1
|
Daneshmandi L, Holt BD, Arnold AM, Laurencin CT, Sydlik SA. Ultra-low binder content 3D printed calcium phosphate graphene scaffolds as resorbable, osteoinductive matrices that support bone formation in vivo. Sci Rep 2022; 12:6960. [PMID: 35484292 PMCID: PMC9050648 DOI: 10.1038/s41598-022-10603-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/02/2022] [Indexed: 12/18/2022] Open
Abstract
Bone regenerative engineering could replace autografts; however, no synthetic material fulfills all design criteria. Nanocarbons incorporated into three-dimensional printed (3DP) matrices can improve properties, but incorporation is constrained to low wt%. Further, unmodified nanocarbons have limited osteogenic potential. Functionalization to calcium phosphate graphene (CaPG) imparts osteoinductivity and osteoconductivity, but loading into matrices remained limited. This work presents ultra-high content (90%), 3DP-CaPG matrices. 3DP-CaPG matrices are highly porous (95%), moderately stiff (3 MPa), and mechanically robust. In vitro, they are cytocompatible and induce osteogenic differentiation of human mesenchymal stem cells (hMSCs), indicated by alkaline phosphatase, mineralization, and COL1α1 expression. In vivo, bone regeneration was studied using a transgenic fluorescent-reporter mouse non-union calvarial defect model. 3DP-CaPG stimulates cellular ingrowth, retains donor cells, and induces osteogenic differentiation. Histology shows TRAP staining around struts, suggesting potential osteoclast activity. Apparent resorption of 3DP-CaPG was observed and presented no toxicity. 3DP-CaPG represents an advancement towards a synthetic bone regeneration matrix.
Collapse
Affiliation(s)
- Leila Daneshmandi
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT, 06030, USA
- Raymond and Beverly Sackler Center for Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT, 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT, 06030, USA
| | - Brian D Holt
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Anne M Arnold
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
- National Security Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Cato T Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT, 06030, USA.
- Raymond and Beverly Sackler Center for Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT, 06030, USA.
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA.
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT, 06030, USA.
- Department of Material Science and Engineering, University of Connecticut, Storrs, CT, 06269, USA.
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, 06269, USA.
| | - Stefanie A Sydlik
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA.
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
2
|
Fu Q, Ren H, Zheng C, Zhuang C, Wu T, Qin J, Wang Z, Chen Y, Qi N. Improved osteogenic differentiation of human dental pulp stem cells in a layer-by-layer-modified gelatin scaffold. J Biomater Appl 2018; 33:477-487. [PMID: 30217134 DOI: 10.1177/0885328218799162] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dental pulp stem cell is a new type of mesenchymal stem cell that has a potential for tissue regeneration. Gelatin sponges are often used for hemostasis in dental surgery. In this study, we aimed to evaluate the dental pulp stem cells' proliferation and osteogenic differentiation in different layer-by-layer-modified gelatin sponge scaffolds including the G, G + P (gelatin sponge+ poly-l-lysine modification), G + M (gelatin sponge + mineralization modification), and G + M + P (gelatin sponge + mineralization modification + poly-l-lysine modification) groups in vitro and assessed them in vivo. The results showed that dental pulp stem cells had a great potential for osteogenic differentiation. In vitro, the G + M + P group not only enhanced the adhesion and proliferation of dental pulp stem cells but also facilitated their osteogenic differentiation. However, alkaline phosphatase activity was prohibited after modification. In vivo, both dental pulp stem cells and cells from nude mice grew well on the scaffold, and G + M and G + M + P groups could promote the mineralization deposit formation and the expression of osteocalcin in osteogenic differentiation of dental pulp stem cells. In conclusion, the combination of dental pulp stem cells and G + M + P scaffold has a great potential for bone tissue engineering.
Collapse
Affiliation(s)
- Qiang Fu
- 1 Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Huaijuan Ren
- 2 China Stem Cell Therapy Co. Ltd, Shanghai, China
| | - Chen Zheng
- 3 Hainan Medical University, Haikou, China
| | - Chao Zhuang
- 1 Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Tong Wu
- 3 Hainan Medical University, Haikou, China
| | - Jinyan Qin
- 2 China Stem Cell Therapy Co. Ltd, Shanghai, China
| | | | | | - Nianmin Qi
- 3 Hainan Medical University, Haikou, China
| |
Collapse
|
3
|
An S. The emerging role of extracellular Ca
2+
in osteo/odontogenic differentiation and the involvement of intracellular Ca
2+
signaling: From osteoblastic cells to dental pulp cells and odontoblasts. J Cell Physiol 2018; 234:2169-2193. [DOI: 10.1002/jcp.27068] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/25/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Shaofeng An
- Department of Operative Dentistry and EndodonticsGuanghua School of Stomatology, Hospital of Stomatology, Sun Yat‐sen UniversityGuangzhou China
- Guangdong Province Key Laboratory of StomatologySun Yat‐Sen UniversityGuangzhou China
| |
Collapse
|
4
|
Chai YC, Mendes LF, van Gastel N, Carmeliet G, Luyten FP. Fine-tuning pro-angiogenic effects of cobalt for simultaneous enhancement of vascular endothelial growth factor secretion and implant neovascularization. Acta Biomater 2018; 72:447-460. [PMID: 29626696 DOI: 10.1016/j.actbio.2018.03.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/25/2018] [Accepted: 03/28/2018] [Indexed: 02/07/2023]
Abstract
Rapid neovascularization of a tissue-engineered (TE) construct by the host vasculature is quintessential to warrant effective bone regeneration. This process can be promoted through active induction of angiogenic growth factor secretion or by implementation of in vitro pre-vascularization strategies. In this study, we aimed at optimizing the pro-angiogenic effect of Cobalt (Co2+) to enhance vascular endothelial growth factor (VEGF) expression by human periosteum-derived mesenchymal stem cells (hPDCs). Simultaneously we set out to promote microvascular network formation by co-culturing with human umbilical vein endothelial cells (HUVECs). The results showed that Co2+ treatments (at 50, 100 or 150 µM) significantly upregulated in vitro VEGF expression, but inhibited hPDCs growth and HUVECs network formation in co-cultures. These inhibitory effects were mitigated at lower Co2+ concentrations (at 5, 10 or 25 µM) while VEGF expression remained significantly upregulated and further augmented in the presence of Ascorbic Acid and Dexamethasone possibly through Runx2 upregulation. The supplements also facilitated HUVECs network formation, which was dependent on the quantity and spatial distribution of collagen type-1 matrix deposited by the hPDCs. When applied to hPDCs seeded onto calcium phosphate scaffolds, the supplements significantly induced VEGF secretion in vitro, and promoted higher vascularization upon ectopic implantation in nude mice shown by an increase of CD31 positive blood vessels within the scaffolds. Our findings provided novel insights into the pleotropic effects of Co2+ on angiogenesis (i.e. promoted VEGF secretion and inhibited endothelial network formation), and showed potential to pre-condition TE constructs under one culture regime for improved implant neovascularization in vivo. STATEMENT OF SIGNIFICANT Cobalt (Co2+) is known to upregulate vascular endothelial growth factor (VEGF) secretion, however it also inhibits in vitro angiogenesis through unknown Co2+-induced events. This limits the potential of Co2+ for pro-angiogenesis of tissue engineered (TE) implants. We showed that Co2+ upregulated VEGF expression by human periosteum-derived cells (hPDCs) but reduced the cell growth, and endothelial network formation due to reduction of col-1 matrix deposition. Supplementation with Ascorbic acid and Dexamethasone concurrently improved hPDCs growth, endothelial network formation, and upregulated VEGF secretion. In vitro pre-conditioning of hPDC-seeded TE constructs with this fine-tuned medium enhanced VEGF secretion and implant neovascularization. Our study provided novel insights into the pleotropic effects of Co2+ on angiogenesis and formed the basis for improving implant neovascularization.
Collapse
|
5
|
Mendes LF, Tam WL, Chai YC, Geris L, Luyten FP, Roberts SJ. Combinatorial Analysis of Growth Factors Reveals the Contribution of Bone Morphogenetic Proteins to Chondrogenic Differentiation of Human Periosteal Cells. Tissue Eng Part C Methods 2017; 22:473-86. [PMID: 27018617 DOI: 10.1089/ten.tec.2015.0436] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Successful application of cell-based strategies in cartilage and bone tissue engineering has been hampered by the lack of robust protocols to efficiently differentiate mesenchymal stem cells into the chondrogenic lineage. The development of chemically defined culture media supplemented with growth factors (GFs) has been proposed as a way to overcome this limitation. In this work, we applied a fractional design of experiment (DoE) strategy to screen the effect of multiple GFs (BMP2, BMP6, GDF5, TGF-β1, and FGF2) on chondrogenic differentiation of human periosteum-derived mesenchymal stem cells (hPDCs) in vitro. In a micromass culture (μMass) system, BMP2 had a positive effect on glycosaminoglycan deposition at day 7 (p < 0.001), which in combination with BMP6 synergistically enhanced cartilage-like tissue formation that displayed in vitro mineralization capacity at day 14 (p < 0.001). Gene expression of μMasses cultured for 7 days with a medium formulation supplemented with 100 ng/mL of BMP2 and BMP6 and a low concentration of GDF5, TGF-β1, and FGF2 showed increased expression of Sox9 (1.7-fold) and the matrix molecules aggrecan (7-fold increase) and COL2A1 (40-fold increase) compared to nonstimulated control μMasses. The DoE analysis indicated that in GF combinations, BMP2 was the strongest effector for chondrogenic differentiation of hPDCs. When transplanted ectopically in nude mice, the in vitro-differentiated μMasses showed maintenance of the cartilaginous phenotype after 4 weeks in vivo. This study indicates the power of using the DoE approach for the creation of new medium formulations for skeletal tissue engineering approaches.
Collapse
Affiliation(s)
- Luis Filipe Mendes
- 1 Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center , Katholieke Universiteit Leuven, Leuven, Belgium .,2 Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven , Leuven, Belgium
| | - Wai Long Tam
- 1 Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center , Katholieke Universiteit Leuven, Leuven, Belgium .,2 Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven , Leuven, Belgium
| | - Yoke Chin Chai
- 1 Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center , Katholieke Universiteit Leuven, Leuven, Belgium .,2 Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven , Leuven, Belgium
| | - Liesbet Geris
- 2 Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven , Leuven, Belgium .,3 Biomechanics Research Unit, University of Liege , Liege, Belgium .,4 Department of Mechanical Engineering, Biomechanics Section, Katholieke Universiteit Leuven, Heverlee, Belgium
| | - Frank P Luyten
- 1 Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center , Katholieke Universiteit Leuven, Leuven, Belgium .,2 Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven , Leuven, Belgium
| | - Scott J Roberts
- 1 Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center , Katholieke Universiteit Leuven, Leuven, Belgium .,2 Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven , Leuven, Belgium .,5 Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, University College London , The Royal National Orthopaedic Hospital, London, United Kingdom
| |
Collapse
|
6
|
Chai YC, Bolander J, Papantoniou I, Patterson J, Vleugels J, Schrooten J, Luyten FP. Harnessing the Osteogenicity of In Vitro Stem Cell-Derived Mineralized Extracellular Matrix as 3D Biotemplate to Guide Bone Regeneration. Tissue Eng Part A 2017; 23:874-890. [DOI: 10.1089/ten.tea.2016.0432] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Yoke Chin Chai
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Johanna Bolander
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Ioannis Papantoniou
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Jennifer Patterson
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Department of Materials Engineering, KU Leuven, Leuven, Belgium
| | - Jef Vleugels
- Department of Materials Engineering, KU Leuven, Leuven, Belgium
| | - Jan Schrooten
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Department of Materials Engineering, KU Leuven, Leuven, Belgium
| | - Frank P. Luyten
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Synthetic bone mimetic matrix-mediated in situ bone tissue formation through host cell recruitment. Acta Biomater 2015; 19:1-9. [PMID: 25805106 DOI: 10.1016/j.actbio.2015.03.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/09/2015] [Accepted: 03/17/2015] [Indexed: 12/22/2022]
Abstract
Advances in tissue engineering have offered new opportunities to restore anatomically and functionally compromised tissues. Although traditional tissue engineering approaches that utilize biomaterials and cells to create tissue constructs for implantation or biomaterials as a scaffold to deliver cells are promising, strategies that can activate endogenous cells to promote tissue repair are more clinically attractive. Here, we demonstrate that an engineered injectable matrix mimicking a calcium phosphate (CaP)-rich bone-specific microenvironment can recruit endogenous cells to form bone tissues in vivo. Comparison of matrix alone with that of bone marrow-soaked or bFGF-soaked matrix demonstrates similar extent of neo-bone formation and bridging of decorticated transverse processes in a posterolateral lumbar fusion rat model. Synthetic biomaterials that stimulate endogenous cells without the need for biologics to assist tissue repair could circumvent limitations associated with conventional tissue engineering approaches, including ex vivo cell processing and laborious efforts, thereby accelerating the translational aspects of regenerative medicine.
Collapse
|
8
|
van der Stok J, Lozano D, Chai YC, Amin Yavari S, Bastidas Coral AP, Verhaar JA, Gómez-Barrena E, Schrooten J, Jahr H, Zadpoor AA, Esbrit P, Weinans H. Osteostatin-Coated Porous Titanium Can Improve Early Bone Regeneration of Cortical Bone Defects in Rats. Tissue Eng Part A 2015; 21:1495-506. [DOI: 10.1089/ten.tea.2014.0476] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Johan van der Stok
- Orthopaedic Research Laboratory, Department of Orthopaedics, Erasmus University Rotterdam Medical Centre, Rotterdam, The Netherlands
| | - Daniel Lozano
- Laboratorio de Metabolismo Mineral y Óseo, Instituto de Investigación Sanitaria (IIS)–Fundación Jiménez Díaz and Instituto de Salud Carlos III (RETICEF), Madrid, Spain
- Grupo de Investigación de Cirugía Osteo-Articular, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Yoke Chin Chai
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Centre, KU Leuven, Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Saber Amin Yavari
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Angela P. Bastidas Coral
- Orthopaedic Research Laboratory, Department of Orthopaedics, Erasmus University Rotterdam Medical Centre, Rotterdam, The Netherlands
| | - Jan A.N. Verhaar
- Orthopaedic Research Laboratory, Department of Orthopaedics, Erasmus University Rotterdam Medical Centre, Rotterdam, The Netherlands
| | - Enrique Gómez-Barrena
- Department of Orthopaedic Surgery and Traumatology, Hospital La Paz-IdiPaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jan Schrooten
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Centre, KU Leuven, Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Department of Materials Engineering, KU Leuven, Belgium
| | - Holger Jahr
- Orthopaedic Research Laboratory, Department of Orthopaedics, Erasmus University Rotterdam Medical Centre, Rotterdam, The Netherlands
- Department of Orthopaedic Surgery, University Hospital RWTH, Aachen, Germany
| | - Amir A. Zadpoor
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Pedro Esbrit
- Laboratorio de Metabolismo Mineral y Óseo, Instituto de Investigación Sanitaria (IIS)–Fundación Jiménez Díaz and Instituto de Salud Carlos III (RETICEF), Madrid, Spain
| | - Harrie Weinans
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
- Department of Orthopaedics, Utrecht University Medical Centre, Utrecht, The Netherlands
- Department of Rheumatology, Utrecht University Medical Centre, Utrecht, The Netherlands
| |
Collapse
|
9
|
Amin Yavari S, Chai YC, Böttger AJ, Wauthle R, Schrooten J, Weinans H, Zadpoor AA. Effects of anodizing parameters and heat treatment on nanotopographical features, bioactivity, and cell culture response of additively manufactured porous titanium. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 51:132-8. [PMID: 25842117 DOI: 10.1016/j.msec.2015.02.050] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/14/2015] [Accepted: 02/24/2015] [Indexed: 01/09/2023]
Abstract
Anodizing could be used for bio-functionalization of the surfaces of titanium alloys. In this study, we use anodizing for creating nanotubes on the surface of porous titanium alloy bone substitutes manufactured using selective laser melting. Different sets of anodizing parameters (voltage: 10 or 20V anodizing time: 30min to 3h) are used for anodizing porous titanium structures that were later heat treated at 500°C. The nanotopographical features are examined using electron microscopy while the bioactivity of anodized surfaces is measured using immersion tests in the simulated body fluid (SBF). Moreover, the effects of anodizing and heat treatment on the performance of one representative anodized porous titanium structures are evaluated using in vitro cell culture assays using human periosteum-derived cells (hPDCs). It has been shown that while anodizing with different anodizing parameters results in very different nanotopographical features, i.e. nanotubes in the range of 20 to 55nm, anodized surfaces have limited apatite-forming ability regardless of the applied anodizing parameters. The results of in vitro cell culture show that both anodizing, and thus generation of regular nanotopographical feature, and heat treatment improve the cell culture response of porous titanium. In particular, cell proliferation measured using metabolic activity and DNA content was improved for anodized and heat treated as well as for anodized but not heat-treated specimens. Heat treatment additionally improved the cell attachment of porous titanium surfaces and upregulated expression of osteogenic markers. Anodized but not heat-treated specimens showed some limited signs of upregulated expression of osteogenic markers. In conclusion, while varying the anodizing parameters creates different nanotube structure, it does not improve apatite-forming ability of porous titanium. However, both anodizing and heat treatment at 500°C improve the cell culture response of porous titanium.
Collapse
Affiliation(s)
- S Amin Yavari
- Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands.
| | - Y C Chai
- Prometheus, Division of Skeletal Tissue Engineering, Bus 813, O&N1, Herestraat 49, KU Leuven, 3000 Leuven, Belgium; Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, Bus 813, O&N1, Herestraat 49, KU Leuven, 3000 Leuven, Belgium; Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - A J Böttger
- Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| | - R Wauthle
- KU Leuven, Department of Mechanical Engineering, Section Production Engineering, Machine Design and Automation (PMA), Celestijnenlaan 300B, 3001 Leuven, Belgium; 3D Systems - LayerWise NV, Grauwmeer 14, 3001 Leuven, Belgium
| | - J Schrooten
- Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 - PB2450, B-3001 Heverlee, Belgium
| | - H Weinans
- Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands; Department of Orthopedics and Dept. Rheumatology, UMC Utrecht, Heidelberglaan100, 3584CX Utrecht, The Netherlands
| | - A A Zadpoor
- Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| |
Collapse
|
10
|
Gómez-Barrena E, Rosset P, Lozano D, Stanovici J, Ermthaller C, Gerbhard F. Bone fracture healing: cell therapy in delayed unions and nonunions. Bone 2015; 70:93-101. [PMID: 25093266 DOI: 10.1016/j.bone.2014.07.033] [Citation(s) in RCA: 279] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 07/26/2014] [Accepted: 07/28/2014] [Indexed: 12/14/2022]
Abstract
Bone fracture healing impairment related to mechanical problems has been largely corrected by advances in fracture management. Better protocols, more strict controls of time and function, and hardware and surgical technique evolution have contributed to better prognosis, even in complex fractures. However, atrophic nonunion persists in clinical cases where, for different reasons, the osteogenic capability is impaired. When this is the case, a better understanding of the basic mechanisms under bone repair and augmentation techniques may put in perspective the current possibilities and future opportunities. Among those, cell therapy particularly aims to correct this insufficient osteogenesis. However, the launching of safe and efficacious cell therapies still requires substantial amount of research, especially clinical trials. This review will envisage the current clinical trials on bone healing augmentation based on cell therapy, with the experience provided by the REBORNE Project, and the insight from investigator-driven clinical trials on advanced therapies towards the future. This article is part of a Special Issue entitled Stem Cells and Bone.
Collapse
Affiliation(s)
- Enrique Gómez-Barrena
- Dept. of Orthopaedic Surgery and Traumatology, Hospital La Paz-IdiPAZ, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Philippe Rosset
- Service of Orthopaedic Surgery and Traumatology, CHU Tours, Université François-Rabelais de Tours, PRES Centre-Val de Loire Université, Tours, France; Inserm U957, Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives (LPRO), Faculté de Médecine, Université de Nantes, France
| | - Daniel Lozano
- Metabolic Bone Research Unit, Instituto de Investigación Sanitaria FJD, Madrid, Spain
| | - Julien Stanovici
- Service of Orthopaedic Surgery and Traumatology, CHU Tours, Université François-Rabelais de Tours, PRES Centre-Val de Loire Université, Tours, France; Inserm U957, Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives (LPRO), Faculté de Médecine, Université de Nantes, France
| | - Christian Ermthaller
- Klinik für Unfallchirurgie-, Hand-, Plastische und Wiederherstellungschirurgie Zentrum für Chirurgie Universitätsklinikum Ulm, Ulm, Germany
| | - Florian Gerbhard
- Klinik für Unfallchirurgie-, Hand-, Plastische und Wiederherstellungschirurgie Zentrum für Chirurgie Universitätsklinikum Ulm, Ulm, Germany
| |
Collapse
|
11
|
Chai YC, Geris L, Bolander J, Pyka G, Van Bael S, Luyten FP, Schrooten J. In vivo ectopic bone formation by devitalized mineralized stem cell carriers produced under mineralizing culture condition. Biores Open Access 2014; 3:265-77. [PMID: 25469312 PMCID: PMC4245878 DOI: 10.1089/biores.2014.0050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Functionalization of tissue engineering scaffolds with in vitro–generated bone-like extracellular matrix (ECM) represents an effective biomimetic approach to promote osteogenic differentiation of stem cells in vitro. However, the bone-forming capacity of these constructs (seeded with or without cells) is so far not apparent. In this study, we aimed at developing a mineralizing culture condition to biofunctionalize three-dimensional (3D) porous scaffolds with highly mineralized ECM in order to produce devitalized, osteoinductive mineralized carriers for human periosteal-derived progenitors (hPDCs). For this, three medium formulations [i.e., growth medium only (BM1), with ascorbic acid (BM2), and with ascorbic acid and dexamethasone (BM3)] supplemented with calcium (Ca2+) and phosphate (PO43−) ions simultaneously as mineralizing source were investigated. The results showed that, besides the significant impacts on enhancing cell proliferation (the highest in BM3 condition), the formulated mineralizing media differentially regulated the osteochondro-related gene markers in a medium-dependent manner (e.g., significant upregulation of BMP2, bone sialoprotein, osteocalcin, and Wnt5a in BM2 condition). This has resulted in distinguished cell populations that were identifiable by specific gene signatures as demonstrated by the principle component analysis. Through devitalization, mineralized carriers with apatite crystal structures unique to each medium condition (by X-ray diffraction and SEM analysis) were obtained. Quantitatively, BM3 condition produced carriers with the highest mineral and collagen contents as well as human-specific VEGF proteins, followed by BM2 and BM1 conditions. Encouragingly, all mineralized carriers (after reseeded with hPDCs) induced bone formation after 8 weeks of subcutaneous implantation in nude mice models, with BM2-carriers inducing the highest bone volume, and the lowest in the BM3 condition (as quantitated by nano-computed tomography [nano-CT]). Histological analysis revealed different bone formation patterns, either bone ossicles containing bone marrow surrounding the scaffold struts (in BM2) or bone apposition directly on the struts' surface (in BM1 and BM3). In conclusion, we have presented experimental data on the feasibility to produce devitalized osteoinductive mineralized carriers by functionalizing 3D porous scaffolds with an in vitro cell-made mineralized matrix under the mineralizing culture conditions.
Collapse
Affiliation(s)
- Yoke Chin Chai
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center , KU Leuven, Leuven, Belgium . ; Department of Biomedical Engineering, Faculty of Engineering, University of Malaya , Kuala Lumpur, Malaysia . ; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven , Leuven, Belgium
| | - Liesbet Geris
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven , Leuven, Belgium . ; Biomechanics Research Unit, University of Liege , Liege, Belgium
| | - Johanna Bolander
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center , KU Leuven, Leuven, Belgium . ; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven , Leuven, Belgium
| | - Grzegorz Pyka
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven , Leuven, Belgium . ; Department of Materials Engineering, KU Leuven , Heverlee, Belgium
| | - Simon Van Bael
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven , Leuven, Belgium . ; Division of Production Engineering, Machine Design and Automation, Department of Mechanical Engineering, KU Leuven , Heverlee, Belgium
| | - Frank P Luyten
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center , KU Leuven, Leuven, Belgium . ; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven , Leuven, Belgium
| | - Jan Schrooten
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven , Leuven, Belgium . ; Department of Materials Engineering, KU Leuven , Heverlee, Belgium
| |
Collapse
|
12
|
Sonnaert M, Papantoniou I, Bloemen V, Kerckhofs G, Luyten FP, Schrooten J. Human periosteal-derived cell expansion in a perfusion bioreactor system: proliferation, differentiation and extracellular matrix formation. J Tissue Eng Regen Med 2014; 11:519-530. [PMID: 25186024 DOI: 10.1002/term.1951] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 05/07/2014] [Accepted: 07/16/2014] [Indexed: 12/14/2022]
Abstract
Perfusion bioreactor systems have shown to be a valuable tool for the in vitro development of three-dimensional (3D) cell-carrier constructs. Their use for cell expansion, however, has been much less explored. Since maintenance of the initial cell phenotype is essential in this process, it is imperative to obtain insight into the bioreactor-related variables determining cell fate. Therefore, this study investigated the influence of fluid flow-induced shear stress on the proliferation, differentiation and matrix deposition of human periosteal-derived cells in the absence of additional differentiation-inducing stimuli; 120 000 cells were seeded on additive manufactured 3D Ti6Al4V scaffolds and cultured for up to 28 days at different flow rates in the range 0.04-6 ml/min. DNA measurements showed, on average, a three-fold increase in cell content for all perfused conditions in comparison to static controls, whereas the magnitude of the flow rate did not have an influence. Contrast-enhanced nanofocus X-ray computed tomography showed substantial formation of an engineered neotissue in all perfused conditions, resulting in a filling (up to 70%) of the total internal void volume, and no flow rate-dependent differences were observed. The expression of key osteogenic markers, such as RunX2, OCN, OPN and Col1, did not show any significant changes in comparison to static controls after 28 days of culture, with the exception of OSX at high flow rates. We therefore concluded that, in the absence of additional osteogenic stimuli, the investigated perfusion conditions increased cell proliferation but did not significantly enhance osteogenic differentiation, thus allowing for this process to be used for cell expansion. Copyright © 2014 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- M Sonnaert
- Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, Belgium.,Department of Materials Engineering, Katholieke Universiteit Leuven, Belgium
| | - I Papantoniou
- Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, Belgium.,Skeletal Biology and Engineering Research Centre, Katholieke Universiteit Leuven, Belgium
| | - V Bloemen
- Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, Belgium.,Biomedical Engineering Research Team, Groep T, Leuven Engineering College (Association Katholieke Universiteit Leuven), Belgium
| | - G Kerckhofs
- Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, Belgium.,Department of Materials Engineering, Katholieke Universiteit Leuven, Belgium.,Biomechanics Research Unit, Université de Liege, Belgium
| | - F P Luyten
- Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, Belgium.,Skeletal Biology and Engineering Research Centre, Katholieke Universiteit Leuven, Belgium
| | - J Schrooten
- Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, Belgium.,Department of Materials Engineering, Katholieke Universiteit Leuven, Belgium
| |
Collapse
|
13
|
Vanderleyden E, Van Bael S, Chai Y, Kruth JP, Schrooten J, Dubruel P. Gelatin functionalised porous titanium alloy implants for orthopaedic applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 42:396-404. [DOI: 10.1016/j.msec.2014.05.048] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 04/25/2014] [Accepted: 05/23/2014] [Indexed: 12/14/2022]
|
14
|
Analysis of Gene Expression Signatures for Osteogenic 3D Perfusion-Bioreactor Cell Cultures Based on a Multifactorial DoE Approach. Processes (Basel) 2014. [DOI: 10.3390/pr2030639] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
15
|
Papantoniou I, Guyot Y, Sonnaert M, Kerckhofs G, Luyten FP, Geris L, Schrooten J. Spatial optimization in perfusion bioreactors improves bone tissue-engineered construct quality attributes. Biotechnol Bioeng 2014; 111:2560-70. [PMID: 24902541 DOI: 10.1002/bit.25303] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/22/2014] [Accepted: 05/27/2014] [Indexed: 12/21/2022]
Abstract
Perfusion bioreactors have shown great promise for tissue engineering applications providing a homogeneous and consistent distribution of nutrients and flow-induced shear stresses throughout tissue-engineered constructs. However, non-uniform fluid-flow profiles found in the perfusion chamber entrance region have been shown to affect tissue-engineered construct quality characteristics during culture. In this study a whole perfusion and construct, three dimensional (3D) computational fluid dynamics approach was used in order to optimize a critical design parameter such as the location of the regular pore scaffolds within the perfusion bioreactor chamber. Computational studies were coupled to bioreactor experiments for a case-study flow rate. Two cases were compared in the first instance seeded scaffolds were positioned immediately after the perfusion chamber inlet while a second group was positioned at the computationally determined optimum distance were a steady state flow profile had been reached. Experimental data showed that scaffold location affected significantly cell content and neo-tissue distribution, as determined and quantified by contrast enhanced nanoCT, within the constructs both at 14 and 21 days of culture. However, gene expression level of osteopontin and osteocalcin was not affected by the scaffold location. This study demonstrates that the bioreactor chamber environment, incorporating a scaffold and its location within it, affects the flow patterns within the pores throughout the scaffold requiring therefore dedicated optimization that can lead to bone tissue engineered constructs with improved quality attributes.
Collapse
Affiliation(s)
- Ioannis Papantoniou
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Onderwijs en Navorsing 1 (+8), Herestraat 49-PB813, B-3000, Leuven, Belgium; Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
16
|
Amin Yavari S, van der Stok J, Chai YC, Wauthle R, Tahmasebi Birgani Z, Habibovic P, Mulier M, Schrooten J, Weinans H, Zadpoor AA. Bone regeneration performance of surface-treated porous titanium. Biomaterials 2014; 35:6172-81. [PMID: 24811260 DOI: 10.1016/j.biomaterials.2014.04.054] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/12/2014] [Indexed: 01/16/2023]
Abstract
The large surface area of highly porous titanium structures produced by additive manufacturing can be modified using biofunctionalizing surface treatments to improve the bone regeneration performance of these otherwise bioinert biomaterials. In this longitudinal study, we applied and compared three types of biofunctionalizing surface treatments, namely acid-alkali (AcAl), alkali-acid-heat treatment (AlAcH), and anodizing-heat treatment (AnH). The effects of treatments on apatite forming ability, cell attachment, cell proliferation, osteogenic gene expression, bone regeneration, biomechanical stability, and bone-biomaterial contact were evaluated using apatite forming ability test, cell culture assays, and animal experiments. It was found that AcAl and AnH work through completely different routes. While AcAl improved the apatite forming ability of as-manufactured (AsM) specimens, it did not have any positive effect on cell attachment, cell proliferation, and osteogenic gene expression. In contrast, AnH did not improve the apatite forming ability of AsM specimens but showed significantly better cell attachment, cell proliferation, and expression of osteogenic markers. The performance of AlAcH in terms of apatite forming ability and cell response was in between both extremes of AnH and AsM. AcAl resulted in significantly larger volumes of newly formed bone within the pores of the scaffold as compared to AnH. Interestingly, larger volumes of regenerated bone did not translate into improved biomechanical stability as AnH exhibited significantly better biomechanical stability as compared to AcAl suggesting that the beneficial effects of cell-nanotopography modulations somehow surpassed the benefits of improved apatite forming ability. In conclusion, the applied surface treatments have considerable effects on apatite forming ability, cell attachment, cell proliferation, and bone ingrowth of the studied biomaterials. The relationship between these properties and the bone-implant biomechanics is, however, not trivial.
Collapse
Affiliation(s)
- Saber Amin Yavari
- Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands; FT Innovations BV, Braamsluiper 1, 5831 PW Boxmeer, The Netherlands.
| | - Johan van der Stok
- Orthopaedic Research Laboratory, Department of Orthopaedic, Erasmus University Rotterdam Medical Centre, Rotterdam, The Netherlands
| | - Yoke Chin Chai
- Prometheus, Division of Skeletal Tissue Engineering, Bus 813, O&N1, Herestraat 49, KU Leuven, 3000 Leuven, Belgium; Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, Bus 813, O&N1, Herestraat 49, KU Leuven, 3000 Leuven, Belgium; Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ruben Wauthle
- KU Leuven, Department of Mechanical Engineering, Section Production Engineering, Machine Design and Automation (PMA), Celestijnenlaan 300B, 3001 Leuven, Belgium; LayerWise NV, Grauwmeer 14, 3001 Leuven, Belgium
| | - Zeinab Tahmasebi Birgani
- Department of Tissue Regeneration, MIRA Institute for Biomedical, Technology and Technical Medicine, University of Twente, PO Box 217, 7500AE Enschede, The Netherlands
| | - Pamela Habibovic
- Department of Tissue Regeneration, MIRA Institute for Biomedical, Technology and Technical Medicine, University of Twente, PO Box 217, 7500AE Enschede, The Netherlands
| | - Michiel Mulier
- Department of Orthopaedic, University Hospitals KU Leuven, UZ Pellenberg, Weligerveld 1, 3212 Lubbeek, Belgium
| | - Jan Schrooten
- Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 - PB 2450, B-3001 Heverlee, Belgium
| | - Harrie Weinans
- Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands; Orthopaedic Research Laboratory, Department of Orthopaedic, Erasmus University Rotterdam Medical Centre, Rotterdam, The Netherlands; Department of Orthopedics and Dept. Rheumatology, UMC Utrecht, Heidelberglaan100, 3584CX Utrecht, The Netherlands
| | - Amir Abbas Zadpoor
- Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| |
Collapse
|
17
|
A computational model for cell/ECM growth on 3D surfaces using the level set method: a bone tissue engineering case study. Biomech Model Mechanobiol 2014; 13:1361-71. [DOI: 10.1007/s10237-014-0577-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 03/19/2014] [Indexed: 11/25/2022]
|
18
|
Papantoniou Ir I, Chai YC, Luyten FP, Schrooten Ir J. Process quality engineering for bioreactor-driven manufacturing of tissue-engineered constructs for bone regeneration. Tissue Eng Part C Methods 2013. [PMID: 23198999 DOI: 10.1089/ten.tec.2012.0526] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The incorporation of Quality-by-Design (QbD) principles in tissue-engineering bioprocess development toward clinical use will ensure that manufactured constructs possess prerequisite quality characteristics addressing emerging regulatory requirements and ensuring the functional in vivo behavior. In this work, the QbD principles were applied on a manufacturing process step for the in vitro production of osteogenic three-dimensional (3D) hybrid scaffolds that involves cell matrix deposition on a 3D titanium (Ti) alloy scaffold. An osteogenic cell source (human periosteum-derived cells) cultured in a bioinstructive medium was used to functionalize regular Ti scaffolds in a perfusion bioreactor, resulting in an osteogenic hybrid carrier. A two-level three-factor fractional factorial design of experiments was employed to explore a range of production-relevant process conditions by simultaneously changing value levels of the following parameters: flow rate (0.5-2 mL/min), cell culture duration (7-21 days), and cell-seeding density (1.5×10(3)-3×10(3) cells/cm(2)). This approach allowed to evaluate the individual impact of the aforementioned process parameters upon key quality attributes of the produced hybrids, such as collagen production, mineralization level, and cell number. The use of a fractional factorial design approach helped create a design space in which hybrid scaffolds of predefined quality attributes may be robustly manufactured while minimizing the number of required experiments.
Collapse
Affiliation(s)
- Ioannis Papantoniou Ir
- Laboratory for Skeletal Development and Joint Disorders, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | |
Collapse
|
19
|
Chai Y, Carlier A, Bolander J, Roberts S, Geris L, Schrooten J, Van Oosterwyck H, Luyten F. Current views on calcium phosphate osteogenicity and the translation into effective bone regeneration strategies. Acta Biomater 2012; 8:3876-87. [PMID: 22796326 DOI: 10.1016/j.actbio.2012.07.002] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 06/28/2012] [Accepted: 07/03/2012] [Indexed: 02/06/2023]
Abstract
Calcium phosphate (CaP) has traditionally been used for the repair of bone defects because of its strong resemblance to the inorganic phase of bone matrix. Nowadays, a variety of natural or synthetic CaP-based biomaterials are produced and have been extensively used for dental and orthopaedic applications. This is justified by their biocompatibility, osteoconductivity and osteoinductivity (i.e. the intrinsic material property that initiates de novo bone formation), which are attributed to the chemical composition, surface topography, macro/microporosity and the dissolution kinetics. However, the exact molecular mechanism of action is unknown. This review paper first summarizes the most important aspects of bone biology in relation to CaP and the mechanisms of bone matrix mineralization. This is followed by the research findings on the effects of calcium (Ca²⁺) and phosphate (PO₄³⁻) ions on the migration, proliferation and differentiation of osteoblasts during in vivo bone formation and in vitro culture conditions. Further, the rationale of using CaP for bone regeneration is explained, focusing thereby specifically on the material's osteoinductive properties. Examples of different material forms and production techniques are given, with the emphasis on the state-of-the art in fine-tuning the physicochemical properties of CaP-based biomaterials for improved bone induction and the use of CaP as a delivery system for bone morphogenetic proteins. The use of computational models to simulate the CaP-driven osteogenesis is introduced as part of a bone tissue engineering strategy in order to facilitate the understanding of cell-material interactions and to gain further insight into the design and optimization of CaP-based bone reparative units. Finally, limitations and possible solutions related to current experimental and computational techniques are discussed.
Collapse
|
20
|
Chai YC, Kerckhofs G, Roberts SJ, Van Bael S, Schepers E, Vleugels J, Luyten FP, Schrooten J. Ectopic bone formation by 3D porous calcium phosphate-Ti6Al4V hybrids produced by perfusion electrodeposition. Biomaterials 2012; 33:4044-58. [PMID: 22381474 DOI: 10.1016/j.biomaterials.2012.02.026] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 02/09/2012] [Indexed: 01/17/2023]
Abstract
Successful clinical repair of non-healing skeletal defects requires the use of bone substitutes with robust bone inductivity and excellent biomechanical stability. Thus, three-dimensionally functionalised porous calcium phosphate-Ti6Al4V (CaP-Ti) hybrids were produced by perfusion electrodeposition, and the in vitro and in vivo biological performances were evaluated using human periosteum derived cells (hPDCs). By applying various current densities at the optimised deposition conditions, CaP coatings with sub-micrometer to nano-scale porous crystalline structures and different ion dissolution kinetics were deposited on the porous Ti6Al4V scaffolds. These distinctive physicochemical properties caused a significant impact on in vitro proliferation, osteogenic differentiation, and matrix mineralisation of hPDCs. This includes a potential role of hPDCs in mediating osteoclastogenesis for the resorption of CaP coatings, as indicated by a significant down-regulation of osteoprotegerin (OPG) gene expression and by the histological observation of abundant multi-nucleated giant cells near to the coatings. By subcutaneous implantation, the produced hybrids induced ectopic bone formation, which was highly dependent on the physicochemical properties of the CaP coating (including the Ca(2+) dissolution kinetics and coating surface topography), in a cell density-dependent manner. This study provided further insight on stem cell-CaP biomaterial interactions, and the feasibility to produced bone reparative units that are predictively osteoinductive in vivo by perfusion electrodeposition technology.
Collapse
Affiliation(s)
- Yoke Chin Chai
- Laboratory for Skeletal Development and Joint Disorders, KU Leuven, O&N 1, Herestraat 49, Bus 813, 3000 Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|