1
|
Wen S, Zheng X, Yin W, Liu Y, Wang R, Zhao Y, Liu Z, Li C, Zeng J, Rong M. Dental stem cell dynamics in periodontal ligament regeneration: from mechanism to application. Stem Cell Res Ther 2024; 15:389. [PMID: 39482701 PMCID: PMC11526537 DOI: 10.1186/s13287-024-04003-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/17/2024] [Indexed: 11/03/2024] Open
Abstract
Periodontitis, a globally prevalent chronic inflammatory disease is characterized by the progressive degradation of tooth-supporting structures, particularly the periodontal ligament (PDL), which can eventually result in tooth loss. Despite the various clinical interventions available, most focus on symptomatic relief and lack substantial evidence of supporting the functional regeneration of the PDL. Dental stem cells (DSCs), with their homology and mesenchymal stem cell (MSC) properties, have gained significant attention as a potential avenue for PDL regeneration. Consequently, multiple therapeutic strategies have been developed to enhance the efficacy of DSC-based treatments and improve clinical outcomes. This review examines the mechanisms by which DSCs and their derivatives promote PDL regeneration, and explores the diverse applications of exogenous implantation and endogenous regenerative technology (ERT) aimed at amplifying the regenerative capacity of endogenous DSCs. Additionally, the persistent challenges and controversies surrounding DSC therapies are discussed, alongside an evaluation of the limitations in current research on the underlying mechanisms and innovative applications of DSCs in PDL regeneration with the aim of providing new insights for future development. Periodontitis, a chronic inflammatory disease, represents a major global public health concern, affecting a significant proportion of the population and standing as the leading cause tooth loss in adults. The functional periodontal ligament (PDL) plays an indispensable role in maintaining periodontal health, as its structural and biological integrity is crucial for the long-term prognosis of periodontal tissues. It is widely recognized as the cornerstone of periodontal regeneration Despite the availability of various treatments, ranging from nonsurgical interventions to guided tissue regeneration (GTR) techniques, these methods have shown limited success in achieving meaningful PDL regeneration. As a result, the inability to fully restore PDL function underscores the urgent need for innovative therapeutic strategies at reconstructing this essential structure. Stem cell therapy, known for its regenerative and immunomodulatory potential, offers a promising approach for periodontal tissue repair. Their application marks a significant paradigm shift in the treatment of periodontal diseases, opening new avenues for functional PDL regeneration. However, much of the current research has primarily focused on the regeneration of alveolar bone and gingiva, as these hard and soft tissues can be more easily evaluated through visual assessment. The complexity of PDL structure, coupled with the intricate interactions among cellular and molecular components, presents significant scientific and clinical hurdles in translating DSC research into practical therapeutic applications. This review provides a thorough exploration of DSC dynamics in periodontal regeneration, detailing their origins, properties, and derived products, while also examining their potential mechanisms and applications in PDL regeneration. It offers an in-depth analysis of the current research, landscape, acknowledging both the progress made and the challenges that remain in bridging the gap between laboratory findings and clinical implementation. Finally, the need for continued investigation into the intricate mechanisms governing DSC behavior and the optimization of their use in regenerative therapies for periodontal diseases is also emphasized.
Collapse
Affiliation(s)
- Shuyi Wen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Xiao Zheng
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Wuwei Yin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Yushan Liu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Ruijie Wang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Yaqi Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Ziyi Liu
- Department of Stomatology, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, Foshan, Guangdong, 528308, China
| | - Cong Li
- Dongguan Key Laboratory of Metabolic Immunology and Oral Diseases, Dongguan Maternal and Child Health Care Hospital, Dongguan, Guangdong, 523000, China
| | - Jincheng Zeng
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, 523808, China.
| | - Mingdeng Rong
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China.
| |
Collapse
|
2
|
Sui BD, Zheng CX, Zhao WM, Xuan K, Li B, Jin Y. Mesenchymal condensation in tooth development and regeneration: a focus on translational aspects of organogenesis. Physiol Rev 2023; 103:1899-1964. [PMID: 36656056 DOI: 10.1152/physrev.00019.2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/26/2022] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The teeth are vertebrate-specific, highly specialized organs performing fundamental functions of mastication and speech, the maintenance of which is crucial for orofacial homeostasis and is further linked to systemic health and human psychosocial well-being. However, with limited ability for self-repair, the teeth can often be impaired by traumatic, inflammatory, and progressive insults, leading to high prevalence of tooth loss and defects worldwide. Regenerative medicine holds the promise to achieve physiological restoration of lost or damaged organs, and in particular an evolving framework of developmental engineering has pioneered functional tooth regeneration by harnessing the odontogenic program. As a key event of tooth morphogenesis, mesenchymal condensation dictates dental tissue formation and patterning through cellular self-organization and signaling interaction with the epithelium, which provides a representative to decipher organogenetic mechanisms and can be leveraged for regenerative purposes. In this review, we summarize how mesenchymal condensation spatiotemporally assembles from dental stem cells (DSCs) and sequentially mediates tooth development. We highlight condensation-mimetic engineering efforts and mechanisms based on ex vivo aggregation of DSCs, which have achieved functionally robust and physiologically relevant tooth regeneration after implantation in animals and in humans. The discussion of this aspect will add to the knowledge of development-inspired tissue engineering strategies and will offer benefits to propel clinical organ regeneration.
Collapse
Affiliation(s)
- Bing-Dong Sui
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chen-Xi Zheng
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wan-Min Zhao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Kun Xuan
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Bei Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yan Jin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, China
| |
Collapse
|
3
|
Mendoza AH, Balzarini D, Alves T, Rovai ES, Holzhausen M. Potential of Mesenchymal Stem Cell Sheets on Periodontal Regeneration: A Systematic Review of Pre-Clinical Studies. Curr Stem Cell Res Ther 2023; 18:958-978. [PMID: 35794765 DOI: 10.2174/1574888x17666220706092520] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/01/2022] [Accepted: 05/11/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cell sheet technique using mesenchymal stem cells is a high-level strategy in periodontal regenerative medicine. Although recent studies have shown the role of MSCSs in increased dental supporting tissues and bone, there is no systematic review focused specifically on assessing periodontal regeneration in orthotopic animal models. OBJECTIVE To evaluate the potential of mesenchymal stem cell sheets (MSCSs) on periodontal regeneration, compared to control, in experimental animal models Methods: Pre-clinical studies in periodontal defects of animal models were considered eligible. The electronic search included the MEDLINE, Web of Science, EMBASE and LILACS databases. The review was conducted according to the Preferred Reporting Item for Systematic Reviews and Meta-Analyses statement guidelines. RESULTS A total of 17 of the 3989 studies obtained from the electronic database search were included. MSCSs included dental follicle (DF) MSCSs, periodontal ligament (PL) MSCSs, dental pulp (DP) MSCSs, bone marrow (BM) MSCSs, alveolar periosteal (AP) MSCSs and gingival (G) MSCSs. Regarding cell sheet inducing protocol, most of the studies used ascorbic acid (52.94%). Others used culture dishes grafted with a temperature-responsive polymer (47.06%). Adverse effects were not identified in the majority of studies. Meta-analysis was not considered because of methodological heterogeneities. PDL-MSCSs were superior for periodontal regeneration enhancement compared to the control, but in an induced inflammatory microenvironment, DF-MSCSs were better. Moreover, DF-MSCSs, DP-MSCSs, and BM-MSCSs showed improved results compared to the control. CONCLUSION MSCSs can improve periodontal regeneration in animal periodontal defect models.
Collapse
Affiliation(s)
- Aldrin Huamán Mendoza
- Department of Stomatology, School of Dentistry, University of São Paulo, Av. Prof. Lineu Prestes, 2227, São Paulo, SP, Brazil
| | - Danilo Balzarini
- Department of Stomatology, School of Dentistry, University of São Paulo, Av. Prof. Lineu Prestes, 2227, São Paulo, SP, Brazil
| | - Tomaz Alves
- Department of Stomatology, School of Dentistry, University of São Paulo, Av. Prof. Lineu Prestes, 2227, São Paulo, SP, Brazil
| | - Emanuel S Rovai
- Division of Periodontology, Dental School, University of Taubaté, Rua dos Operários, 09, Centro, Taubaté, SP, Brazil
| | - Marinella Holzhausen
- Department of Stomatology, School of Dentistry, University of São Paulo, Av. Prof. Lineu Prestes, 2227, São Paulo, SP, Brazil
| |
Collapse
|
4
|
Wang X, Chen J, Tian W. Strategies of cell and cell-free therapies for periodontal regeneration: the state of the art. Stem Cell Res Ther 2022; 13:536. [PMID: 36575471 PMCID: PMC9795760 DOI: 10.1186/s13287-022-03225-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Periodontitis often causes irrevocable destruction of tooth-supporting tissues and eventually leads to tooth loss. Currently, stem cell-based tissue engineering has achieved a favorable result in regenerating periodontal tissues. Moreover, cell-free therapies that aim to facilitate the recruitment of resident repair cell populations to injured sites by promoting cell mobilization and homing have become alternative options to cell therapy. MAIN TEXT Cell aggregates (e.g., cell sheets) retain a large amount of extracellular matrix which can improve cell viability and survival rates after implantation in vivo. Electrostatic spinning and 3D bioprinting through fabricating specific alignments and interactions scaffold structures have made promising outcomes in the construction of a microenvironment conducive to periodontal regeneration. Cell-free therapies with adding biological agents (growth factors, exosomes and conditioned media) to promote endogenous regeneration have somewhat addressed the limitations of cell therapy. CONCLUSION Hence, this article reviews the progress of stem cell-based tissue engineering and advanced strategies for endogenous regeneration based on stem cell derivatives in periodontal regeneration.
Collapse
Affiliation(s)
- Xiuting Wang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, People’s Republic of China ,grid.13291.380000 0001 0807 1581National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, People’s Republic of China ,grid.13291.380000 0001 0807 1581Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 People’s Republic of China
| | - Jinlong Chen
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, People’s Republic of China ,grid.13291.380000 0001 0807 1581National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, People’s Republic of China ,grid.13291.380000 0001 0807 1581Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 People’s Republic of China
| | - Weidong Tian
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, People’s Republic of China ,grid.13291.380000 0001 0807 1581National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, People’s Republic of China ,grid.13291.380000 0001 0807 1581Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 People’s Republic of China
| |
Collapse
|
5
|
Chouaib B, Cuisinier F, Collart-Dutilleul PY. Dental stem cell-conditioned medium for tissue regeneration: Optimization of production and storage. World J Stem Cells 2022; 14:287-302. [PMID: 35662860 PMCID: PMC9136565 DOI: 10.4252/wjsc.v14.i4.287] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/19/2021] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSC) effects on tissue regeneration are mainly mediated by their secreted substances (secretome), inducing their paracrine activity. This Conditioned medium (CM), including soluble factors (proteins, nucleic acids, lipids) and extracellular vesicles is emerging as a potential alternative to cell therapy. However, the manufacturing of CM suffers from variable procedures and protocols leading to varying results between studies. Besides, there is no well-defined optimized procedure targeting specific applications in regenerative medicine.
AIM To focus on conditioned medium produced from dental MSC (DMSC-CM), we reviewed the current parameters and manufacturing protocols, in order to propose a standardization and optimization of these manufacturing procedures.
METHODS We have selected all publications investigating the effects of dental MSC secretome in in vitro and in vivo models of tissue regeneration, in accordance with the PRISMA guidelines.
RESULTS A total of 351 results were identified. And based on the inclusion criteria described above, 118 unique articles were included in the systematic review. DMSC-CM production was considered at three stages: before CM recovery (cell sources for CM), during CM production (culture conditions) and after production (CM treatment).
CONCLUSION No clear consensus could be recovered as evidence-based methods, but we were able to describe the most commonly used protocols: donors under 30 years of age, dental pulp stem cells and exfoliated deciduous tooth stem cells with cell passage between 1 and 5, at a confluence of 70% to 80%. CM were often collected during 48 h, and stored at -80 °C. It is important to point out that the preconditioning environment had a significant impact on DMSC-CM content and efficiency.
Collapse
Affiliation(s)
- Batoul Chouaib
- Laboratory Bioengineering and Nanosciences UR_UM104, University of Montpellier, Montpellier 34000, France
| | - Frédéric Cuisinier
- Laboratory Bioengineering and Nanosciences UR_UM104, University of Montpellier, Montpellier 34000, France
| | | |
Collapse
|
6
|
Bousnaki M, Beketova A, Kontonasaki E. A Review of In Vivo and Clinical Studies Applying Scaffolds and Cell Sheet Technology for Periodontal Ligament Regeneration. Biomolecules 2022; 12:435. [PMID: 35327627 PMCID: PMC8945901 DOI: 10.3390/biom12030435] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 12/14/2022] Open
Abstract
Different approaches to develop engineered scaffolds for periodontal tissues regeneration have been proposed. In this review, innovations in stem cell technology and scaffolds engineering focused primarily on Periodontal Ligament (PDL) regeneration are discussed and analyzed based on results from pre-clinical in vivo studies and clinical trials. Most of those developments include the use of polymeric materials with different patterning and surface nanotopography and printing of complex and sophisticated multiphasic composite scaffolds with different compartments to accomodate for the different periodontal tissues' architecture. Despite the increased effort in producing these scaffolds and their undoubtable efficiency to guide and support tissue regeneration, appropriate source of cells is also needed to provide new tissue formation and various biological and mechanochemical cues from the Extraccellular Matrix (ECM) to provide biophysical stimuli for cell growth and differentiation. Cell sheet engineering is a novel promising technique that allows obtaining cells in a sheet format while preserving ECM components. The right combination of those factors has not been discovered yet and efforts are still needed to ameliorate regenerative outcomes towards the functional organisation of the developed tissues.
Collapse
Affiliation(s)
| | | | - Eleana Kontonasaki
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (M.B.); (A.B.)
| |
Collapse
|
7
|
Salar Amoli M, EzEldeen M, Jacobs R, Bloemen V. Materials for Dentoalveolar Bioprinting: Current State of the Art. Biomedicines 2021; 10:biomedicines10010071. [PMID: 35052751 PMCID: PMC8773444 DOI: 10.3390/biomedicines10010071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/25/2021] [Accepted: 12/27/2021] [Indexed: 12/19/2022] Open
Abstract
Although current treatments can successfully address a wide range of complications in the dentoalveolar region, they often still suffer from drawbacks and limitations, resulting in sub-optimal treatments for specific problems. In recent decades, significant progress has been made in the field of tissue engineering, aiming at restoring damaged tissues via a regenerative approach. Yet, the translation into a clinical product is still challenging. Novel technologies such as bioprinting have been developed to solve some of the shortcomings faced in traditional tissue engineering approaches. Using automated bioprinting techniques allows for precise placement of cells and biological molecules and for geometrical patient-specific design of produced biological scaffolds. Recently, bioprinting has also been introduced into the field of dentoalveolar tissue engineering. However, the choice of a suitable material to encapsulate cells in the development of so-called bioinks for bioprinting dentoalveolar tissues is still a challenge, considering the heterogeneity of these tissues and the range of properties they possess. This review, therefore, aims to provide an overview of the current state of the art by discussing the progress of the research on materials used for dentoalveolar bioprinting, highlighting the advantages and shortcomings of current approaches and considering opportunities for further research.
Collapse
Affiliation(s)
- Mehdi Salar Amoli
- Surface and Interface Engineered Materials (SIEM), Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium;
- OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium; (M.E.); (R.J.)
| | - Mostafa EzEldeen
- OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium; (M.E.); (R.J.)
- Department of Oral Health Sciences, KU Leuven and Paediatric Dentistry and Special Dental Care, University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium
| | - Reinhilde Jacobs
- OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium; (M.E.); (R.J.)
- Department of Dental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Veerle Bloemen
- Surface and Interface Engineered Materials (SIEM), Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium;
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Correspondence: ; Tel.: +32-16-30-10-95
| |
Collapse
|
8
|
Abstract
Periodontal disease is one of the most common diagnoses in small animal veterinary medicine. This infectious disease of the periodontium is characterized by the inflammation and destruction of the supporting structures of teeth, including periodontal ligament, cementum, and alveolar bone. Traditional periodontal repair techniques make use of open flap debridement, application of graft materials, and membranes to prevent epithelial downgrowth and formation of a long junctional epithelium, which inhibits regeneration and true healing. These techniques have variable efficacy and are made more challenging in veterinary patients due to the cost of treatment for clients, need for anesthesia for surgery and reevaluation, and difficulty in performing necessary diligent home care to maintain oral health. Tissue engineering focuses on methods to regenerate the periodontal apparatus and not simply to repair the tissue, with the possibility of restoring normal physiological functions and health to a previously diseased site. This paper examines tissue engineering applications in periodontal disease by discussing experimental studies that focus on dogs and other animal species where it could potentially be applied in veterinary medicine. The main areas of focus of tissue engineering are discussed, including scaffolds, signaling molecules, stem cells, and gene therapy. To date, although outcomes can still be unpredictable, tissue engineering has been proven to successfully regenerate lost periodontal tissues and this new possibility for treating veterinary patients is discussed.
Collapse
Affiliation(s)
- Emily Ward
- Eastside Veterinary Dentistry, Woodinville, WA, USA
| |
Collapse
|
9
|
Lin H, Chen H, Zhao X, Chen Z, Zhang P, Tian Y, Wang Y, Ding T, Wang L, Shen Y. Advances in mesenchymal stem cell conditioned medium-mediated periodontal tissue regeneration. J Transl Med 2021; 19:456. [PMID: 34736500 PMCID: PMC8567704 DOI: 10.1186/s12967-021-03125-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/22/2021] [Indexed: 12/19/2022] Open
Abstract
Periodontitis is a chronic inflammatory disease that leads to the destruction of both soft and hard periodontal tissues. Complete periodontal regeneration in clinics using the currently available treatment approaches is still a challenge. Mesenchymal stem cells (MSCs) have shown promising potential to regenerate periodontal tissue in various preclinical and clinical studies. The poor survival rate of MSCs during in vivo transplantation and host immunogenic reaction towards MSCs are the main drawbacks of direct use of MSCs in periodontal tissue regeneration. Autologous MSCs have limited sources and possess patient morbidity during harvesting. Direct use of allogenic MSCs could induce host immune reaction. Therefore, the MSC-based indirect treatment approach could be beneficial for periodontal regeneration in clinics. MSC culture conditioned medium (CM) contains secretomes that had shown immunomodulatory and tissue regenerative potential in pre-clinical and clinical studies. MSC-CM contains a cocktail of growth factors, cytokines, chemokines, enzymes, and exosomes, extracellular vesicles, etc. MSC-CM-based indirect treatment has the potential to eliminate the drawbacks of direct use of MSCs for periodontal tissue regeneration. MSC-CM holds the tremendous potential of bench-to-bed translation in periodontal regeneration applications. This review focuses on the accumulating evidence indicating the therapeutic potential of the MSC-CM in periodontal regeneration-related pre-clinical and clinical studies. Recent advances on MSC-CM-based periodontal regeneration, existing challenges, and prospects are well summarized as guidance to improve the effectiveness of MSC-CM on periodontal regeneration in clinics.
Collapse
Affiliation(s)
- Hongbing Lin
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, China
| | - Huishan Chen
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Xuetao Zhao
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Zhen Chen
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, China
| | - Peipei Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Yue Tian
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Yawei Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Tong Ding
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Lijing Wang
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China.,Vascular Biology Research Institute, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuqin Shen
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, China.
| |
Collapse
|
10
|
Magalhães FD, Sarra G, Carvalho GL, Pedroni ACF, Marques MM, Chambrone L, Gimenez T, Moreira MS. Dental tissue-derived stem cell sheet biotechnology for periodontal tissue regeneration: A systematic review. Arch Oral Biol 2021; 129:105182. [PMID: 34098416 DOI: 10.1016/j.archoralbio.2021.105182] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVE This study aimed to conduct a systematic review of the use of a cell sheet formed by mesenchymal stem cells derived from dental tissues (ddMSCs) for periodontal tissue regeneration in animal models in comparison with any other type of regenerative treatment. DESIGN PubMed and Scopus databases were searched for relevant studies up to December 2020. The review was conducted based on the Preferred Reporting Items for Systematic Reviews and Meta-analysis guidelines. RESULTS Of the 1542 potentially relevant articles initially identified, 33 fulfilled the eligibility criteria and were considered for this review. Even with a wide variety of selected study methods, the periodontal tissue was always regenerated; this indicates the potential for the use of these cell sheets in the future of periodontics. However, this regeneration process is not always complete. CONCLUSION Despite the implantation, ddMSCs sheets have a great potential to be used in the regeneration of periodontal tissue. More in vivo studies should be conducted using standardized techniques for cell sheet implantation to obtain more robust evidence of the relevance of using this modality of cell therapy for periodontal tissue regeneration.
Collapse
Affiliation(s)
- Fabiana Divina Magalhães
- Graduation Dentistry Program, Ibirapuera University, Av. Interlagos 1329 - 4º, Chácara Flora, São Paulo, SP, ZIP code: 04661-100, Brazil
| | - Giovanna Sarra
- Department of Restorative Dentistry, School of Dentistry, Universidade de São Paulo, Av. Prof. Lineu Prestes 2227, São Paulo, SP, ZIP code: 05508-000, Brazil
| | - Giovanna Lopes Carvalho
- A.C. Camargo Cancer Center, Stomatology Department, Rua Tamandaré 753, Liberdade, São Paulo, SP, Zip code: 01525-001, Brazil
| | - Ana Clara Fagundes Pedroni
- Graduation Dentistry Program, Ibirapuera University, Av. Interlagos 1329 - 4º, Chácara Flora, São Paulo, SP, ZIP code: 04661-100, Brazil
| | - Márcia Martins Marques
- Graduation Dentistry Program, Ibirapuera University, Av. Interlagos 1329 - 4º, Chácara Flora, São Paulo, SP, ZIP code: 04661-100, Brazil
| | - Leandro Chambrone
- Graduation Dentistry Program, Ibirapuera University, Av. Interlagos 1329 - 4º, Chácara Flora, São Paulo, SP, ZIP code: 04661-100, Brazil
| | - Thaís Gimenez
- Graduation Dentistry Program, Ibirapuera University, Av. Interlagos 1329 - 4º, Chácara Flora, São Paulo, SP, ZIP code: 04661-100, Brazil
| | - Maria Stella Moreira
- Graduation Dentistry Program, Ibirapuera University, Av. Interlagos 1329 - 4º, Chácara Flora, São Paulo, SP, ZIP code: 04661-100, Brazil; A.C. Camargo Cancer Center, Stomatology Department, Rua Tamandaré 753, Liberdade, São Paulo, SP, Zip code: 01525-001, Brazil.
| |
Collapse
|
11
|
Long Noncoding RNA Expression Profiles of Periodontal Ligament Stem Cells from the Periodontitis Microenvironment in Response to Static Mechanical Strain. Stem Cells Int 2021; 2021:6655526. [PMID: 33936212 PMCID: PMC8055431 DOI: 10.1155/2021/6655526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 03/01/2021] [Accepted: 03/08/2021] [Indexed: 01/22/2023] Open
Abstract
During the period of orthodontic tooth movement, periodontal ligament stem cells (PDLSCs) play an important role in transducing mechanical stimulation and tissue remodeling. However, our previous studies verified that the periodontitis microenvironment causes damage to the biological functions of PDLSCs and abnormal mechanical sensitivity. Long noncoding RNAs (lncRNAs) participate in the inflammatory pathogenesis and development of many diseases. Whether lncRNAs are abnormally expressed in PDLSCs obtained from periodontal tissues of periodontitis patients (PPDLSCs) and whether putative lncRNAs participate in the mechanotransductive process in PDLSCs remain poorly understood. First, we subjected PDLSCs obtained from healthy periodontal tissues (HPDLSCs) and PPDLSCs to static mechanical strain (SMS) with 12% elongation at 0.1 Hz frequency using an FX-4000T system and screened overall lncRNA profiles in both cell types by microarray. Among lncRNAs with a fold change (FC) > 20.0, 27 lncRNAs were upregulated in strained HPDLSCs, and 16 lncRNAs (9 upregulated and 7 downregulated) were detected in strained PPDLSCs. For mRNAs with FC > 20.0, we detected 25 upregulated mRNAs and one downregulated mRNA in strained HPDLSCs and 7 upregulated and 5 downregulated mRNAs in strained PPDLSCs. Further enrichment analysis showed that, unlike HPDLSCs with annotations principally involving transduction-associated signaling pathways, dysregulated mRNAs in PPDLSCs are mainly responsible for pathological conditions. Moreover, coexpressed lncRNA-mRNA networks confirmed the pathological state and exacerbated inflammatory conditions in strained PPDLSCs. Taken together, when compared with strained HPDLSCs, various lncRNAs and mRNAs were dysregulated in PPDLSCs under mechanical forces, implicating the response of lncRNAs in PPDLSCs to mechanical stress. Moreover, we provide potential lncRNA targets, which may contribute to future intervention strategies for orthodontic treatment in periodontitis patients.
Collapse
|
12
|
Maeda H. Mass acquisition of human periodontal ligament stem cells. World J Stem Cells 2020; 12:1023-1031. [PMID: 33033562 PMCID: PMC7524700 DOI: 10.4252/wjsc.v12.i9.1023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/08/2020] [Accepted: 08/01/2020] [Indexed: 02/06/2023] Open
Abstract
The periodontal ligament (PDL) is an essential fibrous tissue for tooth retention in the alveolar bone socket. PDL tissue further functions to cushion occlusal force, maintain alveolar bone height, allow orthodontic tooth movement, and connect tooth roots with bone. Severe periodontitis, deep caries, and trauma cause irreversible damage to this tissue, eventually leading to tooth loss through the destruction of tooth retention. Many patients suffer from these diseases worldwide, and its prevalence increases with age. To address this issue, regenerative medicine for damaged PDL tissue as well as the surrounding tissues has been extensively investigated regarding the potential and effectiveness of stem cells, scaffolds, and cytokines as well as their combined applications. In particular, PDL stem cells (PDLSCs) have been well studied. In this review, I discuss comprehensive studies on PDLSCs performed in vivo and contemporary reports focusing on the acquisition of large numbers of PDLSCs for therapeutic applications because of the very small number of PDLSCs available in vivo.
Collapse
Affiliation(s)
- Hidefumi Maeda
- Department of Endodontology and Operative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Fukuoka 8128582, Japan
| |
Collapse
|
13
|
Bao L, Zhang X, Xu Y, Wang M, Song Y, Gu Y, Zheng Y, Xiao J, Wang Y, Zhou Q, Qian J, Liang Y, Ji L, Feng X. Dysfunction of MiR-148a-NRP1 Functional Axis Suppresses Osteogenic Differentiation of Periodontal Ligament Stem Cells Under Inflammatory Microenvironment. Cell Reprogram 2020; 21:314-322. [PMID: 31809209 DOI: 10.1089/cell.2019.0026] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Periodontitis is a chronic inflammatory disease that can lead to the loss of periodontal bone tissue. The osteogenic potential of periodontal ligament stem cells (PDLSCs) is significantly decreased in periodontitis microenvironment. However, the mechanism is still unclear. We used Porphyromonas gingivalis lipopolysaccharide (LPS) as a stimulator of PDLSCs to mimic the periodontal inflammatory environment. The mineralization capability was restrained in LPS-stimulated PDLSCs, and the level of miR-148a increased, while the level of Neuropilin 1 (NRP1) decreased. Downregulation of miR-148a could reverse the osteogenesis deficiency of PDLSCs under LPS treatment. In addition, the expression of miR-148a in PDLSCs was negatively correlated with the expression of NRP1. Furthermore, overexpression of NRP1 upregulated the osteogenesis ability of LPS-stimulated PDLSCs, while inhibition of NRP1 eliminated the stimulative effect of miR-148a inhibitor on osteogenic differentiation. These data illustrated that the inflammatory environment mimicked by LPS inhibits osteogenesis by upregulation of miR-148a and subsequent downregulation of NRP1. We also found, compared to healthy periodontal tissues, miR-148a level increased, while NRP1 level decreased in periodontitis tissues. These two phenomena also exist in PDLSCs that come from the upper two types of tissues. To summarize, the decline of osteogenic potential of PDLSCs under inflammatory condition of periodontitis is related to miR-148a/NRP1 functional axis. This study may provide a novel strategy in the molecular aspect for the therapy of periodontitis.
Collapse
Affiliation(s)
- Liuliu Bao
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiang Zhang
- Department of Stomatology, Haian People's Hospital of Jiangsu Province, Nantong, China
| | - Yang Xu
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Miao Wang
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yihua Song
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yongchun Gu
- Department of Stomatology, The First People's Hospital of Wujiang, Affliated Wujiang Hospital of Nantong University, Suzhou, China
| | - Ya Zheng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jingwen Xiao
- Department of Stomatology, Hai Men People's Hospital, Nantong, China
| | - Yuzhe Wang
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Qiao Zhou
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jie Qian
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yi Liang
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Lujun Ji
- Department of Stomatology, Nantong Tongzhou People's Hospital, Nantong, China
| | - Xingmei Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
14
|
Zafar MS, Amin F, Fareed MA, Ghabbani H, Riaz S, Khurshid Z, Kumar N. Biomimetic Aspects of Restorative Dentistry Biomaterials. Biomimetics (Basel) 2020; 5:E34. [PMID: 32679703 PMCID: PMC7557867 DOI: 10.3390/biomimetics5030034] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022] Open
Abstract
Biomimetic has emerged as a multi-disciplinary science in several biomedical subjects in recent decades, including biomaterials and dentistry. In restorative dentistry, biomimetic approaches have been applied for a range of applications, such as restoring tooth defects using bioinspired peptides to achieve remineralization, bioactive and biomimetic biomaterials, and tissue engineering for regeneration. Advancements in the modern adhesive restorative materials, understanding of biomaterial-tissue interaction at the nano and microscale further enhanced the restorative materials' properties (such as color, morphology, and strength) to mimic natural teeth. In addition, the tissue-engineering approaches resulted in regeneration of lost or damaged dental tissues mimicking their natural counterpart. The aim of the present article is to review various biomimetic approaches used to replace lost or damaged dental tissues using restorative biomaterials and tissue-engineering techniques. In addition, tooth structure, and various biomimetic properties of dental restorative materials and tissue-engineering scaffold materials, are discussed.
Collapse
Affiliation(s)
- Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah, Al Munawwarah 41311, Saudi Arabia;
- Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan
| | - Faiza Amin
- Science of Dental Materials Department, Dow Dental College, Dow University of Health Sciences, Karachi 74200, Pakistan;
| | - Muhmmad Amber Fareed
- Adult Restorative Dentistry, Dental Biomaterials and Prosthodontics Oman Dental College, Muscat 116, Sultanate of Oman;
| | - Hani Ghabbani
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah, Al Munawwarah 41311, Saudi Arabia;
| | - Samiya Riaz
- School of Dental Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Zohaib Khurshid
- Department of Prosthodontics and Dental Implantology, College of Dentistry, King Faisal University, Al-Ahsa 31982, Saudia Arabia;
| | - Naresh Kumar
- Department of Science of Dental Materials, Dow University of Health Sciences, Karachi 74200, Pakistan;
| |
Collapse
|
15
|
Raju R, Oshima M, Inoue M, Morita T, Huijiao Y, Waskitho A, Baba O, Inoue M, Matsuka Y. Three-dimensional periodontal tissue regeneration using a bone-ligament complex cell sheet. Sci Rep 2020; 10:1656. [PMID: 32015383 PMCID: PMC6997427 DOI: 10.1038/s41598-020-58222-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/13/2020] [Indexed: 02/06/2023] Open
Abstract
Periodontal tissue is a distinctive tissue structure composed three-dimensionally of cementum, periodontal ligament (PDL) and alveolar bone. Severe periodontal diseases cause fundamental problems for oral function and general health, and conventional dental treatments are insufficient for healing to healthy periodontal tissue. Cell sheet technology has been used in many tissue regenerations, including periodontal tissue, to transplant appropriate stem/progenitor cells for tissue regeneration of a target site as a uniform tissue. However, it is still difficult to construct a three-dimensional structure of complex tissue composed of multiple types of cells, and the transplantation of a single cell sheet cannot sufficiently regenerate a large-scale tissue injury. Here, we fabricated a three-dimensional complex cell sheet composed of a bone-ligament structure by layering PDL cells and osteoblast-like cells on a temperature responsive culture dish. Following ectopic and orthotopic transplantation, only the complex cell sheet group was demonstrated to anatomically regenerate the bone-ligament structure along with the functional connection of PDL-like fibers to the tooth root and alveolar bone. This study represents successful three-dimensional tissue regeneration of a large-scale tissue injury using a bioengineered tissue designed to simulate the anatomical structure.
Collapse
Affiliation(s)
- Resmi Raju
- Department of Stomatognathic Function and Occlusal Reconstruction, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-8503, Japan
| | - Masamitsu Oshima
- Department of Stomatognathic Function and Occlusal Reconstruction, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-8503, Japan
| | - Miho Inoue
- Department of Stomatognathic Function and Occlusal Reconstruction, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-8503, Japan
| | - Tsuyoshi Morita
- Department of Oral and Maxillofacial Anatomy, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-8503, Japan
| | - Yan Huijiao
- Department of Stomatognathic Function and Occlusal Reconstruction, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-8503, Japan
| | - Arief Waskitho
- Department of Stomatognathic Function and Occlusal Reconstruction, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-8503, Japan
| | - Otto Baba
- Department of Oral and Maxillofacial Anatomy, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-8503, Japan
| | - Masahisa Inoue
- Laboratories for Structure and Function Research, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8055, Japan
| | - Yoshizo Matsuka
- Department of Stomatognathic Function and Occlusal Reconstruction, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-8503, Japan.
| |
Collapse
|
16
|
Jafar H, Abuarqoub D, Ababneh N, Hasan M, Al-Sotari S, Aslam N, Kailani M, Ammoush M, Shraideh Z, Awidi A. hPL promotes osteogenic differentiation of stem cells in 3D scaffolds. PLoS One 2019; 14:e0215667. [PMID: 31063489 PMCID: PMC6504042 DOI: 10.1371/journal.pone.0215667] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/05/2019] [Indexed: 01/09/2023] Open
Abstract
Human platelet lysate (hPL) has been considered as the preferred supplement for the xeno-free stem cell culture for many years. However, the biological effect of hPL on the proliferation and differentiation of dental stem cells combined with the use of medical grade synthetic biomaterial is still under investigation. Thus, the optimal scaffold composition, cell type and specific growth conditions, yet need to be formulated. In this study, we aimed to investigate the regenerative potential of dental stem cells seeded on synthetic scaffolds and maintained in osteogenic media supplemented with either hPL or xeno-derived fetal bovine serum (FBS). Two types of dental stem cells were isolated from human impacted third molars and intact teeth; stem cells of apical papilla (SCAP) and periodontal ligament stem cells (PDLSCs). Cells were expanded in cell culture media supplemented with either hPL or FBS. Consequently, proliferative capacity, immunophenotypic characteristics and multilineage differentiation potential of the derived cells were evaluated on monolayer culture (2D) and on synthetic scaffolds fabricated from poly ’lactic-co-glycolic’ acid (PLGA) (3D). The functionality of the induced cells was examined by measuring the concentration of osteogenic markers ALP, OCN and OPN at different time points. Our results indicate that the isolated dental stem cells showed similar mesenchymal characteristics when cultured on hPL or FBS-containing culture media. Scanning electron microscopy (SEM) and H&E staining revealed the proper adherence of the derived cells on the 3D scaffold cultures. Moreover, the increase in the concentration of osteogenic markers proved that hPL was able to produce functional osteoblasts in both culture conditions (2D and 3D), in a way similar to FBS culture. These results reveal that hPL provides a suitable substitute to the animal-derived serum, for the growth and functionality of both SCAP and PDLSCs. Thus the use of hPL, in combination with PLGA scaffolds, can be useful in future clinical trials for dental regeneration.
Collapse
Affiliation(s)
- Hanan Jafar
- Cell Therapy Center, The University of Jordan, Amman, Jordan
- School of Medicine, The University of Jordan, Amman, Jordan
| | - Duaa Abuarqoub
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Nidaa Ababneh
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Maram Hasan
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | | | - Nazneen Aslam
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Mohammed Kailani
- Department of Chemistry, School of Sciences, The University of Jordan, Amman, Jordan
| | - Mohammed Ammoush
- Dental Department, King Hussein Medical Center (KHMC), Royal Medical Service, Amman, Jordan
| | - Ziad Shraideh
- Department of Biological Sciences, School of Sciences, The University of Jordan, Amman, Jordan
| | - Abdalla Awidi
- Cell Therapy Center, The University of Jordan, Amman, Jordan
- School of Medicine, The University of Jordan, Amman, Jordan
- * E-mail:
| |
Collapse
|
17
|
Zhao L, Matsumoto Y, Ono T, Iseki S. Effects of mechanical force application on the developing root apex in rat maxillary molars. Arch Oral Biol 2019; 101:64-76. [PMID: 30903951 DOI: 10.1016/j.archoralbio.2019.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/06/2019] [Accepted: 03/13/2019] [Indexed: 11/30/2022]
Abstract
OBJECTIVES We aimed to investigate the effects of mechanical force application on the developing root apex in vivo. DESIGN Mechanical force was applied on the maxillary first molars of Sprague-Dawley rats at postnatal day 21 for 1, 3, 5, and 7 days to induce tooth movement. We observed the developing root apex of the mesial root of first molar by using micro-focus X-ray computed tomography, histological staining, immunohistochemistry and in situ hybridization to analyze apical cell proliferation and gene expression. Moreover, the force was released after 3 and 7 days of tooth movement, and root apical morphology at postnatal day 35 was subsequently observed. RESULTS After 1 and 3 days of tooth movement, root apical morphology was altered by increasing immune-reactivity of laminin in the forming periodontal ligament. After 7 days of tooth movement, the root length decreased significantly with bending root apex, decreased cell proliferation and altered gene expression in developing root apex. At postnatal day 35, apical morphology showed no obvious abnormality when the force was released after 3 days of tooth movement, whereas root apical bending was not rescued when the force was released after 7 days. CONCLUSIONS Relatively short-term force application had no obvious adverse effects on the developing root apex. However, relatively long-term force application altered root apex by affecting Hertwig's epithelial root sheath morphology and apical cellular behavior.
Collapse
Affiliation(s)
- Lu Zhao
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Department of Molecular Craniofacial Embryology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Yoshiro Matsumoto
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Takashi Ono
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Sachiko Iseki
- Department of Molecular Craniofacial Embryology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
18
|
Lee KJ, Comerford EJ, Simpson DM, Clegg PD, Canty-Laird EG. Identification and Characterization of Canine Ligament Progenitor Cells and Their Extracellular Matrix Niche. J Proteome Res 2019; 18:1328-1339. [DOI: 10.1021/acs.jproteome.8b00933] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Katie J Lee
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, United Kingdom
| | - Eithne J Comerford
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, United Kingdom
- School of Veterinary Science, Leahurst Campus, University of Liverpool, Chester High Road, Neston, CH64 7TE, United Kingdom
| | - Deborah M Simpson
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Peter D Clegg
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, United Kingdom
- School of Veterinary Science, Leahurst Campus, University of Liverpool, Chester High Road, Neston, CH64 7TE, United Kingdom
- The MRC-Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Liverpool L7 8TX, United Kingdom
| | - Elizabeth G Canty-Laird
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, United Kingdom
- The MRC-Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Liverpool L7 8TX, United Kingdom
| |
Collapse
|
19
|
Abstract
Mesenchymal stem cells (MSCs) have been discovered in almost every organ and tissue. MSCs are a heterogeneous population of cells with the capacity to self-renew and show multilineage differentiation. MSCs possess immunomodulatory properties by regulating multiple types of immune cells. They are emerging as a promising therapeutic agent, and have been widely used for cell-based tissue regeneration and immune therapies. A further understanding of the biological characteristics of MSCs is a prerequisite to develop more efficient MSC-based therapies. This article reviews the current understanding of different MSC populations in orofacial tissue compared with those derived from bone marrow.
Collapse
Affiliation(s)
- Xueli Mao
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Affiliated Stomatological Hospital, Sun Yat-sen University, 55 West Lingyuan Rd, Yuexiu District, Guangzhou 510055, China
| | - Yao Liu
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Pediatric Dentistry, School of Stomatology, China Medical University, 117 South Nanjing Street, Heping District, Shenyang 110002, China
| | - Chider Chen
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Songtao Shi
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
20
|
Stem Cells in Dentistry: Types of Intra- and Extraoral Tissue-Derived Stem Cells and Clinical Applications. Stem Cells Int 2018; 2018:4313610. [PMID: 30057624 PMCID: PMC6051054 DOI: 10.1155/2018/4313610] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/05/2018] [Accepted: 06/07/2018] [Indexed: 12/13/2022] Open
Abstract
Stem cells are undifferentiated cells, capable of renewing themselves, with the capacity to produce different cell types to regenerate missing tissues and treat diseases. Oral facial tissues have been identified as a source and therapeutic target for stem cells with clinical interest in dentistry. This narrative review report targets on the several extraoral- and intraoral-derived stem cells that can be applied in dentistry. In addition, stem cell origins are suggested in what concerns their ability to differentiate as well as their particular distinguishing quality of convenience and immunomodulatory for regenerative dentistry. The development of bioengineered teeth to replace the patient's missing teeth was also possible because of stem cell technologies. This review will also focus our attention on the clinical application of stem cells in dentistry. In recent years, a variety of articles reported the advantages of stem cell-based procedures in regenerative treatments. The regeneration of lost oral tissue is the target of stem cell research. Owing to the fact that bone imperfections that ensue after tooth loss can result in further bone loss which limit the success of dental implants and prosthodontic therapies, the rehabilitation of alveolar ridge height is prosthodontists' principal interest. The development of bioengineered teeth to replace the patient's missing teeth was also possible because of stem cell technologies. In addition, a “dental stem cell banking” is available for regenerative treatments in the future. The main features of stem cells in the future of dentistry should be understood by clinicians.
Collapse
|
21
|
Liu AQ, Hu CH, Jin F, Zhang LS, Xuan K. Contributions of Bioactive Molecules in Stem Cell-Based Periodontal Regeneration. Int J Mol Sci 2018; 19:ijms19041016. [PMID: 29597317 PMCID: PMC5979460 DOI: 10.3390/ijms19041016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/22/2018] [Accepted: 03/26/2018] [Indexed: 12/14/2022] Open
Abstract
Periodontal disease is a widespread disease, which without proper treatment, may lead to tooth loss in adults. Because stem cells from the inflammatory microenvironment created by periodontal disease exhibit impaired regeneration potential even under favorable conditions, it is difficult to obtain satisfactory therapeutic outcomes using traditional treatments, which only focus on the control of inflammation. Therefore, a new stem cell-based therapy known as cell aggregates/cell sheets technology has emerged. This approach provides sufficient numbers of stem cells with high viability for treating the defective site and offers new hope in the field of periodontal regeneration. However, it is not sufficient for regenerating periodontal tissues by delivering cell aggregates/cell sheets to the impaired microenvironment in order to suppress the function of resident cells. In the present review, we summarize some promising bioactive molecules that act as cellular signals, which recreate a favorable microenvironment for tissue regeneration, recruit endogenous cells into the defective site and enhance the viability of exogenous cells.
Collapse
Affiliation(s)
- An-Qi Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China.
- Research and Development Center for Tissue Engineering, The Fourth Military Medical University, Xi'an 710032, China.
| | - Cheng-Hu Hu
- Research and Development Center for Tissue Engineering, The Fourth Military Medical University, Xi'an 710032, China.
| | - Fang Jin
- Research and Development Center for Tissue Engineering, The Fourth Military Medical University, Xi'an 710032, China.
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China.
| | - Li-Shu Zhang
- Research and Development Center for Tissue Engineering, The Fourth Military Medical University, Xi'an 710032, China.
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China.
| | - Kun Xuan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China.
- Research and Development Center for Tissue Engineering, The Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
22
|
Khoshhal M, Amiri I, Gholami L. Comparison of in vitro properties of periodontal ligament stem cells derived from permanent and deciduous teeth. J Dent Res Dent Clin Dent Prospects 2017; 11:140-148. [PMID: 29184628 PMCID: PMC5666212 DOI: 10.15171/joddd.2017.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 07/29/2017] [Indexed: 12/15/2022] Open
Abstract
Background. Stem cells have contributed to the development of tissue-engineered-based regenerative periodontal therapies. In order to find the best stem cell sources for such therapies, the biologic properties of stem cells isolated from periodontal ligaments (PDL) of deciduous (DePDLSC) and permanent (PePDLSC) teeth were comparatively evaluated. Methods. PDL stem cells were isolated from six sound fully erupted premolars and six deciduous canines of healthy subjects. In vitro biologic characteristics such as colony formation, viability, stem cell marker identification and osteogenic differentiation (using alkaline phosphatase analysis and Alizarin red staining) were comparatively assessed using one-way ANOVA and post hoc Tukey tests using SPSS 13.0. Results. Stem cell populations isolated from both groups were CD105+ and CD90+ and CD45‒. No statistically significant differences were found in stem cell markers, colony formation and viability. Both groups were capable of osteogenic differentiation. However, alkaline phosphatase activity test showed a statistically significant difference, with PePDLSC exhibiting higher alkaline phosphatase activity (P=0.000). No statistically significant difference was seen in quantitative alizarine red staining (P=0.559). Conclusion. Mesenchymal stem cells of PDL could successfully be isolated from permanent and deciduous teeth. A minor difference was observed in the osteogenic properties of the two cell types, which might affect their future clinical applications.
Collapse
Affiliation(s)
- Masoumeh Khoshhal
- Dental Implant Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Amiri
- Department of Anatomy and Embryology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Leila Gholami
- Department of Periodontology, Faculty of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
23
|
Tassi SA, Sergio NZ, Misawa MYO, Villar CC. Efficacy of stem cells on periodontal regeneration: Systematic review of pre-clinical studies. J Periodontal Res 2017; 52:793-812. [PMID: 28394043 DOI: 10.1111/jre.12455] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2017] [Indexed: 01/10/2023]
Abstract
This systematic review aims to evaluate mesenchymal stem cells (MSC) periodontal regenerative potential in animal models. MEDLINE, EMBASE and LILACS databases were searched for quantitative pre-clinical controlled animal model studies that evaluated the effect of local administration of MSC on periodontal regeneration. The systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement guidelines. Twenty-two studies met the inclusion criteria. Periodontal defects were surgically created in all studies. In seven studies, periodontal inflammation was experimentally induced following surgical defect creation. Differences in defect morphology were identified among the studies. Autogenous, alogenous and xenogenous MSC were used to promote periodontal regeneration. These included bone marrow-derived MSC, periodontal ligament (PDL)-derived MSC, dental pulp-derived MSC, gingival margin-derived MSC, foreskin-derived induced pluripotent stem cells, adipose tissue-derived MSC, cementum-derived MSC, periapical follicular MSC and alveolar periosteal cells. Meta-analysis was not possible due to heterogeneities in study designs. In most of the studies, local MSC implantation was not associated with adverse effects. The use of bone marrow-derived MSC for periodontal regeneration yielded conflicting results. In contrast, PDL-MSC consistently promoted increased PDL and cementum regeneration. Finally, the adjunct use of MSC improved the regenerative outcomes of periodontal defects treated with membranes or bone substitutes. Despite the quality level of the existing evidence, the current data indicate that the use of MSC may provide beneficial effects on periodontal regeneration. The various degrees of success of MSC in periodontal regeneration are likely to be related to the use of heterogeneous cells. Thus, future studies need to identify phenotypic profiles of highly regenerative MSC populations.
Collapse
Affiliation(s)
- S A Tassi
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - N Z Sergio
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - M Y O Misawa
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - C C Villar
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil.,Department of Periodontics, University of Texas Health Science Center at San Antonio Dental School, San Antonio, TX, USA
| |
Collapse
|
24
|
Ligament-Derived Stem Cells: Identification, Characterisation, and Therapeutic Application. Stem Cells Int 2017; 2017:1919845. [PMID: 28386284 PMCID: PMC5366203 DOI: 10.1155/2017/1919845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/19/2017] [Indexed: 01/09/2023] Open
Abstract
Ligament is prone to injury and degeneration and has poor healing potential and, with currently ineffective treatment strategies, stem cell therapies may provide an exciting new treatment option. Ligament-derived stem cell (LDSC) populations have been isolated from a number of different ligament types with the majority of studies focussing on periodontal ligament. To date, only a few studies have investigated LDSC populations in other types of ligament, for example, intra-articular ligaments; however, this now appears to be a developing field. This literature review aims to summarise the current information on nondental LDSCs including in vitro characteristics of LDSCs and their therapeutic potential. The stem cell niche has been shown to be vital for stem cell survival and function in a number of different physiological systems; therefore, the LDSC niche may have an impact on LDSC phenotype. The role of the LDSC niche on LDSC viability and function will be discussed as well as the therapeutic potential of LDSC niche modulation.
Collapse
|
25
|
Chalisserry EP, Nam SY, Park SH, Anil S. Therapeutic potential of dental stem cells. J Tissue Eng 2017; 8:2041731417702531. [PMID: 28616151 PMCID: PMC5461911 DOI: 10.1177/2041731417702531] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/12/2017] [Indexed: 12/13/2022] Open
Abstract
Stem cell biology has become an important field in regenerative medicine and tissue engineering therapy since the discovery and characterization of mesenchymal stem cells. Stem cell populations have also been isolated from human dental tissues, including dental pulp stem cells, stem cells from human exfoliated deciduous teeth, stem cells from apical papilla, dental follicle progenitor cells, and periodontal ligament stem cells. Dental stem cells are relatively easily obtainable and exhibit high plasticity and multipotential capabilities. The dental stem cells represent a gold standard for neural-crest-derived bone reconstruction in humans and can be used for the repair of body defects in low-risk autologous therapeutic strategies. The bioengineering technologies developed for tooth regeneration will make substantial contributions to understand the developmental process and will encourage future organ replacement by regenerative therapies in a wide variety of organs such as the liver, kidney, and heart. The concept of developing tooth banking and preservation of dental stem cells is promising. Further research in the area has the potential to herald a new dawn in effective treatment of notoriously difficult diseases which could prove highly beneficial to mankind in the long run.
Collapse
Affiliation(s)
- Elna Paul Chalisserry
- Interdisciplinary Program of Marine-Bio, Electrical & Mechanical Engineering, Pukyong National University, Busan, Korea
- Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, Korea
| | - Seung Yun Nam
- Interdisciplinary Program of Marine-Bio, Electrical & Mechanical Engineering, Pukyong National University, Busan, Korea
- Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, Korea
- Department of Biomedical Engineering, Pukyong National University, Busan, South Korea
| | - Sang Hyug Park
- Interdisciplinary Program of Marine-Bio, Electrical & Mechanical Engineering, Pukyong National University, Busan, Korea
- Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, Korea
- Department of Biomedical Engineering, Pukyong National University, Busan, South Korea
| | - Sukumaran Anil
- Division of Periodontics, Department of Preventive Dental Sciences, College of Dentistry Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
26
|
Composite cell sheet for periodontal regeneration: crosstalk between different types of MSCs in cell sheet facilitates complex periodontal-like tissue regeneration. Stem Cell Res Ther 2016; 7:168. [PMID: 27842561 PMCID: PMC5109898 DOI: 10.1186/s13287-016-0417-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/09/2016] [Accepted: 10/04/2016] [Indexed: 12/30/2022] Open
Abstract
Background Tissue-engineering strategies based on mesenchymal stem cells (MSCs) and cell sheets have been widely used for periodontal tissue regeneration. However, given the complexity in periodontal structure, the regeneration methods using a single species of MSC could not fulfill the requirement for periodontal regeneration. Methods We researched the interaction between the periodontal ligament stem cells (PDLSCs) and jaw bone marrow-derived mesenchymal stem cells (JBMMSCs), and constructed a composite cell sheet comprising both of the above MSCs to regenerate complex periodontium-like structures in nude mice. Results Our results show that by co-culturing PDLSCs and JBMMSCs, the expressions of bone and extracellular matrix (ECM)-related genes and proteins were significantly improved in both MSCs. Further investigations showed that, compared to the cell sheet using PDLSCs or JBMMSCs, the composite stem cell sheet (CSCS), which comprises these two MSCs, expressed higher levels of bone- and ECM-related genes and proteins, and generated a composite structure more similar to the native periodontal tissue physiologically in vivo. Conclusions In conclusion, our results demonstrate that the crosstalk between PDLSCs and JBMMSCs in cell sheets facilitate regeneration of complex periodontium-like structures, providing a promising new strategy for physiological and functional regeneration of periodontal tissue. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0417-x) contains supplementary material, which is available to authorized users.
Collapse
|
27
|
Chen Y, Liu H. The differentiation potential of gingival mesenchymal stem cells induced by apical tooth germ cell‑conditioned medium. Mol Med Rep 2016; 14:3565-72. [PMID: 27600358 PMCID: PMC5042793 DOI: 10.3892/mmr.2016.5726] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 08/08/2016] [Indexed: 01/09/2023] Open
Abstract
Gingival-derived mesenchymal stem cells (GMSCs) have recently been harvested; however, the use of GMSCs in periodontal tissue engineering requires further study. The present study established an indirect co‑culture system between rat apical tooth germ‑conditioned medium (APTG‑CM) and GMSCs, in order to determine the effects on periodontal tissue differentiation in vitro and in vivo. Using the limiting dilution technique, single‑colony derived human GMSCs and periodontal ligament stem cells (PDLSCs) were isolated and expanded to obtain homogeneous populations. PDLSCs were used as a positive control group. Cell cycle distribution, alkaline phosphatase (ALP) activity, mineralization behavior, expression of genes associated with a cementoblast phenotype (osteocalcin, bone sialoprotein, ALP, type I collagen, cementum‑derived protein 23), and in vivo differentiation capacities of GMSCs/PDLSCs co‑cultured with APTG‑CM were evaluated. Flow cytometry indicated that GMSCs and PDLSCs were positive for STRO‑1 and CD105, whereas CD45 expression was negative. The cell types were capable of forming colonies, and of osteogenic and adipogenic differentiation in response to appropriate stimuli. The induced GMSCs and PDLSCs exhibited numerous characteristics associated with cementoblast lineages, as indicated by increased proliferation and ALP activity, and upregulated expression of cementum‑associated genes in vitro. In vivo, cementum/periodontal ligament‑like structures were shown to form along the dentin surface and ceramic bovine bone in GMSCs and PDLSCs induced by APTG‑CM group. Conversely, vertical fibers could not insert in the control group, which was not co‑cultured with APTG‑CM. In conclusion, GMSCs are likely to have a role in periodontal tissue regeneration. In addition, APTG‑CM was able to provide a cementogenic microenvironment and promote differentiation of GMSCs along the cementoblastic lineage.
Collapse
Affiliation(s)
- Yan Chen
- Department of Periodontology, Laboratory of Oral Biomedical Science and Translational Medicine, School of Stomatology, Tongji University, Shanghai 200072, P.R. China
| | - Hongwei Liu
- Department of Periodontology, Laboratory of Oral Biomedical Science and Translational Medicine, School of Stomatology, Tongji University, Shanghai 200072, P.R. China
| |
Collapse
|
28
|
Nakajima K, Oshima M, Yamamoto N, Tanaka C, Koitabashi R, Inoue T, Tsuji T. Development of a Functional Biohybrid Implant Formed from Periodontal Tissue Utilizing Bioengineering Technology. Tissue Eng Part A 2016; 22:1108-15. [DOI: 10.1089/ten.tea.2016.0130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Kei Nakajima
- Department of Clinical Pathophysiology, Tokyo Dental College, Tokyo, Japan
- Department of Biological Science and Technology, Graduate School of Industrial Science and Technology, Tokyo University of Science, Noda, Japan
| | - Masamitsu Oshima
- Research Institute for Science and Technology, Tokyo University of Science, Noda, Japan
- Department of Oral and Maxillofacial Rehabilitation, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Naomi Yamamoto
- Department of Biological Science and Technology, Graduate School of Industrial Science and Technology, Tokyo University of Science, Noda, Japan
- Section of Maxillofacial Orthognathics, Department of Maxillofacial Reconstruction and Function, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Chie Tanaka
- Department of Biological Science and Technology, Graduate School of Industrial Science and Technology, Tokyo University of Science, Noda, Japan
| | - Ryosuke Koitabashi
- Department of Biological Science and Technology, Graduate School of Industrial Science and Technology, Tokyo University of Science, Noda, Japan
| | - Takashi Inoue
- Department of Clinical Pathophysiology, Tokyo Dental College, Tokyo, Japan
| | - Takashi Tsuji
- Department of Biological Science and Technology, Graduate School of Industrial Science and Technology, Tokyo University of Science, Noda, Japan
- Laboratory for Organ Regeneration, RIKEN Center for Developmental Biology, Kobe, Japan
- Organ Technologies, Inc., Tokyo, Japan
| |
Collapse
|
29
|
Lin Z, Rios HF, Cochran DL. Emerging regenerative approaches for periodontal reconstruction: a systematic review from the AAP Regeneration Workshop. J Periodontol 2016; 86:S134-52. [PMID: 25644297 DOI: 10.1902/jop.2015.130689] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
More than 30 years have passed since the first successful application of regenerative therapy for treatment of periodontal diseases. Despite being feasible, periodontal regeneration still faces numerous challenges, and complete restoration of structure and function of the diseased periodontium is often considered an unpredictable task. This review highlights developing basic science and technologies for potential application to achieve reconstruction of the periodontium. A comprehensive search of the electronic bibliographic database PubMed was conducted to identify different emerging therapeutic approaches reported to influence either biologic pathways and/or tissues involved in periodontal regeneration. Each citation was assessed based on its abstract, and the full text of potentially eligible reports was retrieved. Based on the review of the full papers, their suitability for inclusion in this report was determined. In principle, only reports from scientifically well-designed studies that presented preclinical in vivo (animal studies) or clinical (human studies) evidence for successful periodontal regeneration were included. Hence, in vitro studies, namely those conducted in laboratories without any live animals, were excluded. In case of especially recent and relevant reviews with a narrow focus on specific regenerative approaches, they were identified as such, and thereby the option of referring to them to summarize the status of a specific approach, in addition to or instead of listing each separately, was preserved. Admittedly, the presence of subjectivity in the selection of studies to include in this overview cannot be excluded. However, it is believed that the contemporary approaches described in this review collectively represent the current efforts that have reported preclinical or clinical methods to successfully enhance regeneration of the periodontium. Today's challenges facing periodontal regenerative therapy continue to stimulate important research and clinical development, which, in turn, shapes the current concept of periodontal tissue engineering. Emerging technologies--such as stem cell therapy, bone anabolic agents, genetic approaches, and nanomaterials--also offer unique opportunities to enhance the predictability of current regenerative surgical approaches and inspire development of novel treatment strategies.
Collapse
Affiliation(s)
- Zhao Lin
- Department of Periodontics, Virginia Commonwealth University School of Dentistry, Richmond, VA
| | | | | |
Collapse
|
30
|
Oshima M, Tsuji T. Whole Tooth Regeneration as a Future Dental Treatment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 881:255-69. [PMID: 26545754 DOI: 10.1007/978-3-319-22345-2_14] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dental problems caused by dental caries, periodontal disease and tooth injury compromise the oral and general health issues. Current advances for the development of regenerative therapy have been influenced by our understanding of embryonic development, stem cell biology, and tissue engineering technology. Tooth regenerative therapy for tooth tissue repair and whole tooth replacement is currently expected a novel therapeutic concept with the full recovery of tooth physiological functions. Dental stem cells and cell-activating cytokines are thought to be candidate approach for tooth tissue regeneration because they have the potential to differentiate into tooth tissues in vitro and in vivo. Whole tooth replacement therapy is considered to be an attractive concept for next generation regenerative therapy as a form of bioengineered organ replacement. For realization of whole tooth regeneration, we have developed a novel three-dimensional cell manipulation method designated the "organ germ method". This method involves compartmentalisation of epithelial and mesenchymal cells at a high cell density to mimic multicellular assembly conditions and epithelial-mesenchymal interactions in organogenesis. The bioengineered tooth germ generates a structurally correct tooth in vitro, and erupted successfully with correct tooth structure when transplanted into the oral cavity. We have ectopically generated a bioengineered tooth unit composed of a mature tooth, periodontal ligament and alveolar bone, and that tooth unit was engrafted into an adult jawbone through bone integration. Bioengineered teeth were also able to perform physiological tooth functions such as mastication, periodontal ligament function and response to noxious stimuli. In this review, we describe recent findings and technologies underpinning whole tooth regenerative therapy.
Collapse
Affiliation(s)
- Masamitsu Oshima
- Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8525, Japan.
- RIKEN Center for Developmental Biology, Kobe, Hyogo, 650-0047, Japan.
| | - Takashi Tsuji
- RIKEN Center for Developmental Biology, Kobe, Hyogo, 650-0047, Japan.
- Research Institute for Science and Technology, Tokyo University of Science, Noda, Chiba, 278-8510, Japan.
- Organ Technologies Inc, Tokyo, 101-0048, Japan.
| |
Collapse
|
31
|
Ma Y, Ji Y, Huang G, Ling K, Zhang X, Xu F. Bioprinting 3D cell-laden hydrogel microarray for screening human periodontal ligament stem cell response to extracellular matrix. Biofabrication 2015; 7:044105. [DOI: 10.1088/1758-5090/7/4/044105] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
32
|
Wen L, Wang Y, Wen N, Yuan G, Wen M, Zhang L, Liu Q, Liang Y, Cai C, Chen X, Ding Y. Role of Endothelial Progenitor Cells in Maintaining Stemness and Enhancing Differentiation of Mesenchymal Stem Cells by Indirect Cell-Cell Interaction. Stem Cells Dev 2015; 25:123-38. [PMID: 26528828 DOI: 10.1089/scd.2015.0049] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A hot issue in current research regarding stem cells for regenerative medicine is the retainment of the stemness and multipotency of stem cell. Endothelial progenitor cells (EPCs) are characterized by an angiogenic switch that induces angiogenesis and further ameliorates the local microenvironment in ischemic organs. This study investigated whether EPCs could modulate the multipotent and differential abilities of mesenchymal stem cells (MSCs) in vitro and in vivo. We established an EPC/MSC indirect Transwell coculture system and then examined the effects of EPCs on the regulation of MSC biological properties in vitro and bone formation in vivo. The in vitro studies showed that cocultured MSCs (coMSCs) display no overt changes in cell morphology but an enhanced MSC phenotype compared with monocultured MSCs (monoMSCs). Our studies regarding the cellular, molecular, and protein characteristics of coMSCs and monoMSCs demonstrated that EPCs greatly promote the proliferation and differentiation potentials of coMSCs under indirect coculture condition. The expression of the pluripotency factors OCT4, SOX2, Nanog, and Klf4 was also upregulated in coMSCs. Furthermore, coMSCs combined with fibrin glue showed improved bone regeneration when used to repair rat alveolar bone defects compared with monoMSC grafts in vivo. This study is the first to demonstrate that EPCs have dynamic roles in maintaining MSC stemness and regulating MSC differentiation potential.
Collapse
Affiliation(s)
- Li Wen
- 1 Department of Orthodontics, School of Stomatology, Fourth Military Medical University , Xi'an, China .,2 Institute of Stomatology, Chinese PLA General Hospital , Beijing, China
| | - Yu Wang
- 2 Institute of Stomatology, Chinese PLA General Hospital , Beijing, China .,3 Department of Oncology, State Key Discipline of Cell Biology, Xijing Hospital, Fourth Military Medical University , Xi'an, China
| | - Ning Wen
- 2 Institute of Stomatology, Chinese PLA General Hospital , Beijing, China
| | - Gongjie Yuan
- 4 Department of Orthodontics, Dalian Stomatological Hospital , Dalian, China
| | - Mingling Wen
- 5 Department of Pharmacy, Affiliated Hospital of Academy of Military Medical Sciences , Beijing, China
| | - Liang Zhang
- 6 Department of Stomatology, 323 Hospital of the People's Liberation Army , Xi'an, China
| | - Qian Liu
- 1 Department of Orthodontics, School of Stomatology, Fourth Military Medical University , Xi'an, China
| | - Yuan Liang
- 1 Department of Orthodontics, School of Stomatology, Fourth Military Medical University , Xi'an, China
| | - Chuan Cai
- 2 Institute of Stomatology, Chinese PLA General Hospital , Beijing, China
| | - Xin Chen
- 7 Department of General Dentistry, 174th Hospital of Chinese PLA , Xiamen, China
| | - Yin Ding
- 1 Department of Orthodontics, School of Stomatology, Fourth Military Medical University , Xi'an, China
| |
Collapse
|
33
|
Liu J, Wang L, Liu W, Li Q, Jin Z, Jin Y. Dental follicle cells rescue the regenerative capacity of periodontal ligament stem cells in an inflammatory microenvironment. PLoS One 2014; 9:e108752. [PMID: 25275580 PMCID: PMC4183515 DOI: 10.1371/journal.pone.0108752] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/11/2014] [Indexed: 12/22/2022] Open
Abstract
Aims Periodontal ligament stem cells (PDLSCs) are one of the best candidates for periodontal regeneration. Their function could be impaired in periodontitis microenvironment. Dental follicle cells (DFCs), serving as precursor cells and mesenchymal stem cells, have intimate connection with PDLSCs. However, it is still unknown whether DFCs could provide a favorable microenvironment to improve the proliferation and differentiation capacity of PDLSCs from healthy subjects (HPDLSCs) and patients diagnosed with periodontitis (PPDLSCs). Methods HPDLSCs, PPDLSCs and DFCs were harvested and identified using microscopic and flow cytometric analysis. Then, the coculture systems of DFCs/HPDLSCs and DFCs/PPDLSCs were established with 0.4 µm transwell, in which all the detection indexs were obtained from HPDLSCs and PPDLSCs. The expression of stemness-associated genes was detected by real-time PCR, and the proliferation ability was assessed using colony formation and cell cycle assays. The osteogenic differentiation capacity was evaluated by real-time PCR, western blot, ALP activity, Alizarin Red S staining and calcium level analysis, while the adipogenic differentiation capacity was determined by real-time PCR and Oil Red O staining. The cell sheet formation in vitro was observed by HE staining and SEM, and the implantation effect in vivo was evaluated using HE staining and Masson’s trichrome staining. Results PPDLSCs had a greater proliferation capability but lower osteogenic and adipogenic potential than HPDLSCs. DFCs enhanced the proliferation and osteogenic/adipogenic differentiation of HPDLSCs and PPDLSCs to different degrees. Moreover, coculture with DFCs increased cell layers and extracellular matrix of HPDLSCs/PPDLSCs cell sheets in vitro and improved periodontal regeneration by HPDLSCs/PPDLSCs in vivo. Conclusions Our data suggest that the function of PPDLSCs could be damaged in the periodontitis microenvironment. DFCs appear to enhance the self-renewal and multi-differentiation capacity of both HPDLSCs and PPDLSCs, which indicates that DFCs could provide a beneficial microenvironment for periodontal regeneration using PDLSCs.
Collapse
Affiliation(s)
- Jia Liu
- State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
- State Key Laboratory of Military Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Liying Wang
- State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
- State Key Laboratory of Military Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Wenjia Liu
- State Key Laboratory of Military Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
- Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Qiang Li
- State Key Laboratory of Military Stomatology, Department of General Dentistry & Emergency, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Zuolin Jin
- State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
- * E-mail: (ZJ); (YJ)
| | - Yan Jin
- State Key Laboratory of Military Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
- Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi’an, Shaanxi, China
- * E-mail: (ZJ); (YJ)
| |
Collapse
|
34
|
Xu Q, Li B, Yuan L, Dong Z, Zhang H, Wang H, Sun J, Ge S, Jin Y. Combination of platelet-rich plasma within periodontal ligament stem cell sheets enhances cell differentiation and matrix production. J Tissue Eng Regen Med 2014; 11:627-636. [DOI: 10.1002/term.1953] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 06/17/2014] [Accepted: 07/17/2014] [Indexed: 01/25/2023]
Affiliation(s)
- Qiu Xu
- State Key Laboratory of Military Stomatology, Centre for Tissue Engineering; Fourth Military Medical University; Xi'an Shaanxi People's Republic of China
- Department of Periodontology, School of Stomatology; Zunyi Medical Collage; Guizhou People's Republic of China
| | - Bei Li
- State Key Laboratory of Military Stomatology, Centre for Tissue Engineering; Fourth Military Medical University; Xi'an Shaanxi People's Republic of China
- Research and Development Centre for Tissue Engineering; Fourth Military Medical University; Xi'an Shaanxi People's Republic of China
| | - Lin Yuan
- Department of Stomatology; First Affiliated Hospital, Guangzhou Medical University; Guangdong People's Republic of China
| | - Zhiwei Dong
- Department of Oral and Maxillofacial Surgery; General Hospital of Shenyang Military Area Command; Liaoning People's Republic of China
| | - Hao Zhang
- State Key Laboratory of Military Stomatology, Centre for Tissue Engineering; Fourth Military Medical University; Xi'an Shaanxi People's Republic of China
| | - Han Wang
- State Key Laboratory of Military Stomatology, Centre for Tissue Engineering; Fourth Military Medical University; Xi'an Shaanxi People's Republic of China
- Department of Stomatology; First Affiliated Hospital, Guangzhou Medical University; Guangdong People's Republic of China
| | - Jin Sun
- State Key Laboratory of Military Stomatology, Centre for Tissue Engineering; Fourth Military Medical University; Xi'an Shaanxi People's Republic of China
- Department of Stomatology; First Affiliated Hospital, Guangzhou Medical University; Guangdong People's Republic of China
| | - Song Ge
- Department of Periodontology, School of Stomatology; Zunyi Medical Collage; Guizhou People's Republic of China
| | - Yan Jin
- State Key Laboratory of Military Stomatology, Centre for Tissue Engineering; Fourth Military Medical University; Xi'an Shaanxi People's Republic of China
- Research and Development Centre for Tissue Engineering; Fourth Military Medical University; Xi'an Shaanxi People's Republic of China
| |
Collapse
|
35
|
Choi H, Jin H, Kim JY, Lim KT, Choung HW, Park JY, Chung JH, Choung PH. Hypoxia promotes CEMP1 expression and induces cementoblastic differentiation of human dental stem cells in an HIF-1-dependent manner. Tissue Eng Part A 2014; 20:410-23. [PMID: 24117017 DOI: 10.1089/ten.tea.2013.0132] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cementum covering the tooth root provides attachment for the tooth proper to the surrounding alveolar bone via non-mineralized periodontal ligament (PDL). Cementum protein 1 (CEMP1) has been shown to induce a cementoblastic phenotype in cementoblast precursors cells of PDL. Oxygen availability is a critical signal for correct development of many tissues; however, its role in tooth root and periodontium development remains poorly understood. In this study, we demonstrated that reduced oxygen tension increased CEMP1 expression, mineral deposition, and alkaline phosphatase activity in human dental stem cells such as PDL stem cells and periapical follicular stem cells. Since an oxemic state is transduced by the transcription factor, hypoxia-inducible factor-1 (HIF-1), we performed experiments to determine whether this protein was responsible for the observed changes. We noted that when HIF-1 was activated by gene introduction or chemically, CEMP1 expression and mineralization increased. In contrast, when HIF-1α was silenced, CEMP1 expression and mineralization did not increase in vitro. Furthermore, we showed for the first time that mouse tooth root and periodontium development occurs partly under hypoxic conditions, particularly at the apical part and latently at the PDL space in vivo. Desferrioxamine, an HIF-1 stimulator, enhances CEMP1 expression in the mouse PDL space, suggesting that hypoxia affects cementogenesis of PDL cells lining the surface of the developing tooth root in an HIF-1-dependent manner. These results suggest that HIF-1 activators may have the ability to stimulate regeneration of the tooth root and cementum formation.
Collapse
Affiliation(s)
- Hwajung Choi
- 1 Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University , Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Oshima M, Tsuji T. Functional tooth regenerative therapy: tooth tissue regeneration and whole-tooth replacement. Odontology 2014; 102:123-36. [PMID: 25052182 DOI: 10.1007/s10266-014-0168-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/14/2014] [Indexed: 12/22/2022]
Abstract
Oral and general health is compromised by irreversible dental problems, including dental caries, periodontal disease and tooth injury. Regenerative therapy for tooth tissue repair and whole-tooth replacement is currently considered a novel therapeutic concept with the potential for the full recovery of tooth function. Several types of stem cells and cell-activating cytokines have been identified in oral tissues. These cells are thought to be candidate cell sources for tooth tissue regenerative therapies because they have the ability to differentiate into tooth tissues in vitro and in vivo. Whole-tooth replacement therapy is regarded as an important model for the development of an organ regenerative concept. A novel three-dimensional cell-manipulation method, designated the organ germ method, has been developed to recapitulate organogenesis. This method involves compartmentalisation of epithelial and mesenchymal cells at a high cell density to mimic multicellular assembly conditions and epithelial-mesenchymal interactions. A bioengineered tooth germ can generate a structurally correct tooth in vitro and erupt successfully with the correct tooth structure when transplanted into the oral cavity. We have ectopically generated a bioengineered tooth unit composed of a mature tooth, periodontal ligament and alveolar bone, and that tooth unit was successfully engrafted into an adult jawbone through bone integration. Such bioengineered teeth were able to perform normal physiological tooth functions, such as developing a masticatory potential in response to mechanical stress and a perceptive potential for noxious stimuli. In this review, we describe recent findings and technologies underpinning tooth regenerative therapy.
Collapse
Affiliation(s)
- Masamitsu Oshima
- Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8525, Japan,
| | | |
Collapse
|
37
|
Li B, Zhang Y, Wang Q, Dong Z, Shang L, Wu L, Wang X, Jin Y. Periodontal ligament stem cells modulate root resorption of human primary teeth via Runx2 regulating RANKL/OPG system. Stem Cells Dev 2014; 23:2524-34. [PMID: 24827498 DOI: 10.1089/scd.2014.0127] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Physiological primary teeth exfoliation is a normal phenomenon during teeth development. However, retained primary teeth can often be observed in the patients with cleidocranial dysplasia (CCD) caused by mutation of Runx2. The potential regulative mechanism is still unknown. In the present study, periodontal ligament stem cells (PDLSCs) were derived from different resorbed stages of primary teeth and permanent teeth from normal patients and primary teeth from CCD patient. The proliferative, osteogenic and osteoclast-inductive capacities of PDLSCs from each group were detected. We demonstrated here that the proliferative ability of PDLSCs was reduced while the osteogenic and the osteoclast-inductive capacity of PDLSCs were enhanced during root resorption. The results also showed that PDLSCs from permanent teeth and CCD patient expressed low level of Runx2 and RANKL while high level of OPG. However, expression of Runx2 and RANKL were increased while expression of OPG was decreased in PDLSCs derived from resorbed teeth. Furthermore, Runx2 regulating the expression of RANKL and OPG and the osteoclast-inductive capacity of PDLSCs were confirmed by gain or loss of function assay. These data suggest that PDLSCs promote osteoclast differentiation via Runx2 upregulating RANKL and downregulating OPG, leading to enhanced root resorption that results in physiological exfoliation of primary teeth.
Collapse
Affiliation(s)
- Bei Li
- 1 State Key Laboratory of Military Stomatology, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University , Xi'an, China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Yu X, Ge S, Chen S, Xu Q, Zhang J, Guo H, Yang P. Human gingiva-derived mesenchymal stromal cells contribute to periodontal regeneration in beagle dogs. Cells Tissues Organs 2014; 198:428-37. [PMID: 24777155 DOI: 10.1159/000360276] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2014] [Indexed: 11/19/2022] Open
Abstract
Gingiva-derived mesenchymal stromal cells (GMSCs) have been considered as a promising alternative strategy for periodontal regeneration based on their potential for multilineage differentiation in vitro and the ability to form new bone in vivo. In order to investigate the capacity of GMSCs for periodontal regeneration and the fate of GMSCs during periodontal tissue repair, enhanced green fluorescent protein-labeled GMSCs were transplanted into class III furcation defects created in beagle dogs. The results showed that the transplanted GMSCs significantly enhanced the regeneration of the damaged periodontal tissue, including the alveolar bone, cementum and functional periodontal ligament (PDL). Moreover, GMSCs were able to differentiate into osteoblasts, cementoblasts and PDL fibroblasts in vivo. These findings indicate that GMSCs represent a novel cell source for periodontal tissue reconstruction.
Collapse
Affiliation(s)
- Xinbo Yu
- Department of Periodontology, School of Stomatology, Shandong University, Jinan, China
| | | | | | | | | | | | | |
Collapse
|
39
|
Chamila Prageeth Pandula P, Samaranayake L, Jin L, Zhang C. Periodontal ligament stem cells: an update and perspectives. ACTA ACUST UNITED AC 2014; 5:81-90. [DOI: 10.1111/jicd.12089] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 11/23/2013] [Indexed: 12/12/2022]
Affiliation(s)
| | - L.P. Samaranayake
- Department of Oral Biosciences; Faculty of Dentistry; The University of Hong Kong; Hong Kong China
| | - L.J. Jin
- Department of Periodontology; Faculty of Dentistry; The University of Hong Kong; Hong Kong China
| | - Chengfei Zhang
- Department of Comprehensive Dental Care; Faculty of Dentistry; The University of Hong Kong; Hong Kong China
| |
Collapse
|
40
|
|
41
|
Zhou Z, Li B, Dong Z, Liu F, Zhang Y, Yu Y, Shang F, Wu L, Wang X, Jin Y. Nicotine deteriorates the osteogenic differentiation of periodontal ligament stem cells through α7 nicotinic acetylcholine receptor regulating Wnt pathway. PLoS One 2013; 8:e83102. [PMID: 24376645 PMCID: PMC3869757 DOI: 10.1371/journal.pone.0083102] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 10/30/2013] [Indexed: 01/09/2023] Open
Abstract
Aims Cigarette smoking is one of the high risk factors of adult chronic periodontitis and nicotine is the well established toxic substance in cigarette. However, the mechanism of nicotine induced periodontitis is still unknown. Here we studied whether nicotine impaired the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) through activating α7 nicotinic acetylcholine receptor (α7 nAChR). Methods hPDLSCs with multi differentiation potential and surface makers for mesenchymal stem cells were harvested by limiting dilution technique. The level of mineralized nodule formation was assessed by alizarin red S staining. Expression level of ostegenic related genes and proteins were detected by real-time PCR and western blot analysis. The expression of α7 nAChR and its downstream signaling pathway were examined by western blot. The role of the receptor and related signaling pathway in nicotine impairing the osteogenic potential of hPDLSCs were also studied in different levels. Results Nicotine deteriorated the ostegenic differentiation of hPDLSCs in a dose dependent manner. Activation of α7 nAChR by nicotine treatment activated wnt/β-catenin signaling pathway, leading to osteogenic deficiency of hPDLSCs. Blockage of α7 nAChR and wnt pathway inhibitor treatment rescued nicotine induced osteogenic differentiation deficiency. Conclusions These data suggested that nicotine activated α7 nAChR expressed on PDLSCs and further activated wnt signaling downstream, thus deteriorating the osteogenic potential of PDLSCs. The impairment of osteogenic differentiation of PDLSCs by nicotine might lead to cigarette smoking related periodontitis.
Collapse
Affiliation(s)
- Zhifei Zhou
- Department of Pediatric Dentistry, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
- Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Bei Li
- Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Zhiwei Dong
- Department of Oral and Maxillofacial Surgery, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning, China
| | - Fen Liu
- Department of Pediatric Dentistry, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Oral Medicine, Maternal and Child Care Hospital, Xi’an, Shaanxi, China
| | - Yu Zhang
- Department of Pediatric Dentistry, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
- Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yang Yu
- Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Fengqing Shang
- Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Orthodontic, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Lizheng Wu
- Department of Pediatric Dentistry, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xiaojing Wang
- Department of Pediatric Dentistry, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
- * E-mail: (YJ); (XW)
| | - Yan Jin
- Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
- * E-mail: (YJ); (XW)
| |
Collapse
|
42
|
Du J, Shan Z, Ma P, Wang S, Fan Z. Allogeneic bone marrow mesenchymal stem cell transplantation for periodontal regeneration. J Dent Res 2013; 93:183-8. [PMID: 24226426 DOI: 10.1177/0022034513513026] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In this study, we investigated the possibility of using local administration of allogeneic bone marrow mesenchymal stem cells (BMMSCs) to induce tissue regeneration in periodontal defects in a rat model of periodontitis. BMMSCs isolated from rats were mixed with 0.9% NaCl solution and injected into periodontal defects. Control groups were 0.9% NaCl solution or left untreated. The clinical assessments, x-rays, and histological examinations were used to evaluate the effect. At 12 wks post-transplantation, quantitative analysis revealed average probing bone loss values of 1.2 ± 0.19, 1.6 ± 0.2, and 1.7 ± 0.14; the bone regeneration rate was 53%, 45%, and 44% in the BMMSC+NaCl group, NaCl group, and untreated group, respectively. The clinical assessments, x-rays, and histological examinations revealed significant periodontal tissue regeneration in the BMMSC injection group, compared with the control groups. The ELISA results showed that TNFα, IFNγ, and IL1β were 2,674.88 ± 102.77 pg/mL vs. 3,422.1 ± 51.98 pg/mL, 609.85 ± 25.5 pg/mL vs. 803.79 ± 33.85 pg/mL, and 1,038.46 ± 76.29 pg/mL vs. 1,175.26 ± 105.55 pg/mL in the BMMSC+NaCl group and NaCl group, respectively, indicating that BMMSC injection inhibited the inflammatory factors TNFα, IFNγ, and IL1β. Our results indicate that local administration of BMMSCs can repair defects due to periodontitis, exerting anti-inflammatory and immunomodulatory functions.
Collapse
Affiliation(s)
- J Du
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing 100050, China
| | | | | | | | | |
Collapse
|
43
|
|
44
|
Kong X, Liu Y, Ye R, Zhu B, Zhu Y, Liu X, Hu C, Luo H, Zhang Y, Ding Y, Jin Y. GSK3β is a checkpoint for TNF-α-mediated impaired osteogenic differentiation of mesenchymal stem cells in inflammatory microenvironments. Biochim Biophys Acta Gen Subj 2013; 1830:5119-29. [PMID: 23911749 DOI: 10.1016/j.bbagen.2013.07.027] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 07/02/2013] [Accepted: 07/24/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND The fate and differentiation of mesenchymal stem cells (MSCs) depend on various microenvironmental cues. In chronic inflammatory bone disease, bone regeneration is inhibited. The present study therefore sought to identify the underlying molecule mechanisms. METHODS We isolated periodontal ligament stem cells (PDLSCs), a new population of MSCs, from the periodontal ligament tissues of periodontitis patients and healthy controls (p-PDLSCs and h-PDLSCs). The secretion of inflammatory cytokines, like TNF-α, IL-1β, IL-6 and IL-8, after LPS stimulation was measured by ELISA. The expressions of p-GSK3β and GSK3β in two types of PDLSCs were detected by Western blot. TOPFlash was used to assay the Tcf/Lef transcriptional activity. Knockdown of GSK3β by siRNA and over-expression of GSK3β by adenoviruses were performed to confirm the role of GSK3β in the impaired osteogenic differentiation of PDLSCs under inflammatory microenvironment. RESULTS We demonstrated that p-PDLSCs displayed impaired osteogenic capacity than h-PDLSCs. Upon inflammatory stimulation, monocytes, but not PDLSCs, released inflammatory cytokines among which TNF-α directly act on PDLSCs and suppressed their osteogenic differentiation. TNF-α induced the phosphorylation of GSK3β, the deactivated form of GSK3β, which increased nuclear β-catenin and Lef-1 accumulation, and eventually reduced the Runx2-associated osteogenesis in PDLSCs. Over-expression of GSK3β rescued osteogenesis in TNF-α-stimulated PDLSCs, whereas inactivation of GSK3β was sufficient to liberate the β-catenin/Lef-1/Runx2 pathway. CONCLUSION GSK3β plays an obligatory role in the TNF-α-mediated inhibition of osteogenesis in MSCs. GENERAL SIGNIFICANCE The strategy to target GSK3β may provide a potential approach to bone regeneration in inflammatory microenvironments.
Collapse
Affiliation(s)
- Xiangwei Kong
- Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China; Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, China; Department of Stomatology, Nanjing Bayi Hospital, Nanjing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Han J, Menicanin D, Marino V, Ge S, Mrozik K, Gronthos S, Bartold PM. Assessment of the regenerative potential of allogeneic periodontal ligament stem cells in a rodent periodontal defect model. J Periodontal Res 2013; 49:333-45. [DOI: 10.1111/jre.12111] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2013] [Indexed: 12/21/2022]
Affiliation(s)
- J. Han
- Colgate Australian Clinical Dental Research Centre; School of Dentistry; University of Adelaide; Adelaide SA Australia
| | - D. Menicanin
- Colgate Australian Clinical Dental Research Centre; School of Dentistry; University of Adelaide; Adelaide SA Australia
| | - V. Marino
- Colgate Australian Clinical Dental Research Centre; School of Dentistry; University of Adelaide; Adelaide SA Australia
| | - S. Ge
- Department of Periodontology; School of Stomatology; Shandong University; Jinan China
| | - K. Mrozik
- Colgate Australian Clinical Dental Research Centre; School of Dentistry; University of Adelaide; Adelaide SA Australia
| | - S. Gronthos
- Mesenchymal Stem Cell Laboratory; School of Medical Sciences; University of Adelaide; Adelaide SA Australia
| | - P. M. Bartold
- Colgate Australian Clinical Dental Research Centre; School of Dentistry; University of Adelaide; Adelaide SA Australia
| |
Collapse
|
46
|
Jian CX, Liu XF, Hu J, Li CJ, Zhang G, Li Y, Zhu JW, Tan YH. 20-Hydroxyecdysone-induced bone morphogenetic protein-2-dependent osteogenic differentiation through the ERK pathway in human periodontal ligament stem cells. Eur J Pharmacol 2013; 698:48-56. [PMID: 23397605 DOI: 10.1016/j.ejphar.2012.07.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
20-Hydroxyecdysone, an ecdysteroid hormone, can induce osteogenic differentiation in mesenchymal stem cells. Periodontal ligament stem cells (PDLS cells) have mesenchymal-stem-cell-like qualities and are considered as one of the candidates of future clinical application in periodontitis treatment. However, there are no studies describing the effect of 20-Hydroxyecdysone on PDLS cells. In this paper, we report a detailed study on the effect of 20-Hydroxyecdysone on PDLS cell proliferation in vitro. PDLS cells were developed from human PDL cells and were treated with 20-Hydroxyecdysone to understand different aspects of its effects. 20-Hydroxyecdysone promoted PDLS cell proliferation; significantly increased the gene expression levels of runt-related transcription factor 2, alkaline phosphatase (ALP), type I collagen, and osteocalcin. Moreover, 20-Hydroxyecdysone enhanced bone formation by PDLS cells and significantly increased bone morphogenetic protein-2 (BMP-2) mRNA and protein expression. However, 20-Hydroxyecdysonemediated increase in ALP activity was blocked with a BMP-2-specific neutralizing antibody or with the antagonist noggin; and20-Hydroxyecdysone mediated induction of BMP-2 expression and increase of ALP activity were abolished by the extracellular regulated protein kinase (ERK) MAPK pathway inhibitor PD98059. 20-Hydroxyecdysone also increased the phosphorylation of ERK. These findings provide evidence to state that 20-Hydroxyecdysone stimulates cell proliferation and induces osteogenic differentiation through the induction of BMP-2 expression in PDLS cells. It also shows that the ERK pathway is involved in 20-Hydroxyecdysone induced BMP-2 expression and osteogenic differentiation. These results are suggesting its potential as a drug for periodontal regenerative therapy.
Collapse
Affiliation(s)
- Cong-Xiang Jian
- Department of Oral and Maxillofacial Surgery, Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, PR China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Liu W, Liu Y, Guo T, Hu C, Luo H, Zhang L, Shi S, Cai T, Ding Y, Jin Y. TCF3, a novel positive regulator of osteogenesis, plays a crucial role in miR-17 modulating the diverse effect of canonical Wnt signaling in different microenvironments. Cell Death Dis 2013; 4:e539. [PMID: 23492770 PMCID: PMC3613843 DOI: 10.1038/cddis.2013.65] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Wnt signaling pathways are a highly conserved pathway, which plays an important role from the embryonic development to bone formation. The effect of Wnt pathway on osteogenesis relies on their cellular environment and the expression of target genes. However, the molecular mechanism of that remains unclear. On the basis of the preliminary results, we observed the contrary effect of canonical Wnt signaling on osteogenic differentiation of periodontal ligament stem cells (PDLSCs) in the different culture environment. Furthermore, we found that the expression level of miR-17 was also varied with the change in the culture environment. Therefore, we hypothesized that miR-17 and canonical Wnt signaling may have potential interactions, particularly the inner regulation relationship in different microenvironments. In this paper, we observed that canonical Wnt signaling promoted osteogenesis of PDLSCs in the fully culture medium, while inhibited it in the osteogenic differentiation medium. Interestingly, alteration in the expression level of endogenous miR-17 could partially reverse the different effect of canonical Wnt signaling. Furthermore, the role of miR-17 was because of its target gene TCF3 (transcription factor 3), a key transcription factor of canonical Wnt pathway. Overexpression of TCF3 attenuated the effect of miR-17 on modulating canonical Wnt signaling. Finally, we elucidated that TCF3 enhanced osteogenesis both in vitro and in vivo. In brief, the different level of miR-17 was the main cause of the different effect of canonical Wnt signaling, and TCF3 was the crucial node of miR-17–canonial Wnt signaling regulation loop. This understanding of microRNAs regulating signaling pathways in different microenvironments may pave the way for fine-tuning the process of osteogenesis in bone-related disorders.
Collapse
Affiliation(s)
- W Liu
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Na S, Zhang H, Huang F, Wang W, Ding Y, Li D, Jin Y. Regeneration of dental pulp/dentine complex with a three-dimensional and scaffold-free stem-cell sheet-derived pellet. J Tissue Eng Regen Med 2013; 10:261-70. [PMID: 23365018 DOI: 10.1002/term.1686] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Revised: 10/13/2012] [Accepted: 11/14/2012] [Indexed: 01/09/2023]
Abstract
Dental pulp/dentine complex regeneration is indispensable to the construction of biotissue-engineered tooth roots and represents a promising approach to therapy for irreversible pulpitis. We used a tissue-engineering method based on odontogenic stem cells to design a three-dimensional (3D) and scaffold-free stem-cell sheet-derived pellet (CSDP) with the necessary physical and biological properties. Stem cells were isolated and identified and stem cells from root apical papilla (SCAPs)-based CSDPs were then fabricated and examined. Compact cell aggregates containing a high proportion of extracellular matrix (ECM) components were observed, and the CSDP culture time was prolonged. The expression of alkaline phosphatase (ALP), dentine sialoprotein (DSPP), bone sialoprotein (BSP) and runt-related gene 2 (RUNX2) mRNA was higher in CSDPs than in cell sheets (CSs), indicating that CSDPs have greater odonto/osteogenic potential. To further investigate this hypothesis, CSDPs and CSs were inserted into human treated dentine matrix fragments (hTDMFs) and transplanted into the subcutaneous space in the backs of immunodeficient mice, where they were cultured in vivo for 6 weeks. The root space with CSDPs was filled entirely with a dental pulp-like tissue with well-established vascularity, and a continuous layer of dentine-like tissue was deposited onto the existing dentine. A layer of odontoblast-like cells was found to express DSPP, ALP and BSP, and human mitochondria lined the surface of the newly formed dentine-like tissue. These results clearly indicate that SCAP-CSDPs with a mount of endogenous ECM have a strong capacity to form a heterotopic dental pulp/dentine complex in empty root canals; this method can be used in the fabrication of bioengineered dental roots and also provides an alternative treatment approach for pulp disease.
Collapse
Affiliation(s)
- Sijia Na
- Research and Development Centre for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China.,Department of Oral and Maxillofacial Surgery, College of Stomatology, Jiamusi University, Jiamusi, Hei Longjiang, People's Republic of China
| | - Hao Zhang
- Research and Development Centre for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China.,Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Fang Huang
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Jiamusi University, Jiamusi, Hei Longjiang, People's Republic of China
| | - Weiqi Wang
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Jiamusi University, Jiamusi, Hei Longjiang, People's Republic of China
| | - Yin Ding
- Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Dechao Li
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Jiamusi University, Jiamusi, Hei Longjiang, People's Republic of China
| | - Yan Jin
- Research and Development Centre for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China.,Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
50
|
Guo W, He Y, Tang X, Chen G, Shi H, Gong K, Zhou J, Wen L, Jin Y. Scaffold-free cell pellet transplantations can be applied to periodontal regeneration. Cell Transplant 2013; 23:181-94. [PMID: 23363564 DOI: 10.3727/096368912x662426] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Cell transplantation has emerged as a novel therapeutic strategy for periodontitis, and the adoption of cell pellet offers advantages by secreting abundant extracellular matrix (ECM) and eliminating the adverse effect of cell carriers. This study aimed to fabricate scaffold-free periodontal ligament stem cell (PDLSC) pellets (MUCPs) and to evaluate their regeneration potential. We constructed monolayer cell pellets (MCPs) by fabricating and culturing multilayered cell sheets (MUCS) and constructed MUCPs from the MUCS. Immunochemistry, scanning electron microscope, real-time PCR, and Western blot analysis showed higher levels of COL-I, COL-III, fibronectin, and laminin in the MUCPs. Furthermore, the massive increase in ECM secretion improved cell adhesion, migration, and proliferation. Finally, upon transplantation into the omentum sac and periodontal defects, all the transplants formed regular aligned cementum/PDL-like complex, but the mineral deposit and fiber alignment were more obvious in the MUCPs than in the MCPs. Altogether, our results suggest that MUCPs may be a promising alternative to periodontal repair for future clinical application.
Collapse
Affiliation(s)
- Weihua Guo
- Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | |
Collapse
|