1
|
Kirk B, Lombardi G, Duque G. Bone and muscle crosstalk in ageing and disease. Nat Rev Endocrinol 2025:10.1038/s41574-025-01088-x. [PMID: 40011751 DOI: 10.1038/s41574-025-01088-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/30/2025] [Indexed: 02/28/2025]
Abstract
Interorgan communication between bone and skeletal muscle is central to human health. A dysregulation of bone-muscle crosstalk is implicated in several age-related diseases. Ageing-associated changes in endocrine, inflammatory, nutritional and biomechanical stimuli can influence the differentiation capacity, function and survival of mesenchymal stem cells and bone-forming and muscle-forming cells. Consequently, the secretome phenotype of bone and muscle cells is altered, leading to impaired crosstalk and, ultimately, catabolism of both tissues. Adipose tissue acts as a third player in the bone-muscle interaction by secreting factors that affect bone and muscle cells. Physical exercise remains the key biological stimulus for bone-muscle crosstalk, either directly via the release of cytokines from bone, muscle or adipocytes, or indirectly through extracellular vesicles. Overall, bone-muscle crosstalk is considered an inherent process necessary to maintain the structure and function of both tissues across the life cycle. This Review summarizes the latest biomedical advances in bone-muscle crosstalk as it pertains to human ageing and disease. We also outline future research priorities to accommodate the understanding of this rapidly emerging field.
Collapse
Affiliation(s)
- Ben Kirk
- Department of Medicine, Western Health, Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, Melbourne, Victoria, Australia
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry & Advanced Diagnostics, IRCCS Ospedale Galeazzi-Sant'Ambrogio, Milan, Italy
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Poland
| | - Gustavo Duque
- Department of Medicine, Western Health, Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia.
- Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, Melbourne, Victoria, Australia.
- Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
- Dr. Joseph Kaufmann Chair in Geriatric Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
2
|
Volpi M, Paradiso A, Walejewska E, Gargioli C, Costantini M, Swieszkowski W. Automated Microfluidics-Assisted Hydrogel-Based Wet-Spinning for the Biofabrication of Biomimetic Engineered Myotendinous Junction. Adv Healthc Mater 2024; 13:e2402075. [PMID: 39313990 DOI: 10.1002/adhm.202402075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/08/2024] [Indexed: 09/25/2024]
Abstract
The muscle-tendon junction (MTJ) plays a pivotal role in efficiently converting the muscular contraction into a controlled skeletal movement through the tendon. Given its complex biomechanical intricacy, the biofabrication of such tissue interface represents a significant challenge in the field of musculoskeletal tissue engineering. Herein, a novel method to produce MTJ-like hydrogel yarns using a microfluidics-assisted 3D rotary wet-spinning strategy is developed. Optimization of flow rates, rotational speed, and delivery time of bioinks enables the production of highly compartmentalized scaffolds that recapitulate the muscle, tendon, and the transient MTJ-like region. Additionally, such biofabrication parameters are validated in terms of cellular response by promoting an optimal uniaxial alignment for both muscle and tendon precursor cells. By sequentially wet-spinning C2C12 myoblasts and NIH 3T3 fibroblasts, a gradient-patterned cellular arrangement mirroring the intrinsic biological heterogeneity of the MTJ is successfully obtained. The immunofluorescence assessment further reveals the localized expression of tissue-specific markers, including myosin heavy chain and collagen type I/III, which demonstrate muscle and tenogenic tissue maturation, respectively. Remarkably, the muscle-tendon transition zone exhibits finger-like projection of the multinucleated myotubes in the tenogenic compartment, epitomizing the MTJ signature architecture.
Collapse
Affiliation(s)
- Marina Volpi
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, 02-507, Poland
| | - Alessia Paradiso
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, 02-507, Poland
| | - Ewa Walejewska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, 02-507, Poland
| | - Cesare Gargioli
- Department of Biology, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Marco Costantini
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, 01-224, Poland
| | - Wojciech Swieszkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, 02-507, Poland
| |
Collapse
|
3
|
Pugliese E, Rossoni A, Zeugolis DI. Enthesis repair - State of play. BIOMATERIALS ADVANCES 2024; 157:213740. [PMID: 38183690 DOI: 10.1016/j.bioadv.2023.213740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/08/2024]
Abstract
The fibrocartilaginous enthesis is a highly specialised tissue interface that ensures a smooth mechanical transfer between tendon or ligament and bone through a fibrocartilage area. This tissue is prone to injury and often does not heal, even after surgical intervention. Enthesis augmentation approaches are challenging due to the complexity of the tissue that is characterised by the coexistence of a range of cellular and extracellular components, architectural features and mechanical properties within only hundreds of micrometres. Herein, we discuss enthesis repair and regeneration strategies, with particular focus on elegant interfacial and functionalised scaffold-based designs.
Collapse
Affiliation(s)
- Eugenia Pugliese
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), University of Galway, Galway, Ireland
| | - Andrea Rossoni
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), University of Galway, Galway, Ireland; Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland.
| |
Collapse
|
4
|
Chen S, He T, Zhong Y, Chen M, Yao Q, Chen D, Shao Z, Xiao G. Roles of focal adhesion proteins in skeleton and diseases. Acta Pharm Sin B 2023; 13:998-1013. [PMID: 36970189 PMCID: PMC10031257 DOI: 10.1016/j.apsb.2022.09.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/04/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022] Open
Abstract
The skeletal system, which contains bones, joints, tendons, ligaments and other elements, plays a wide variety of roles in body shaping, support and movement, protection of internal organs, production of blood cells and regulation of calcium and phosphate metabolism. The prevalence of skeletal diseases and disorders, such as osteoporosis and bone fracture, osteoarthritis, rheumatoid arthritis, and intervertebral disc degeneration, increases with age, causing pain and loss of mobility and creating a huge social and economic burden globally. Focal adhesions (FAs) are macromolecular assemblies that are composed of the extracellular matrix (ECM), integrins, intracellular cytoskeleton and other proteins, including kindlin, talin, vinculin, paxillin, pinch, Src, focal adhesion kinase (FAK) and integrin-linked protein kinase (ILK) and other proteins. FA acts as a mechanical linkage connecting the ECM and cytoskeleton and plays a key role in mediating cell-environment communications and modulates important processes, such as cell attachment, spreading, migration, differentiation and mechanotransduction, in different cells in skeletal system by impacting distinct outside-in and inside-out signaling pathways. This review aims to integrate the up-to-date knowledge of the roles of FA proteins in the health and disease of skeletal system and focuses on the specific molecular mechanisms and underlying therapeutic targets for skeletal diseases.
Collapse
Affiliation(s)
- Sheng Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tailin He
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yiming Zhong
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Mingjue Chen
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qing Yao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Di Chen
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
5
|
Yu Y, Lv B, Wu J, Chen W. Mussel-Based Biomimetic Strategies in Musculoskeletal Disorder Treatment: From Synthesis Principles to Diverse Applications. Int J Nanomedicine 2023; 18:455-472. [PMID: 36718191 PMCID: PMC9884062 DOI: 10.2147/ijn.s386635] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/03/2022] [Indexed: 01/26/2023] Open
Abstract
Musculoskeletal disorders are the second leading cause of disability worldwide, posing a huge global burden to the public sanitation system. Currently, tissue engineering-based approaches act as effective strategies, which are, however, challenging in limited application scenarios. Mussel-based biomimetic materials, exhibit numerous unique properties such as intense adhesion, biocompatibility, moisture resistance, and injectability, to name only a few, and have attracted extensive research interest. In particular, featuring state-of-the-art properties, mussel-inspired biomaterials have been widely explored in innumerable musculoskeletal disorder treatments including osteochondral defects, osteosarcoma, osteoarthritis, ligament rupture, and osteoporosis. Nevertheless, a comprehensive and timely discussion of their applications in musculoskeletal disorders is insufficient. In this review, we emphasize on (1) the main categories and characteristics of mussel foot proteins and their fundamental mechanisms for the spectacular adhesion in mussels; (2) the diverse synthetic methods and modification of various polymers; and (3) the emerging applications of mussel-biomimetic materials, the future perspectives, and challenges, especially in the area of musculoskeletal disorder. We envision that this review will provide a unique and insightful perspective to improve the development of a new generation of mussel biomimetic strategies.
Collapse
Affiliation(s)
- Yajie Yu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China,Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China,Hubei Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Bin Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Juntao Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Wei Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China,Hubei Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China,Correspondence: Wei Chen, Email
| |
Collapse
|
6
|
Balestri W, Hickman GJ, Morris RH, Hunt JA, Reinwald Y. Triphasic 3D In Vitro Model of Bone-Tendon-Muscle Interfaces to Study Their Regeneration. Cells 2023; 12:313. [PMID: 36672248 PMCID: PMC9856925 DOI: 10.3390/cells12020313] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/02/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
The transition areas between different tissues, known as tissue interfaces, have limited ability to regenerate after damage, which can lead to incomplete healing. Previous studies focussed on single interfaces, most commonly bone-tendon and bone-cartilage interfaces. Herein, we develop a 3D in vitro model to study the regeneration of the bone-tendon-muscle interface. The 3D model was prepared from collagen and agarose, with different concentrations of hydroxyapatite to graduate the tissues from bones to muscles, resulting in a stiffness gradient. This graduated structure was fabricated using indirect 3D printing to provide biologically relevant surface topographies. MG-63, human dermal fibroblasts, and Sket.4U cells were found suitable cell models for bones, tendons, and muscles, respectively. The biphasic and triphasic hydrogels composing the 3D model were shown to be suitable for cell growth. Cells were co-cultured on the 3D model for over 21 days before assessing cell proliferation, metabolic activity, viability, cytotoxicity, tissue-specific markers, and matrix deposition to determine interface formations. The studies were conducted in a newly developed growth chamber that allowed cell communication while the cell culture media was compartmentalised. The 3D model promoted cell viability, tissue-specific marker expression, and new matrix deposition over 21 days, thereby showing promise for the development of new interfaces.
Collapse
Affiliation(s)
- Wendy Balestri
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Graham J. Hickman
- Imaging Suite, School of Science & Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Robert H. Morris
- Department of Physics and Mathematics, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - John A. Hunt
- Medical Technologies and Advanced Materials, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
- College of Biomedical Engineering, China Medical University, Taichung 40402, Taiwan
| | - Yvonne Reinwald
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| |
Collapse
|
7
|
Kim WJ, Kim GH. A bioprinted complex tissue model for myotendinous junction with biochemical and biophysical cues. Bioeng Transl Med 2022; 7:e10321. [PMID: 36176596 PMCID: PMC9472009 DOI: 10.1002/btm2.10321] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 11/07/2022] Open
Abstract
In the musculoskeletal system, the myotendinous junction (MTJ) is optimally designed from the aspect of force transmission generated from a muscle through a tendon onto the bone to induce movement. Although the MTJ is a key complex tissue in force transmission, the realistic fabrication, and formation of complex tissues can be limited. To obtain the MTJ construct, we prepared two bioinks, muscle- and tendon-derived decellularized extracellular matrix (dECM), which can induce myogenic and tenogenic differentiation of human adipose-derived stem cells (hASCs). By using a modified bioprinting process supplemented with a nozzle consisting of a single-core channel and double-sheath channels, we can achieve three different types of MTJ units, composed of muscle, tendon, and interface zones. Our results indicated that the bioprinted dECM-based constructs induced hASCs to myogenic and tenogenic differentiation. In addition, a significantly higher MTJ-associated gene expression was detected at the MTJ interface with a cell-mixing zone than in the other interface models. Based on the results, the bioprinted MTJ model can be a potential platform for understanding the interaction between muscle and tendon cells, and even the bioprinting method can be extensively applied to obtain complex tissues.
Collapse
Affiliation(s)
- Won Jin Kim
- Department of Biomechatronic EngineeringCollege of Biotechnology and Bioengineering, Sungkyunkwan University (SKKU)SuwonRepublic of Korea
| | - Geun Hyung Kim
- Department of Biomechatronic EngineeringCollege of Biotechnology and Bioengineering, Sungkyunkwan University (SKKU)SuwonRepublic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan UniversitySuwonRepublic of Korea
| |
Collapse
|
8
|
Gaffney L, Davis Z, Mora-Navarro C, Fisher MB, Freytes DO. Extracellular Matrix Hydrogels Promote Expression of Muscle-Tendon Junction Proteins. Tissue Eng Part A 2021; 28:270-282. [PMID: 34375125 DOI: 10.1089/ten.tea.2021.0070] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Muscle and tendon injuries are prevalent and range from minor sprains and strains to traumatic, debilitating injuries. However, the interactions between these tissues during injury and recovery remain unclear. Three-dimensional tissue models that incorporate both tissues and a physiologically relevant junction between muscle and tendon may help understand how the two tissues interact. Here, we use tissue specific extracellular matrix (ECM) derived from muscle and tendon to determine how cells of each tissue interact with the microenvironment of the opposite tissue resulting in junction specific features. ECM materials were derived from the Achilles tendon and gastrocnemius muscle, decellularized, and processed to form tissue specific pre-hydrogel digests. ECM materials were unique in respect to protein composition and included many types of ECM proteins, not just collagens. After digestion and gelation, ECM hydrogels had similar complex viscosities which were less than type I collagen hydrogels at the same concentration. C2C12 myoblasts and tendon fibroblasts were cultured in tissue-specific ECM conditioned media or encapsulated in tissue-specific ECM hydrogels to determine cell-matrix interactions and the effects on a muscle-tendon junction marker, paxillin. ECM conditioned media had only a minor effect on upregulation of paxillin in cells cultured in monolayer. However, cells cultured within ECM hydrogels had 50-70% higher paxillin expression than cells cultured in type I collagen hydrogels. Contraction of the ECM hydrogels varied by the type of ECM used. Subsequent experiments with varying density of type I collagen (and thus contraction) showed no correlation between paxillin expression and the amount of gel contraction, suggesting that a constituent of the ECM was the driver of paxillin expression in the ECM hydrogels. In addition, the extracellular matrix protein type XXII collagen had similar expression patterns as paxillin, with smaller effect sizes. Using tissue specific ECM allowed for the de-construction of the cell-matrix interactions similar to muscle-tendon junctions to study the expression of MTJ specific proteins.
Collapse
Affiliation(s)
- Lewis Gaffney
- University of North Carolina at Chapel Hill & North Carolina State University, Biomedical Engineering, Raleigh, North Carolina, United States;
| | - Zachary Davis
- University of North Carolina at Chapel Hill & North Carolina State University, Biomedical Engineering, Raleigh, North Carolina, United States;
| | - Camilo Mora-Navarro
- University of North Carolina at Chapel Hill & North Carolina State University, Biomedical Engineering, Raleigh, North Carolina, United States.,North Carolina State University, 6798, Comparative Medicine Institute, Raleigh, North Carolina, United States;
| | - Matthew B Fisher
- University of North Carolina at Chapel Hill & North Carolina State University, Biomedical Engineering, Raleigh, North Carolina, United States.,University of North Carolina at Chapel Hill School of Medicine, 6797, Department of Orthopaedics, Chapel Hill, North Carolina, United States;
| | - Donald O Freytes
- University of North Carolina at Chapel Hill & North Carolina State University, Biomedical Engineering, Raleigh, North Carolina, United States;
| |
Collapse
|