1
|
Jeannerat A, Peneveyre C, Jaccoud S, Philippe V, Scaletta C, Hirt-Burri N, Abdel-Sayed P, Martin R, Applegate LA, Pioletti DP, Laurent A. Banked Primary Progenitor Cells for Allogeneic Intervertebral Disc (IVD) Therapy: Preclinical Qualification and Functional Optimization within a Cell Spheroid Formulation Process. Pharmaceutics 2024; 16:1274. [PMID: 39458605 PMCID: PMC11510186 DOI: 10.3390/pharmaceutics16101274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Biological products are emerging as therapeutic management options for intervertebral disc (IVD) degenerative affections and lower back pain. Autologous and allogeneic cell therapy protocols have been clinically implemented for IVD repair. Therein, several manufacturing process design considerations were shown to significantly influence clinical outcomes. The primary objective of this study was to preclinically qualify (chondrogenic potential, safety, resistance to hypoxic and inflammatory stimuli) cryopreserved primary progenitor cells (clinical grade FE002-Disc cells) as a potential cell source in IVD repair/regeneration. The secondary objective of this study was to assess the cell source's delivery potential as cell spheroids (optimization of culture conditions, potential storage solutions). Methods/Results: Safety (soft agar transformation, β-galactosidase, telomerase activity) and functionality-related assays (hypoxic and inflammatory challenge) confirmed that the investigated cellular active substance was highly sustainable in defined cell banking workflows, despite possessing a finite in vitro lifespan. Functionality-related assays confirmed that the retained manufacturing process yielded strong collagen II and glycosaminoglycan (GAG) synthesis in the spheroids in 3-week chondrogenic induction. Then, the impacts of various process parameters (induction medium composition, hypoxic incubation, terminal spheroid lyophilization) were studied to gain insights on their criticality. Finally, an optimal set of technical specifications (use of 10 nM dexamethasone for chondrogenic induction, 2% O2 incubation of spheroids) was set forth, based on specific fine tuning of finished product critical functional attributes. Conclusions: Generally, this study qualified the considered FE002-Disc progenitor cell source for further preclinical investigation based on safety, quality, and functionality datasets. The novelty and significance of this study resided in the establishment of defined processes for preparing fresh, off-the-freezer, or off-the-shelf IVD spheroids using a preclinically qualified allogeneic human cell source. Overall, this study underscored the importance of using robust product components and optimal manufacturing process variants for maximization of finished cell-based formulation quality attributes.
Collapse
Affiliation(s)
- Annick Jeannerat
- Development Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland; (A.J.); (C.P.)
| | - Cédric Peneveyre
- Development Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland; (A.J.); (C.P.)
| | - Sandra Jaccoud
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (S.J.); (V.P.); (C.S.); (N.H.-B.); (P.A.-S.); (L.A.A.)
- Laboratory of Biomechanical Orthopedics, Federal Polytechnic School of Lausanne, CH-1015 Lausanne, Switzerland
| | - Virginie Philippe
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (S.J.); (V.P.); (C.S.); (N.H.-B.); (P.A.-S.); (L.A.A.)
- Orthopedics and Traumatology Unit, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland;
| | - Corinne Scaletta
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (S.J.); (V.P.); (C.S.); (N.H.-B.); (P.A.-S.); (L.A.A.)
| | - Nathalie Hirt-Burri
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (S.J.); (V.P.); (C.S.); (N.H.-B.); (P.A.-S.); (L.A.A.)
| | - Philippe Abdel-Sayed
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (S.J.); (V.P.); (C.S.); (N.H.-B.); (P.A.-S.); (L.A.A.)
- STI School of Engineering, Federal Polytechnic School of Lausanne, CH-1015 Lausanne, Switzerland
| | - Robin Martin
- Orthopedics and Traumatology Unit, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland;
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (S.J.); (V.P.); (C.S.); (N.H.-B.); (P.A.-S.); (L.A.A.)
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, CH-8057 Zurich, Switzerland
- Oxford OSCAR Suzhou Center, Oxford University, Suzhou 215123, China
| | - Dominique P. Pioletti
- Laboratory of Biomechanical Orthopedics, Federal Polytechnic School of Lausanne, CH-1015 Lausanne, Switzerland
| | - Alexis Laurent
- Development Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland; (A.J.); (C.P.)
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (S.J.); (V.P.); (C.S.); (N.H.-B.); (P.A.-S.); (L.A.A.)
| |
Collapse
|
2
|
McDonnell EE, Ní Néill T, Wilson N, Darwish SL, Butler JS, Buckley CT. In silico modeling the potential clinical effect of growth factor treatment on the metabolism of human nucleus pulposus cells. JOR Spine 2024; 7:e1352. [PMID: 39092165 PMCID: PMC11291302 DOI: 10.1002/jsp2.1352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/14/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Background While growth factors have the potential to halt degeneration and decrease inflammation in animal models, the literature investigating the effect of dosage on human cells is lacking. Moreover, despite the completion of clinical trials using growth differentiation factor-5 (GDF-5), no results have been publicly released. Aims The overall objective was to quantitatively assess the effect of three clinically relevant concentrations of GDF-5 (0.25, 1, and 2 mg) as a therapeutic for disc regeneration. Materials and methods Firstly, this work experimentally determined the effects of GDF-5 concentration on the metabolic and matrix synthesis rates of human nucleus pulposus (NP) cells. Secondly, in silico modeling was employed to predict the subsequent regenerative effect of different GDF-5 treatments (± cells). Results This study suggests a trend of increased matrix synthesis with 0.25 and 1 mg of GDF-5. However, 2 mg of GDF-5 significantly upregulates oxygen consumption. Despite this, in silico models highlight the potential of growth factors in promoting matrix synthesis compared to cell-only treatments, without significantly perturbing the nutrient microenvironment. Discussion This work elucidates the potential of GDF-5 on human NP cells. Although the results did not reveal statistical differences across all doses, the variability and response among donors is an interesting finding. It highlights the complexity of human response to biological treatments and reinforces the need for further human research and personalized approaches. Furthermore, this study raises a crucial question about whether these potential biologics are more regenerative in nature or better suited as prophylactic therapies for younger patient groups. Conclusion Biological agents exhibit unique characteristics and features, demanding tailored development strategies and individualized assessments rather than a one-size-fits-all approach. Therefore, the journey to realizing the full potential of biological therapies is long and costly. Nonetheless, it holds the promise of revolutionizing spinal healthcare and improving the quality of life for patients suffering from discogenic back pain.
Collapse
Affiliation(s)
- Emily E. McDonnell
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
| | - Tara Ní Néill
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
| | - Niamh Wilson
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
| | - Stacey L. Darwish
- National Spinal Injuries UnitMater Misericordiae University HospitalDublinIreland
- School of MedicineUniversity College DublinDublinIreland
- Department of Trauma and OrthopaedicsNational Orthopaedic Hospital, CappaghDublinIreland
- Department of OrthopaedicsSt Vincent's University HospitalDublinIreland
| | - Joseph S. Butler
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- National Spinal Injuries UnitMater Misericordiae University HospitalDublinIreland
- School of MedicineUniversity College DublinDublinIreland
| | - Conor T. Buckley
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland, Trinity College DublinThe University of DublinDublinIreland
- Tissue Engineering Research Group, Department of Anatomy and Regenerative MedicineRoyal College of Surgeons in IrelandDublinIreland
| |
Collapse
|
3
|
Levis H, Weston J, Austin B, Larsen B, Ginley-Hidinger M, Gullbrand SE, Lawrence B, Bowles RD. Multiplex gene editing to promote cell survival using low-pH clustered regularly interspaced short palindromic repeats activation (CRISPRa) gene perturbation. Cytotherapy 2023; 25:1069-1079. [PMID: 37245150 PMCID: PMC10527564 DOI: 10.1016/j.jcyt.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/29/2023]
Abstract
BACKGROUND AIMS Lower back pain is the leading cause of disability worldwide and is often linked to degenerative disc disease (DDD), the breakdown of intervertebral discs. The majority of treatment options for DDD are palliative, with clinicians prescribing medication or physical therapy to return the patient to work. Cell therapies are promising treatment options with the potential to restore functional physiological tissue and treat the underlying causes of DDD. DDD is characterized by biochemical changes in the microenvironment of the disc, including changes in nutrient levels, hypoxia, and changes in pH. Stem cell therapies are promising therapies to treat DDD, but the acidic environment in a degenerating disc significantly hinders the viability of stem cells, affecting their efficacy. Clustered regularly interspaced short palindromic repeats (CRISPR) systems allow us to engineer cell phenotypes in a well-regulated and controlled manner. Recently, CRISPR gene perturbation screens have assessed fitness, growth and provided a means for specific cell phenotype characterization. METHODS In this study, we use a CRISPR-activation (a) gene perturbation screen to identify gene upregulation targets that enhance adipose-derived stem cell survival in acidic culture conditions. RESULTS We identified 1213 prospective pro-survival genes and systematically narrowed these down to 20 genes for validation. We further narrowed down our selection to the top five prospective genes using Cell Counting Kit-8 cell viability assays in naïve adipose-derived stem cells and ACAN/Col2 CRISPRa upregulated stem cells. Finally, we examined the extracellular matrix-producing abilities of multiplex ACAN/Col2-pro-survival edited cells in pellet culture. CONCLUSIONS Using the results from the CRISPRa screen, we are able to engineer desirable cell phenotypes to improve cell viability for the potential treatment of DDD and other disease states that expose cell therapies to acidic environments, while also providing broader knowledge on genes regulating low-pH cell survival.
Collapse
Affiliation(s)
- Hunter Levis
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, Utah, USA
| | - Jacob Weston
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, Utah, USA
| | - Brooke Austin
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, Utah, USA
| | - Bryce Larsen
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, Utah, USA
| | | | - Sarah E Gullbrand
- Department of Orthopedic Surgery, The University of Pennsylvania, Philadelphia, Pennsylvania, USA; Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| | - Brandon Lawrence
- Department of Orthopedic Surgery, The University of Utah, Salt Lake City, Utah, USA
| | - Robby D Bowles
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, Utah, USA; Department of Orthopedic Surgery, The University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
4
|
McDonnell EE, Wilson N, Barcellona MN, Ní Néill T, Bagnall J, Brama PAJ, Cunniffe GM, Darwish SL, Butler JS, Buckley CT. Preclinical to clinical translation for intervertebral disc repair: Effects of species-specific scale, metabolism, and matrix synthesis rates on cell-based regeneration. JOR Spine 2023; 6:e1279. [PMID: 37780829 PMCID: PMC10540833 DOI: 10.1002/jsp2.1279] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/15/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023] Open
Abstract
Background A significant hurdle for potential cell-based therapies is the subsequent survival and regenerative capacity of implanted cells. While many exciting developments have demonstrated promise preclinically, cell-based therapies for intervertebral disc (IVD) degeneration fail to translate equivalent clinical efficacy. Aims This work aims to ascertain the clinical relevance of both a small and large animal model by experimentally investigating and comparing these animal models to human from the perspective of anatomical scale and their cellular metabolic and regenerative potential. Materials and Methods First, this work experimentally investigated species-specific geometrical scale, native cell density, nutrient metabolism, and matrix synthesis rates for rat, goat, and human disc cells in a 3D microspheroid configuration. Second, these parameters were employed in silico to elucidate species-specific nutrient microenvironments and predict differences in temporal regeneration between animal models. Results This work presents in silico models which correlate favorably to preclinical literature in terms of the capabilities of animal regeneration and predict that compromised nutrition is not a significant challenge in small animal discs. On the contrary, it highlights a very fine clinical balance between an adequate cell dose for sufficient repair, through de novo matrix deposition, without exacerbating the human microenvironmental niche. Discussion Overall, this work aims to provide a path towards understanding the effect of cell injection number on the nutrient microenvironment and the "time to regeneration" between preclinical animal models and the large human IVD. While these findings help to explain failed translation of promising preclinical data and the limited results emerging from clinical trials at present, they also enable the research field and clinicians to manage expectations on cell-based regeneration. Conclusion Ultimately, this work provides a platform to inform the design of clinical trials, and as computing power and software capabilities increase in the future, it is conceivable that generation of patient-specific models could be used for patient assessment, as well as pre- and intraoperative planning.
Collapse
Affiliation(s)
- Emily E. McDonnell
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
| | - Niamh Wilson
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
| | - Marcos N. Barcellona
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
| | - Tara Ní Néill
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
| | - Jessica Bagnall
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
| | - Pieter A. J. Brama
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- School of Veterinary MedicineUniversity College DublinDublinIreland
| | - Gráinne M. Cunniffe
- National Spinal Injuries UnitMater Misericordiae University HospitalDublinIreland
- School of MedicineUniversity College DublinDublinIreland
| | - Stacey L. Darwish
- National Spinal Injuries UnitMater Misericordiae University HospitalDublinIreland
- School of MedicineUniversity College DublinDublinIreland
- National Orthopaedic HospitalDublinIreland
- St Vincent's University HospitalDublinIreland
| | - Joseph S. Butler
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- National Spinal Injuries UnitMater Misericordiae University HospitalDublinIreland
- School of MedicineUniversity College DublinDublinIreland
| | - Conor T. Buckley
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland & Trinity College DublinThe University of DublinDublinIreland
- Tissue Engineering Research Group, Department of Anatomy and Regenerative MedicineRoyal College of Surgeons in IrelandDublinIreland
| |
Collapse
|
5
|
McDonnell EE, Buckley CT. Two- and three-dimensional in vitro nucleus pulposus cultures: An in silico analysis of local nutrient microenvironments. JOR Spine 2022; 5:e1222. [PMID: 36203867 PMCID: PMC9520769 DOI: 10.1002/jsp2.1222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 11/20/2022] Open
Abstract
Background It is well established that the unique biochemical microenvironment of the intervertebral disc plays a predominant role in cell viability and biosynthesis. However, unless the effect of microenvironmental conditions is primary to a study objective, in vitro culture parameters that are critical for reproducibility are both varied and not routinely reported. Aims This work aims to investigate the local microenvironments of commonly used culture configurations, highlighting physiological relevance, potential discrepancies, and elucidating possible heterogeneity across the research field. Materials and Methods This work uses nutrient-transport in silico models to reflect on the effect of often underappreciated parameters, such as culture geometry and diffusional distance (vessel, media volume, construct size), seeding density, and external boundary conditions on the local microenvironment of two-dimensional (2D) and three-dimensional (3D) in vitro culture systems. Results We elucidate important discrepancies between the external boundary conditions such as the incubator level or media concentrations and the actual local cellular concentrations. Oxygen concentration and cell seeding density were found to be highly influential parameters and require utmost consideration when utilizing 3D culture systems. Discussion This work highlights that large variations in the local nutrient microenvironment can easily be established without consideration of several key parameters. Without careful deliberation of the microenvironment within each specific and unique system, there is the potential to confound in vitro results leading to heterogeneous results across the research field in terms of biosynthesis and matrix composition. Conclusion Overall, this calls for a greater appreciation of key parameters when designing in vitro experiments. Better harmony and standardization of physiologically relevant local microenvironments are needed to push toward reproducibility and successful translation of findings across the research field.
Collapse
Affiliation(s)
- Emily E. McDonnell
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
| | - Conor T. Buckley
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland & Trinity College DublinThe University of DublinDublinIreland
- Tissue Engineering Research Group, Department of Anatomy and Regenerative MedicineRoyal College of Surgeons in IrelandDublinIreland
| |
Collapse
|
6
|
Barcellona MN, McDonnell EE, Samuel S, Buckley CT. Rat tail models for the assessment of injectable nucleus pulposus regeneration strategies. JOR Spine 2022; 5:e1216. [PMID: 36203865 PMCID: PMC9520766 DOI: 10.1002/jsp2.1216] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/20/2022] [Accepted: 06/26/2022] [Indexed: 11/12/2022] Open
Abstract
Back pain is a global epidemiological and socioeconomic problem often associated with intervertebral disc degeneration; a condition believed to initiate in the nucleus pulposus (NP). There is considerable interest in developing early therapeutic interventions to target the NP and halt degeneration. Rat caudal models of disc degeneration have demonstrated significant utility in the study of disease progression and its impact on tissue structure, composition, and mechanical performance. One significant advantage of the caudal model is the ease of access and high throughput nature. However, considerable variability exists across the literature in terms of experimental setup and parameters. The objective of this article is to aid researchers in the design and development of caudal puncture models by providing details and insight into the most reported experimental parameters. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were employed to screen the existing literature and 80 manuscripts met the inclusion criteria. Disc geometry, surgical approaches, effect of needle gauge size to induce degeneration, therapeutic volume, outcome measures, and associated limitations are considered and discussed, and a range of recommendations based on different research questions are presented.
Collapse
Affiliation(s)
- Marcos N. Barcellona
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
| | - Emily E. McDonnell
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
| | - Shani Samuel
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
| | - Conor T. Buckley
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland & Trinity College DublinThe University of DublinDublinIreland
- Tissue Engineering Research Group, Department of Anatomy and Regenerative MedicineRoyal College of Surgeons in IrelandDublin 2Ireland
| |
Collapse
|
7
|
McDonnell EE, Buckley CT. Consolidating and re-evaluating the human disc nutrient microenvironment. JOR Spine 2022; 5:e1192. [PMID: 35386756 PMCID: PMC8966889 DOI: 10.1002/jsp2.1192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 12/14/2021] [Accepted: 01/07/2022] [Indexed: 12/19/2022] Open
Abstract
Background Despite exciting advances in regenerative medicine, cell-based strategies for treating degenerative disc disease remain in their infancy. To maximize the potential for successful clinical translation, a more thorough understanding of the in vivo microenvironment is needed to better determine and predict how cell therapies will respond when administered in vivo. Aims This work aims to reflect on the in vivo nutrient microenvironment of the degenerating IVD through consolidating what has already been measured together with investigative in silico models. Materials and Methods This work uses in silico modeling, underpinned by more recent experimentally determined parameters of degeneration and nutrient transport from the literature, to re-evaluate the current knowledge in terms of grade-specific stages of degeneration. Results Through modeling only the metabolically active cell population, this work predicts slightly higher glucose concentrations compared to previous in silico models, while the predicted results show good agreement with previous intradiscal pH and oxygen measurements. Increasing calcification with degeneration limits nutrient transport into the IVD and initiates a build-up of acidity; however, its effect is compensated somewhat by a reduction in diffusional distance due to decreasing disc height. Discussion This work advances in silico modeling through a strong foundation of experimentally determined grade-specific input parameters. Taken together, pre-existing measurements and predicted results suggest that metabolite concentrations may not be as critically low as commonly believed, with calcification not appearing to have a detrimental effect at stages of degeneration when cell therapies are an appropriate intervention. Conclusion Overall, our initiative is to provoke greater deliberation and consideration of the nutrient microenvironment when performing in vitro cell culture and cell therapy development. This work highlights urgency for robust experimental glucose measurements in healthy and degenerating IVDs, not only to validate in silico models but to significantly advance the field in fully elucidating the nutrient microenvironment and refining in vitro techniques to accelerate clinical translation.
Collapse
Affiliation(s)
- Emily E. McDonnell
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
| | - Conor T. Buckley
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland & Trinity College DublinThe University of DublinDublinIreland
- Tissue Engineering Research Group, Department of Anatomy and Regenerative MedicineRoyal College of Surgeons in IrelandDublinIreland
| |
Collapse
|
8
|
Silverman LI, Heaton W, Farhang N, Saxon LH, Dulatova G, Rodriguez-Granrose D, Flanagan F, Foley KT. Perspectives on the Treatment of Lumbar Disc Degeneration: The Value Proposition for a Cell-Based Therapy, Immunomodulatory Properties of Discogenic Cells and the Associated Clinical Evaluation Strategy. Front Surg 2020; 7:554382. [PMID: 33392242 PMCID: PMC7772215 DOI: 10.3389/fsurg.2020.554382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
Low back pain (LBP) is a serious medical condition that affects a large percentage of the population worldwide. One cause of LBP is disc degeneration (DD), which is characterized by progressive breakdown of the disc and an inflamed disc environment. Current treatment options for patients with symptomatic DD are limited and are often unsuccessful, so many patients turn to prescription opioids for pain management in a time when opioid usage, addiction, and drug-related deaths are at an all-time high. In this paper, we discuss the etiology of lumbar DD and currently available treatments, as well as the potential for cell therapy to offer a biologic, non-opioid alternative to patients suffering from the condition. Finally, we present an overview of an investigational cell therapy called IDCT (Injectable Discogenic Cell Therapy), which is currently under evaluation in multiple double-blind clinical trials overseen by major regulatory agencies. The active ingredient in IDCT is a novel allogeneic cell population known as Discogenic Cells. These cells, which are derived from intervertebral disc tissue, have been shown to possess both regenerative and immunomodulatory properties. Cell therapies have unique properties that may ultimately lead to decreased pain and improved function, as well as curb the numbers of patients pursuing opioids. Their efficacy is best assessed in rigorous double-blinded and placebo-controlled clinical studies.
Collapse
Affiliation(s)
- Lara Ionescu Silverman
- DiscGenics Inc., Salt Lake City, UT, United States.,Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Will Heaton
- DiscGenics Inc., Salt Lake City, UT, United States
| | | | | | | | | | | | - Kevin T Foley
- DiscGenics Inc., Salt Lake City, UT, United States.,Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, TN, United States.,Semmes-Murphey Clinic, Memphis, TN, United States
| |
Collapse
|