1
|
Kundert DN, Tavassol F, Kampmann A, Gellrich NC, Lindhorst D, Precht MM, Schumann P. Alendronate reduces periosteal microperfusion in vivo. Heliyon 2023; 9:e19468. [PMID: 37681156 PMCID: PMC10481298 DOI: 10.1016/j.heliyon.2023.e19468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/11/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023] Open
Abstract
Objectives Bisphosphonates are known to induce a severe adverse effect known as medication-related osteonecrosis of the jaw (MRONJ). Previous studies have proven the impact of bisphosphonates on microperfusion; therefore, this study aimed to investigate alendronate-induced microcirculatory reactions in the calvarial periosteum of rats. Study design Bone chambers were implanted into 48 Lewis rats. Microhemodynamics, inflammatory parameters, functional capillary density and defect healing were examined after alendronate treatment for two and six weeks using repetitive intravital fluorescence microscopy for two weeks. Results Microhemodynamics remained unchanged. In alendronate-treated rats, inflammation was slightly increased, functional capillary density was significantly reduced (day 10: controls 100.45 ± 5.38 cm/cm2, two weeks alendronate treatment 44.77 ± 3.55 cm/cm2, six weeks alendronate treatment 27.54 ± 2.23 cm/cm2) and defect healing was decelerated. The changes in functional capillary density and defect healing were dose-dependent. Conclusion The bisphosphonate alendronate has a significant negative impact on periosteal microperfusion in vivo. This could be a promising target for the treatment of MRONJ.
Collapse
Affiliation(s)
- Danielle N. Kundert
- Division of Cranio-Maxillo-Facial and Oral Surgery, University Hospital Zurich, University of Zurich, Frauenklinikstrasse 24, 8091, Zürich, Switzerland
| | - Frank Tavassol
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Andreas Kampmann
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Nils-Claudius Gellrich
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Daniel Lindhorst
- Kieferchirurgie-Zentrum-Hamburg, Lerchenfeld 14, 22081, Hamburg, Germany
| | - Marc M. Precht
- Division of Cranio-Maxillo-Facial and Oral Surgery, University Hospital Zurich, University of Zurich, Frauenklinikstrasse 24, 8091, Zürich, Switzerland
| | - Paul Schumann
- Division of Cranio-Maxillo-Facial and Oral Surgery, University Hospital Zurich, University of Zurich, Frauenklinikstrasse 24, 8091, Zürich, Switzerland
| |
Collapse
|
2
|
Gniesmer S, Brehm R, Hoffmann A, de Cassan D, Menzel H, Hoheisel AL, Glasmacher B, Willbold E, Reifenrath J, Wellmann M, Ludwig N, Tavassol F, Zimmerer R, Gellrich NC, Kampmann A. In vivo analysis of vascularization and biocompatibility of electrospun polycaprolactone fibre mats in the rat femur chamber. J Tissue Eng Regen Med 2019; 13:1190-1202. [PMID: 31025510 PMCID: PMC6771623 DOI: 10.1002/term.2868] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 12/12/2022]
Abstract
In orthopaedic medicine, connective tissues are often affected by traumatic or degenerative injuries, and surgical intervention is required. Rotator cuff tears are a common cause of shoulder pain and disability among adults. The development of graft materials for bridging the gap between tendon and bone after chronic rotator cuff tears is essentially required. The limiting factor for the clinical success of a tissue engineering construct is a fast and complete vascularization of the construct. Otherwise, immigrating cells are not able to survive for a longer period of time, resulting in the failure of the graft material. The femur chamber allows the observation of microhaemodynamic parameters inside implants located in close vicinity to the femur in repeated measurements in vivo. We compared a porous polymer patch (a commercially available porous polyurethane‐based scaffold from Biomerix™) with electrospun polycaprolactone (PCL) fibre mats and chitosan (CS)‐graft‐PCL modified electrospun PCL (CS‐g‐PCL) fibre mats in vivo. By means of intravital fluorescence microscopy, microhaemodynamic parameters were analysed repetitively over 20 days at intervals of 3 to 4 days. CS‐g‐PCL modified fibre mats showed a significantly increased vascularization at Day 10 compared with Day 6 and at Day 14 compared with the porous polymer patch and the unmodified PCL fibre mats at the same day. These results could be verified by histology. In conclusion, a clear improvement in terms of vascularization and biocompatibility is achieved by graft‐copolymer modification compared with the unmodified material.
Collapse
Affiliation(s)
- Sarah Gniesmer
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Hannover, Germany.,NIFE-Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany
| | - Ralph Brehm
- Institute for Anatomy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Andrea Hoffmann
- NIFE-Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany.,Department of Orthopedic Surgery, Laboratory for Biomechanics and Biomaterials, Graded Implants and Regenerative Strategies, Hannover Medical School, Hannover, Germany
| | - Dominik de Cassan
- Institute for Technical Chemistry, University of Technology, Braunschweig, Germany
| | - Henning Menzel
- Institute for Technical Chemistry, University of Technology, Braunschweig, Germany
| | - Anna-Lena Hoheisel
- NIFE-Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany.,Institute for Multiphase Processes, Leibniz University of Hannover, Hannover, Germany
| | - Birgit Glasmacher
- NIFE-Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany.,Institute for Multiphase Processes, Leibniz University of Hannover, Hannover, Germany
| | - Elmar Willbold
- NIFE-Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany.,Department of Orthopedic Surgery, Hannover Medical School, Hannover, Germany
| | - Janin Reifenrath
- NIFE-Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany.,Department of Orthopedic Surgery, Hannover Medical School, Hannover, Germany
| | - Mathias Wellmann
- Department of Orthopedic Surgery, Hannover Medical School, Hannover, Germany
| | - Nils Ludwig
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Frank Tavassol
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Hannover, Germany
| | - Ruediger Zimmerer
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Hannover, Germany
| | - Nils-Claudius Gellrich
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Hannover, Germany
| | - Andreas Kampmann
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Hannover, Germany.,NIFE-Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany
| |
Collapse
|
3
|
Khosravi N, Mendes VC, Nirmal G, Majeed S, DaCosta RS, Davies JE. Intravital Imaging for Tracking of Angiogenesis and Cellular Events Around Surgical Bone Implants. Tissue Eng Part C Methods 2018; 24:617-627. [PMID: 30280999 DOI: 10.1089/ten.tec.2018.0252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
IMPACT STATEMENT These new experimental methods allow us to image, and quantify, angiogenesis and perivascular cell dynamics in the endosseous healing compartment. As such, the method is capable of providing a new perspective on, and unique information regarding, healing that occurs around orthopedic and dental implants.
Collapse
Affiliation(s)
- Niloufar Khosravi
- 1 Faculty of Dentistry, University of Toronto , Toronto, Ontario, Canada .,2 Princess Margaret Cancer Institute, University Health Network , Toronto, Ontario, Canada .,3 Institute for Biomaterials and Biomedical Engineering, University of Toronto , Toronto, Ontario, Canada
| | - Vanessa C Mendes
- 1 Faculty of Dentistry, University of Toronto , Toronto, Ontario, Canada
| | - Ghata Nirmal
- 4 Department of Chemical Engineering and Applied Chemistry, University of Toronto , Toronto, Ontario, Canada
| | - Safa Majeed
- 5 Department of Medical Biophysics, University of Toronto , Toronto, Ontario, Canada
| | - Ralph S DaCosta
- 2 Princess Margaret Cancer Institute, University Health Network , Toronto, Ontario, Canada .,5 Department of Medical Biophysics, University of Toronto , Toronto, Ontario, Canada .,6 Techna Institute, University Health Network , Toronto, Ontario, Canada
| | - John E Davies
- 1 Faculty of Dentistry, University of Toronto , Toronto, Ontario, Canada .,3 Institute for Biomaterials and Biomedical Engineering, University of Toronto , Toronto, Ontario, Canada
| |
Collapse
|
4
|
Accelerated vascularization of tissue engineering constructs in vivo by preincubated co-culture of aortic fragments and osteoblasts. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.09.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
5
|
Fernández T, Olave G, Valencia CH, Arce S, Quinn JM, Thouas GA, Chen QZ. Effects of Calcium Phosphate/Chitosan Composite on Bone Healing in Rats: Calcium Phosphate Induces Osteon Formation. Tissue Eng Part A 2014; 20:1948-60. [DOI: 10.1089/ten.tea.2013.0696] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Tulio Fernández
- Department of Materials Engineering, Monash Medical School, Monash University, Clayton, Australia
- School of Dentistry, University of Valle, Cali, Colombia
| | - Gilberto Olave
- School of Dentistry, University of Valle, Cali, Colombia
| | | | - Sandra Arce
- Faculty of Engineering, Autonomous University of the Occident, Cali, Colombia
| | - Julian M.W. Quinn
- Department of Materials Engineering, Monash Medical School, Monash University, Clayton, Australia
- Prince Henry's Institute of Medical Research, Clayton, Australia
| | - George A. Thouas
- Department of Materials Engineering, Monash Medical School, Monash University, Clayton, Australia
| | - Qi-Zhi Chen
- Department of Materials Engineering, Monash Medical School, Monash University, Clayton, Australia
| |
Collapse
|
6
|
Kokemüller H, Jehn P, Spalthoff S, Essig H, Tavassol F, Schumann P, Andreae A, Nolte I, Jagodzinski M, Gellrich NC. En bloc prefabrication of vascularized bioartificial bone grafts in sheep and complete workflow for custom-made transplants. Int J Oral Maxillofac Surg 2014; 43:163-72. [DOI: 10.1016/j.ijom.2013.10.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 08/25/2013] [Accepted: 10/10/2013] [Indexed: 12/18/2022]
|