1
|
Liu J, Chen F, Song D, Zhang Q, Li P, Ci Z, Zhang W, Zhou G. Construction of three-dimensional, homogeneous regenerative cartilage tissue based on the ECG-DBM complex. Front Bioeng Biotechnol 2023; 11:1252790. [PMID: 37818235 PMCID: PMC10561249 DOI: 10.3389/fbioe.2023.1252790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/05/2023] [Indexed: 10/12/2023] Open
Abstract
Introduction: The feasibility of using a steel decalcified bone matrix (DBM)-reinforced concrete engineered cartilage gel (ECG) model concept for in vivo cartilage regeneration has been demonstrated in preliminary experiments. However, the regenerated cartilage tissue contained an immature part in the center. The present study aimed to achieve more homogeneous regenerated cartilage based on the same model concept. Methods: For this, we optimized the culture conditions for the engineered cartilage gel-decalcified bone matrix (ECG-DBM) complex based on the previous model and systematically compared the in vitro chondrogenic abilities of ECG in the cartilage slice and ECG-DBM complex states. We then compared the in vivo cartilage regeneration effects of the ECG-DBM complex with those of an equivalent volume of ECG and an equivalent ECG content. Results and discussion: Significant increases in the DNA content and cartilage-specific matrix content were observed for the ECG-DBM complex compared with the ECG cartilage slice, suggesting that the DBM scaffold significantly improved the quality of ECG-derived cartilage regeneration in vitro. In the in vivo experiments, high-quality cartilage tissue was regenerated in all groups at 8 weeks, and the regenerated cartilage exhibited typical cartilage lacunae and cartilage-specific extracellular matrix deposition. Quantitative analysis revealed a higher chondrogenic efficiency in the ECG-DBM group. Specifically, the ECG-DBM complex achieved more homogeneous and stable regenerated cartilage than an equivalent volume of ECG and more mature regenerated cartilage than an equivalent ECG content. Compared with ECG overall, ECG-DBM had a more controllable shape, good morphology retention, moderate mechanical strength, and high cartilage regeneration efficiency. Further evaluation of the ECG-DBM complex after in vitro culture for 7 and 14 days confirmed that an extended in vitro preculture facilitated more homogeneous cartilage regeneration.
Collapse
Affiliation(s)
- Jingwen Liu
- Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang, China
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Feifan Chen
- Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang, China
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Daiying Song
- Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang, China
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qixin Zhang
- Department of Geratology, Weifang People’s Hospital, Weifang, China
| | - Peizhe Li
- Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang, China
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Ci
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine Shanghai, Shanghai, China
| | - Wei Zhang
- Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang, China
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guangdong Zhou
- Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang, China
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Zhang P, Wang Q, Chen J, Ci Z, Zhang W, Liu Y, Wang X, Zhou G. Chondrogenic medium in combination with a c-Jun N-terminal kinase inhibitor mediates engineered cartilage regeneration by regulating matrix metabolism and cell proliferation. Regen Biomater 2023; 10:rbad079. [PMID: 38020237 PMCID: PMC10640392 DOI: 10.1093/rb/rbad079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/11/2023] [Accepted: 08/28/2023] [Indexed: 12/01/2023] Open
Abstract
Cartilage tissue engineering is a promising strategy for repairing cartilage defects. However, achieving satisfactory cartilage regeneration in vitro and maintaining its stability in vivo remains a challenge. The key to achieving this goal is establishing an efficient cartilage regeneration culture system to retain sufficient active cells with physiological functions, generate abundant cartilage extracellular matrix (ECM) and maintain a low level of cartilage ECM degradation. The current chondrogenic medium (CM) can effectively promote cartilage ECM production; however, it has a negative effect on cell proliferation. Meanwhile, the specific c-Jun N-terminal kinase pathway inhibitor SP600125 promotes chondrocyte proliferation but inhibits ECM synthesis. Here, we aimed to construct a three-dimensional cartilage regeneration model using a polyglycolic acid/polylactic acid scaffold in combination with chondrocytes to investigate the effect of different culture modes with CM and SP600125 on in vitro cartilage regeneration and their long-term outcomes in vivo systematically. Our results demonstrate that the long-term combination of CM and SP600125 made up for each other and maximized their respective advantages to obtain optimal cartilage regeneration in vitro. Moreover, the long-term combination achieved stable cartilage regeneration after implantation in vivo with a relatively low initial cell-seeding concentration. Therefore, the long-term combination of CM and SP600125 enhanced in vitro and in vivo cartilage regeneration stability with fewer initial seeding cells and thus optimized the cartilage regeneration culture system.
Collapse
Affiliation(s)
- Peiling Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200023, China
- National Tissue Engineering Center of China, Shanghai, 200241, China
| | - Qianyi Wang
- National Tissue Engineering Center of China, Shanghai, 200241, China
- Department of Research Institute of Plastic Surgery, Wei Fang Medical College, Wei Fang, Shandong, 261041, China
| | - Jie Chen
- National Tissue Engineering Center of China, Shanghai, 200241, China
- Department of Anesthesiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200023, China
| | - Zheng Ci
- National Tissue Engineering Center of China, Shanghai, 200241, China
| | - Wei Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200023, China
- National Tissue Engineering Center of China, Shanghai, 200241, China
- Department of Research Institute of Plastic Surgery, Wei Fang Medical College, Wei Fang, Shandong, 261041, China
| | - Yu Liu
- National Tissue Engineering Center of China, Shanghai, 200241, China
- Department of Research Institute of Plastic Surgery, Wei Fang Medical College, Wei Fang, Shandong, 261041, China
| | - Xiaoyun Wang
- Department of Plastic Surgery, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200050, China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200023, China
- National Tissue Engineering Center of China, Shanghai, 200241, China
- Department of Research Institute of Plastic Surgery, Wei Fang Medical College, Wei Fang, Shandong, 261041, China
| |
Collapse
|
3
|
Theodoridis K, Aggelidou E, Manthou ME, Kritis A. Hypoxia Promotes Cartilage Regeneration in Cell-Seeded 3D-Printed Bioscaffolds Cultured with a Bespoke 3D Culture Device. Int J Mol Sci 2023; 24:ijms24076040. [PMID: 37047021 PMCID: PMC10094683 DOI: 10.3390/ijms24076040] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 04/14/2023] Open
Abstract
In this study, we investigated the effect of oxygen tension on the expansion of ADMSCs and on their differentiation toward their chondrocytic phenotype, regenerating a lab-based cartilaginous tissue with superior characteristics. Controversial results with reference to MSCs that were cultured under different hypoxic levels, mainly in 2D culturing settings combined with or without other biochemical stimulus factors, prompted our team to study the role of hypoxia on MSCs chondrogenic differentiation within an absolute 3D environment. Specifically, we used 3D-printed honeycomb-like PCL matrices seeded with ADMSCs in the presence or absence of TGF and cultured with a prototype 3D cell culture device, which was previously shown to favor nutrient/oxygen supply, cell adhesion, and infiltration within scaffolds. These conditions resulted in high-quality hyaline cartilage that was distributed uniformly within scaffolds. The presence of the TGF medium was necessary to successfully produce cartilaginous tissues with superior molecular and increased biomechanical properties. Despite hypoxia's beneficial effect, it was overall not enough to fully differentiate ADMSCs or even promote cell expansion within 3D scaffolds alone.
Collapse
Affiliation(s)
- Konstantinos Theodoridis
- Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), 54124 Thessaloniki, Greece
- CGMP Regenerative Medicine Facility, Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), 54124 Thessaloniki, Greece
| | - Eleni Aggelidou
- Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), 54124 Thessaloniki, Greece
- CGMP Regenerative Medicine Facility, Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), 54124 Thessaloniki, Greece
- Basic and Translational Research Unit (BTRU) of Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki (A.U.Th), 54124 Thessaloniki, Greece
| | - Maria-Eleni Manthou
- Laboratory of Histology, Embryology and Anthropology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), 54124 Thessaloniki, Greece
| | - Aristeidis Kritis
- Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), 54124 Thessaloniki, Greece
- CGMP Regenerative Medicine Facility, Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), 54124 Thessaloniki, Greece
- Basic and Translational Research Unit (BTRU) of Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki (A.U.Th), 54124 Thessaloniki, Greece
| |
Collapse
|
4
|
Tiffany AS, Harley BAC. Growing Pains: The Need for Engineered Platforms to Study Growth Plate Biology. Adv Healthc Mater 2022; 11:e2200471. [PMID: 35905390 PMCID: PMC9547842 DOI: 10.1002/adhm.202200471] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/11/2022] [Indexed: 01/27/2023]
Abstract
Growth plates, or physis, are highly specialized cartilage tissues responsible for longitudinal bone growth in children and adolescents. Chondrocytes that reside in growth plates are organized into three distinct zones essential for proper function. Modeling key features of growth plates may provide an avenue to develop advanced tissue engineering strategies and perspectives for cartilage and bone regenerative medicine applications and a platform to study processes linked to disease progression. In this review, a brief introduction of the growth plates and their role in skeletal development is first provided. Injuries and diseases of the growth plates as well as physiological and pathological mechanisms associated with remodeling and disease progression are discussed. Growth plate biology, namely, its architecture and extracellular matrix organization, resident cell types, and growth factor signaling are then focused. Next, opportunities and challenges for developing 3D biomaterial models to study aspects of growth plate biology and disease in vitro are discussed. Finally, opportunities for increasingly sophisticated in vitro biomaterial models of the growth plate to study spatiotemporal aspects of growth plate remodeling, to investigate multicellular signaling underlying growth plate biology, and to develop platforms that address key roadblocks to in vivo musculoskeletal tissue engineering applications are described.
Collapse
Affiliation(s)
- Aleczandria S. Tiffany
- Department of Chemical and Biomolecular EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Brendan A. C. Harley
- Department of Chemical and Biomolecular EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| |
Collapse
|
5
|
Chen Y, Zhang C, Zhang S, Qi H, Zhang D, Li Y, Fang J. Novel advances in strategies and applications of artificial articular cartilage. Front Bioeng Biotechnol 2022; 10:987999. [PMID: 36072291 PMCID: PMC9441570 DOI: 10.3389/fbioe.2022.987999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/02/2022] [Indexed: 11/18/2022] Open
Abstract
Artificial articular cartilage (AC) is extensively applied in the repair and regeneration of cartilage which lacks self-regeneration capacity because of its avascular and low-cellularity nature. With advances in tissue engineering, bioengineering techniques for artificial AC construction have been increasing and maturing gradually. In this review, we elaborated on the advances of biological scaffold technologies in artificial AC including freeze-drying, electrospinning, 3D bioprinting and decellularized, and scaffold-free methods such as self-assembly and cell sheet. In the following, several successful applications of artificial AC built by scaffold and scaffold-free techniques are introduced to demonstrate the clinical application value of artificial AC.
Collapse
Affiliation(s)
- Yifei Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenyue Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shiyong Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hexu Qi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jie Fang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Jie Fang,
| |
Collapse
|
6
|
Roseti L, Grigolo B. Current concepts and perspectives for articular cartilage regeneration. J Exp Orthop 2022; 9:61. [PMID: 35776217 PMCID: PMC9249961 DOI: 10.1186/s40634-022-00498-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/13/2022] [Indexed: 11/10/2022] Open
Abstract
Articular cartilage injuries are common in the population. The increment in the elderly people and active life results in an increasing demand for new technologies and good outcomes to satisfy longer and healthier life expectancies. However, because of cartilage's low regenerative capacity, finding an efficacious treatment is still challenging for orthopedics. Since the pioneering studies based on autologous cell transplantation, regenerative medicine has opened new approaches for cartilage lesion treatment. Tissue engineering combines cells, biomaterials, and biological factors to regenerate damaged tissues, overcoming conventional therapeutic strategies. Cells synthesize matrix structural components, maintain tissue homeostasis by modulating metabolic, inflammatory, and immunologic pathways. Scaffolds are well acknowledged by clinicians in regenerative applications since they provide the appropriate environment for cells, can be easily implanted, reduce surgical morbidity, allow enhanced cell proliferation, maturation, and an efficient and complete integration with surrounding articular cartilage. Growth factors are molecules that facilitate tissue healing and regeneration by stimulating cell signal pathways. To date, different cell sources and a wide range of natural and synthetic scaffolds have been used both in pre-clinical and clinical studies with the aim to find the suitable solution for recapitulating cartilage microenvironment and inducing the formation of a new tissue with the biochemical and mechanical properties of the native one. Here, we describe the current concepts for articular cartilage regeneration, highlighting the key actors of this process trying to identify the best perspectives.
Collapse
Affiliation(s)
- Livia Roseti
- IRCCS Istituto Ortopedico Rizzoli Bologna, Bologna, Italy
| | | |
Collapse
|
7
|
Xue W, Du J, Li Q, Wang Y, Lu Y, Fan J, Yu S, Yang Y. Preparation, properties and application of graphene-based materials in tissue engineering scaffolds. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:1121-1136. [PMID: 34751592 DOI: 10.1089/ten.teb.2021.0127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Tissue engineering has great application prospect as an effective treatment for tissue and organ injury, functional reduction or loss. Bioactive tissues are reconstructed and damaged organs are repaired by the three elements including cells, scaffold materials and growth factors. Graphene-based composites can be used as reinforcing auxiliary materials for tissue scaffold preparation because of their large specific surface area, and good mechanical support. Tissue engineering scaffolds with graphene-based composites have been widely studied. Part of research have focused on the application of graphene-based composites in single tissue engineering; The basic principles of graphene materials used in tissue engineering are summarized in some researches. Some studies emphasized the key problems and solutions urgently needed to be solved in the development of tissue engineering, and discussed their application prospect. Some related studies mainly focused on the conductivity of graphene, and discussed the application of electroactive scaffolds in tissue engineering. In this review, the composite materials for preparing tissue engineering scaffolds are briefly described, which emphasizes the preparation methods, biological properties and practical applications of graphene-based composite scaffolds. The synthetic techniques with stressing solvent casting, electrospinning and 3D printing are introduced in detail. The mechanical, cell-oriented and biocompatible properties of graphene-based composite scaffolds in tissue engineering are analyzed and summarized. Their applications in bone tissue engineering, nerve tissue engineering, cardiovascular tissue engineering and other tissue engineering are summarized systematically. In addition, this work also looks forward to the difficulties and challenges in the future research, providing some references for the follow-up research of graphene-based composites in tissue engineering scaffolds.
Collapse
Affiliation(s)
- Wenqiang Xue
- Shanxi Medical University, 74648, Taiyuan, Shanxi , China;
| | - Jinglei Du
- Second Hospital of Shanxi Medical University, 74761, Taiyuan, Shanxi , China;
| | - Qiang Li
- Second Hospital of Shanxi Medical University, 74761, Taiyuan, Shanxi , China;
| | - Yan Wang
- Shanxi Medical University, 74648, Taiyuan, Shanxi , China;
| | - Yemin Lu
- Shanxi Medical University, 74648, Taiyuan, Shanxi , China;
| | - Jiangbo Fan
- Shanxi Medical University, 74648, Taiyuan, Shanxi , China;
| | - Shiping Yu
- Second Hospital of Shanxi Medical University, 74761, 582 Wuyi Road, Taiyuan City, Shanxi Province, Taiyuan, China, 030001;
| | - Yongzhen Yang
- Taiyuan University of Technology, 47846, Taiyuan, Shanxi , China;
| |
Collapse
|