficacy of PCH-PDS scaffolds was evaluated by micro CT, histology, and histomorphometry. Micro CT analysis showed improved osseous tissue integration with the use of PDS-loaded PCH scaffolds after 12 week post implantation. Histology, density measurement using micro CT, and histomorphometry further substantiate that PCH-PDS scaffolds have the potential to be used for the repair of osteoporotic bone defects. Our findings revealed that incorporation of PDS onto PCH scaffolds provides a promising biomaterial that could be used for regenerating osteoporosis-related fractures.
Collapse
Affiliation(s)
- Remya K Rajan
- Division of Polymeric Medical Devices, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology-Trivandrum, Thiruvananthapuram, Kerala 695012, India
| | - Sunitha Chandran
- Department of Microbiology and Immunology, Louisiana State University Shreveport, Shreveport, Louisiana 71115-2301, United States
| | - Harikrishnan V Sreelatha
- Division of Laboratory Animal Science, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology-Trivandrum, Thiruvananthapuram, Kerala 695012, India
| | - Annie John
- Department of Biochemistry, University of Kerala, Trivandrum, Kerala 695034, India
| | - Ramesh Parameswaran
- Division of Polymeric Medical Devices, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology-Trivandrum, Thiruvananthapuram, Kerala 695012, India
| |
Collapse
|
3
|
Functionalization of Ceramic Coatings for Enhancing Integration in Osteoporotic Bone: A Systematic Review. COATINGS 2019. [DOI: 10.3390/coatings9050312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background: The success of reconstructive orthopaedic surgery strongly depends on the mechanical and biological integration between the prosthesis and the host bone tissue. Progressive population ageing with increased frequency of altered bone metabolism conditions requires new strategies for ensuring an early implant fixation and long-term stability. Ceramic materials and ceramic-based coatings, owing to the release of calcium phosphate and to the precipitation of a biological apatite at the bone-implant interface, are able to promote a strong bonding between the host bone and the implant. Methods: The aim of the present systematic review is the analysis of the existing literature on the functionalization strategies for improving the implant osteointegration in osteoporotic bone and their relative translation into the clinical practice. The review process, conducted on two electronic databases, identified 47 eligible preclinical studies and 5 clinical trials. Results: Preclinical data analysis showed that functionalization with both organic and inorganic molecules usually improves osseointegration in the osteoporotic condition, assessed mainly in rodent models. Clinical studies, mainly retrospective, have tested no functionalization strategies. Registered trademarks materials have been investigated and there is lack of information about the micro- or nano- topography of ceramics. Conclusions: Ceramic materials/coatings functionalization obtained promising results in improving implant osseointegration even in osteoporotic conditions but preclinical evidence has not been fully translated to clinical applications.
Collapse
|
5
|
Factors Affecting Dental Implant Stability Measured Using the Ostell Mentor Device: A Systematic Review. IMPLANT DENT 2017; 24:565-77. [PMID: 26244855 DOI: 10.1097/id.0000000000000308] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The aim of this study was to review the literature on factors that may affect dental implant stability as measured with the Ostell mentor device. MATERIALS AND METHODS A systematic search of the literature was performed in Pubmed, Scopus, and Cochrane databases using dental implants, stability, and resonance frequency analysis as key words. RESULTS The most relevant randomized controlled trials and clinical trials (n = 39) were selected from among 264 articles. CONCLUSIONS Many factors can affect dental implant stability as measured with the Ostell mentor device. This may be a useful instrument for deciding the timing of implant loading, but additional research is required to establish the reliability and predictability of resonance frequency analysis for the future osseointegration of dental implants, which remains controversial.
Collapse
|
6
|
Alghamdi HS, van den Beucken JJ, Jansen JA. Osteoporotic Rat Models for Evaluation of Osseointegration of Bone Implants. Tissue Eng Part C Methods 2014; 20:493-505. [DOI: 10.1089/ten.tec.2013.0327] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Hamdan S. Alghamdi
- Department of Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | | | - John A. Jansen
- Department of Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Liu P, Domingue E, Ayers DC, Song J. Modification of Ti6Al4V substrates with well-defined zwitterionic polysulfobetaine brushes for improved surface mineralization. ACS APPLIED MATERIALS & INTERFACES 2014; 6:7141-52. [PMID: 24828749 PMCID: PMC4039344 DOI: 10.1021/am501967y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Osteoconductive mineral coatings are beneficial for improving the osteointegration of metallic orthopedic/dental implants, but achieving adequate structural integration between the surface minerals and underlying metallic substrates has been a significant challenge. Here, we report covalent grafting of zwitterionic poly(sulfobetaine methacrylate) (pSBMA) brushes on the Ti6Al4V substrates to promote the surface-mineralization of hydroxyapatite with enhanced surface mineral coverage and mineral-substrate interfacial adhesion. We first optimized the atom transfer radical polymerization (ATRP) conditions for synthesizing pSBMA polymers in solution. Well-controlled pSBMA polymers (relative molecular weight up to 26 kD, PDI = 1.17) with high conversions were obtained when the ATRP was carried out in trifluoroethanol/ionic liquid system at 60 °C. Applying identical polymerization conditions, surface-initiated atom transfer radical polymerization (SI-ATRP) was carried out to graft zwitterionic pSBMA brushes (PDI < 1.20) from the Ti6Al4V substrates, generating a stable superhydrophilic and low-fouling surface coating without compromising the bulk mechanic property of the Ti6Al4V substrates. The zwitterionic pSBMA surface brushes, capable of attracting both cationic and anionic precursor ions during calcium phosphate apatite mineralization, increased the surface mineral coverage from 32% to 71%, and significantly reinforced the attachment of the apatite crystals on the Ti6Al4V substrate. This facile approach to surface modification of metallic substrates can be exploited to generate multifunctional polymer coatings and improve the performance of metallic implants in skeletal tissue engineering and orthopedic and dental care.
Collapse
|
8
|
Ross RD, Hamilton JL, Wilson BM, Sumner DR, Virdi AS. Pharmacologic augmentation of implant fixation in osteopenic bone. Curr Osteoporos Rep 2014; 12:55-64. [PMID: 24293098 DOI: 10.1007/s11914-013-0182-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Osteoporosis presents a challenge for successful implant fixation due to an impaired healing response. Preclinical studies have consistently reported reduced osseointegration capability in trabecular bone. Although clinical studies of implant success in dentistry have not found a negative effect due to osteoporosis, low bone mass is a significant risk factor for implant migration in orthopedics. Pharmacologic treatment options that limit bone resorption or upregulate formation have been studied preclinically. While, both treatment options improve implant fixation, direct comparisons to-date have found anti-catabolic more effective than anabolic treatments for establishing implant fixation, but combination approaches are better than either treatment alone. Clinically, anti-catabolic treatments, particularly bisphosphonates have been shown to increase the longevity of implants, while limited clinical evidence on the effects of anabolic treatment exists. Preclinical experiments are needed to determine the effects of osteoporosis and subsequent treatment on the long-term maintenance of fixation and recovery after bone loss.
Collapse
Affiliation(s)
- R D Ross
- Anatomy and Cell Biology, Rush University Medical Center, 600 S. Paulina Street, Suite # AcFc 507, Chicago, IL, 60612, USA
| | | | | | | | | |
Collapse
|
10
|
Alghamdi HS, Jansen JA. Bone Regeneration Associated with Nontherapeutic and Therapeutic Surface Coatings for Dental Implants in Osteoporosis. TISSUE ENGINEERING PART B-REVIEWS 2013; 19:233-53. [DOI: 10.1089/ten.teb.2012.0400] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hamdan S. Alghamdi
- Department of Biomaterials, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - John A. Jansen
- Department of Biomaterials, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| |
Collapse
|