1
|
Schofield MM, Rzepski AT, Richardson-Solorzano S, Hammerstedt J, Shah S, Mirack CE, Herrick M, Parreno J. Targeting F-actin stress fibers to suppress the dedifferentiated phenotype in chondrocytes. Eur J Cell Biol 2024; 103:151424. [PMID: 38823166 DOI: 10.1016/j.ejcb.2024.151424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/30/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024] Open
Abstract
Actin is a central mediator of the chondrocyte phenotype. Monolayer expansion of articular chondrocytes on tissue culture polystyrene, for cell-based repair therapies, leads to chondrocyte dedifferentiation. During dedifferentiation, chondrocytes spread and filamentous (F-)actin reorganizes from a cortical to a stress fiber arrangement causing a reduction in cartilage matrix expression and an increase in fibroblastic matrix and contractile molecule expression. While the downstream mechanisms regulating chondrocyte molecular expression by alterations in F-actin organization have become elucidated, the critical upstream regulators of F-actin networks in chondrocytes are not completely known. Tropomyosin (TPM) and the RhoGTPases are known regulators of F-actin networks. The main purpose of this study is to elucidate the regulation of passaged chondrocyte F-actin stress fiber networks and cell phenotype by the specific TPM, TPM3.1, and the RhoGTPase, CDC42. Our results demonstrated that TPM3.1 associates with cortical F-actin and stress fiber F-actin in primary and passaged chondrocytes, respectively. In passaged cells, we found that pharmacological TPM3.1 inhibition or siRNA knockdown causes F-actin reorganization from stress fibers back to cortical F-actin and causes an increase in G/F-actin. CDC42 inhibition also causes formation of cortical F-actin. However, pharmacological CDC42 inhibition, but not TPM3.1 inhibition, leads to the re-association of TPM3.1 with cortical F-actin. Both TPM3.1 and CDC42 inhibition, as well as TPM3.1 knockdown, reduces nuclear localization of myocardin related transcription factor, which suppresses dedifferentiated molecule expression. We confirmed that TPM3.1 or CDC42 inhibition partially redifferentiates passaged cells by reducing fibroblast matrix and contractile expression, and increasing chondrogenic SOX9 expression. A further understanding on the regulation of F-actin in passaged cells may lead into new insights to stimulate cartilage matrix expression in cells for regenerative therapies.
Collapse
Affiliation(s)
| | | | | | | | - Sohan Shah
- Department of Biological Sciences, University of Delaware, USA
| | - Chloe E Mirack
- Department of Biological Sciences, University of Delaware, USA
| | - Marin Herrick
- Department of Biological Sciences, University of Delaware, USA
| | - Justin Parreno
- Department of Biological Sciences, University of Delaware, USA; Department of Biomedical Engineering, University of Delaware, USA.
| |
Collapse
|
2
|
Chen Y, Luo X, Kang R, Cui K, Ou J, Zhang X, Liang P. Current therapies for osteoarthritis and prospects of CRISPR-based genome, epigenome, and RNA editing in osteoarthritis treatment. J Genet Genomics 2024; 51:159-183. [PMID: 37516348 DOI: 10.1016/j.jgg.2023.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/31/2023]
Abstract
Osteoarthritis (OA) is one of the most common degenerative joint diseases worldwide, causing pain, disability, and decreased quality of life. The balance between regeneration and inflammation-induced degradation results in multiple etiologies and complex pathogenesis of OA. Currently, there is a lack of effective therapeutic strategies for OA treatment. With the development of CRISPR-based genome, epigenome, and RNA editing tools, OA treatment has been improved by targeting genetic risk factors, activating chondrogenic elements, and modulating inflammatory regulators. Supported by cell therapy and in vivo delivery vectors, genome, epigenome, and RNA editing tools may provide a promising approach for personalized OA therapy. This review summarizes CRISPR-based genome, epigenome, and RNA editing tools that can be applied to the treatment of OA and provides insights into the development of CRISPR-based therapeutics for OA treatment. Moreover, in-depth evaluations of the efficacy and safety of these tools in human OA treatment are needed.
Collapse
Affiliation(s)
- Yuxi Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Xiao Luo
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Rui Kang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Kaixin Cui
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Jianping Ou
- Center for Reproductive Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Xiya Zhang
- Center for Reproductive Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong 510630, China.
| | - Puping Liang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| |
Collapse
|
3
|
Schofield MM, Rzepski A, Hammerstedt J, Shah S, Mirack C, Parreno J. Targeting F-actin stress fibers to suppress the dedifferentiated phenotype in chondrocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.08.570865. [PMID: 38106134 PMCID: PMC10723437 DOI: 10.1101/2023.12.08.570865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Actin is a central mediator of the chondrocyte phenotype. Monolayer expansion of articular chondrocytes on tissue culture polystyrene, for cell-based repair therapies, leads to chondrocyte dedifferentiation. During dedifferentiation, chondrocytes spread and filamentous (F-)actin reorganizes from a cortical to a stress fiber arrangement causing a reduction in cartilage matrix expression and an increase in fibroblastic matrix and contractile molecule expression. While the downstream mechanisms regulating chondrocyte molecular expression by alterations in F-actin organization have become elucidated, the critical upstream regulators of F-actin networks in chondrocytes are not completely known. Tropomyosin (TPM) and the RhoGTPases are known regulators of F-actin networks. The purpose of this study is to elucidate the regulation of passaged chondrocyte F-actin stress fiber networks and cell phenotype by the specific TPM, TPM3.1, and the RhoGTPase, CDC42. Our results demonstrated that TPM3.1 associates with cortical F-actin and stress fiber F-actin in primary and passaged chondrocytes, respectively. In passaged cells, we found that TPM3.1 inhibition causes F-actin reorganization from stress fibers back to cortical F-actin and also causes an increase in G/F-actin. CDC42 inhibition also causes formation of cortical F-actin. However, CDC42 inhibition, but not TPM3.1 inhibition, leads to the re-association of TPM3.1 with cortical F-actin. Both TPM3.1 and CDC42 inhibition reduces nuclear localization of myocardin related transcription factor, which is known to suppress dedifferentiated molecule expression. We confirmed that TPM3.1 or CDC42 inhibition partially redifferentiates passaged cells by reducing fibroblast matrix and contractile expression, and increasing chondrogenic SOX9 expression. A further understanding on the regulation of F-actin in passaged cells may lead into new insights to stimulate cartilage matrix expression in cells for regenerative therapies.
Collapse
Affiliation(s)
| | - Alissa Rzepski
- Department of Biological Sciences, University of Delaware
| | | | - Sohan Shah
- Department of Biological Sciences, University of Delaware
| | - Chloe Mirack
- Department of Biological Sciences, University of Delaware
| | - Justin Parreno
- Department of Biological Sciences, University of Delaware
- Department of Biomedical Engineering, University of Delaware
| |
Collapse
|
4
|
[Research progress of different cell seeding densities and cell ratios in cartilage tissue engineering]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2022; 36:470-478. [PMID: 35426288 PMCID: PMC9011064 DOI: 10.7507/1002-1892.202110091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To review the research progress of different cell seeding densities and cell ratios in cartilage tissue engineering. METHODS The literature about tissue engineered cartilage constructed with three-dimensional scaffold was extensively reviewed, and the seeding densities and ratios of most commonly used seed cells were summarized. RESULTS Articular chondrocytes (ACHs) and bone marrow mesenchymal stem cells (BMSCs) are the most commonly used seed cells, and they can induce hyaline cartilage formation in vitro and in vivo. Cell seeding density and cell ratio both play important roles in cartilage formation. Tissue engineered cartilage with good quality can be produced when the cell seeding density of ACHs or BMSCs reaches or exceeds that in normal articular cartilage. Under the same culture conditions, the ability of pure BMSCs to build hyaline cartilage is weeker than that of pure ACHs or co-culture of both. CONCLUSION Due to the effect of scaffold materials, growth factors, and cell passages, optimal cell seeding density and cell ratio need further study.
Collapse
|
5
|
Integrating melt electrowriting and inkjet bioprinting for engineering structurally organized articular cartilage. Biomaterials 2022; 283:121405. [DOI: 10.1016/j.biomaterials.2022.121405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/10/2022] [Accepted: 01/30/2022] [Indexed: 12/18/2022]
|
6
|
Hoburg A, Niemeyer P, Laute V, Zinser W, John T, Becher C, Izadpanah K, Diehl P, Kolombe T, Fay J, Siebold R, Fickert S. Safety and Efficacy of Matrix-Associated Autologous Chondrocyte Implantation With Spheroids for Patellofemoral or Tibiofemoral Defects: A 5-Year Follow-up of a Phase 2, Dose-Confirmation Trial. Orthop J Sports Med 2022; 10:23259671211053380. [PMID: 35071653 PMCID: PMC8777354 DOI: 10.1177/23259671211053380] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/14/2021] [Indexed: 11/15/2022] Open
Abstract
Background: Matrix-associated autologous chondrocyte implantation (ACI) is a
well-established treatment for cartilage defects. High-level evidence at
midterm follow-up is limited, especially for ACI using spheroids (spherical
aggregates of ex vivo expanded human autologous chondrocytes and
self-synthesized extracellular matrix). Purpose: To assess the safety and efficacy of 3-dimensional matrix-associated ACI
using spheroids to treat medium to large cartilage defects on different
locations in the knee joint (patella, trochlea, and femoral condyle) at
5-year follow-up. Study Design: Cohort study; Level of evidence, 2. Methods: A total of 75 patients aged 18 to 50 years with medium to large (4-10
cm2), isolated, single cartilage defects, International
Cartilage Repair Society grade 3 or 4, were randomized on a single-blind
basis to treatment with ACI at 1 of 3 dose levels: 3 to 7, 10 to 30, or 40
to 70 spheroids/cm2 of defect size. Outcomes were assessed via
changes from baseline Knee injury and Osteoarthritis Outcome Score (KOOS),
International Knee Documentation Committee score, and modified Lysholm
assessments at 1- and 5-year follow-up. Structural repair was evaluated
using MOCART (magnetic resonance observation of cartilage repair tissue)
score. Treatment-related adverse events were assessed up to 5 years for all
patients. The overall KOOS at 12 months was assessed for superiority versus
baseline in a 1-sample, 2-sided t test. Results: A total of 73 patients were treated: 24 in the low-dose group, 25 in the
medium-dose group, and 24 in the high-dose group. The overall KOOS improved
from 57.0 ± 15.2 at baseline to 73.4 ± 17.3 at 1-year follow-up
(P < .0001) and 76.9 ± 19.3 at 5-year follow-up
(P < .0001), independent of the applied dose. The
different defect locations (patella, trochlea, and weightbearing part of the
femoral condyles; P = .2216) and defect sizes
(P = .8706) showed comparable clinical improvement. No
differences between the various doses were observed. The overall treatment
failure rate until 5 years was 4%. Most treatment-related adverse events
occurred within the first 12 months after implantation, with the most
frequent adverse reactions being joint effusion (n = 71), arthralgia (n =
14), and joint swelling (n = 9). Conclusion: ACI using spheroids was safe and effective for defect sizes up to 10
cm2 and showed maintenance of efficacy up to 5 years for all
3 doses that were investigated. Registration: NCT01225575 (ClinicalTrials.gov identifier); 2009-016816-20 (EudraCT
number).
Collapse
Affiliation(s)
| | - Philipp Niemeyer
- Department of Orthopedic Surgery and Traumatology, Freiburg University Hospital, Germany and OCM Clinic, Munich, Germany
| | | | - Wolfgang Zinser
- Department of Orthopedic Surgery and Traumatology, St. Vinzenz Hospital, Dinslaken, Germany
| | - Thilo John
- Clinic for Traumatology and Orthopedic Surgery, DRK Hospital Westend, Berlin, Germany
| | - Christoph Becher
- Department of Orthopaedic Surgery, Hannover Medical School, Diakovere Annastift, Hannover, Germany
| | - Kaywan Izadpanah
- Department of Orthopedic and Trauma Surgery, Freiburg University Hospital, Freiburg, Germany
| | - Peter Diehl
- Department of Orthopedic Surgery and Traumatology, Orthopedic Center Munich East, Munich, Germany
| | - Thomas Kolombe
- Traumatology and Reconstructive Surgery, DRK Hospital, Luckenwalde, Germany
| | - Jakob Fay
- Department of Traumatology and Arthroscopic Surgery, Lubinus Clinicum, Kiel, Germany
| | - Rainer Siebold
- Center for Hip, Knee and Foot Surgery, ATOS Clinic, Heidelberg, Germany
| | - Stefan Fickert
- Sporthopaedicum, Straubing, Germany
- Department of Orthopedic Surgery and Traumatology, Mannheim University Hospital, Mannheim, Germany
| |
Collapse
|
7
|
Critchley S, Sheehy EJ, Cunniffe G, Diaz-Payno P, Carroll SF, Jeon O, Alsberg E, Brama PAJ, Kelly DJ. 3D printing of fibre-reinforced cartilaginous templates for the regeneration of osteochondral defects. Acta Biomater 2020; 113:130-143. [PMID: 32505800 DOI: 10.1016/j.actbio.2020.05.040] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 12/11/2022]
Abstract
Successful osteochondral defect repair requires regenerating the subchondral bone whilst simultaneously promoting the development of an overlying layer of articular cartilage that is resistant to vascularization and endochondral ossification. During skeletal development articular cartilage also functions as a surface growth plate, which postnatally is replaced by a more spatially complex bone-cartilage interface. Motivated by this developmental process, the hypothesis of this study is that bi-phasic, fibre-reinforced cartilaginous templates can regenerate both the articular cartilage and subchondral bone within osteochondral defects created in caprine joints. To engineer mechanically competent implants, we first compared a range of 3D printed fibre networks (PCL, PLA and PLGA) for their capacity to mechanically reinforce alginate hydrogels whilst simultaneously supporting mesenchymal stem cell (MSC) chondrogenesis in vitro. These mechanically reinforced, MSC-laden alginate hydrogels were then used to engineer the endochondral bone forming phase of bi-phasic osteochondral constructs, with the overlying chondral phase consisting of cartilage tissue engineered using a co-culture of infrapatellar fat pad derived stem/stromal cells (FPSCs) and chondrocytes. Following chondrogenic priming and subcutaneous implantation in nude mice, these bi-phasic cartilaginous constructs were found to support the development of vascularised endochondral bone overlaid by phenotypically stable cartilage. These fibre-reinforced, bi-phasic cartilaginous templates were then evaluated in clinically relevant, large animal (caprine) model of osteochondral defect repair. Although the quality of repair was variable from animal-to-animal, in general more hyaline-like cartilage repair was observed after 6 months in animals treated with bi-phasic constructs compared to animals treated with commercial control scaffolds. This variability in the quality of repair points to the need for further improvements in the design of 3D bioprinted implants for joint regeneration. STATEMENT OF SIGNIFICANCE: Successful osteochondral defect repair requires regenerating the subchondral bone whilst simultaneously promoting the development of an overlying layer of articular cartilage. In this study, we hypothesised that bi-phasic, fibre-reinforced cartilaginous templates could be leveraged to regenerate both the articular cartilage and subchondral bone within osteochondral defects. To this end we used 3D printed fibre networks to mechanically reinforce engineered transient cartilage, which also contained an overlying layer of phenotypically stable cartilage engineered using a co-culture of chondrocytes and stem cells. When chondrogenically primed and implanted into caprine osteochondral defects, these fibre-reinforced bi-phasic cartilaginous grafts were shown to spatially direct tissue development during joint repair. Such developmentally inspired tissue engineering strategies, enabled by advances in biofabrication and 3D printing, could form the basis of new classes of regenerative implants in orthopaedic medicine.
Collapse
Affiliation(s)
- Susan Critchley
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Eamon J Sheehy
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre, Trinity College Dublin and Royal College of Surgeons in Ireland, Dublin, Ireland; Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Gráinne Cunniffe
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Pedro Diaz-Payno
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Simon F Carroll
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Oju Jeon
- Department of Bioengineering, University of Illinois, Chicago, IL, USA
| | - Eben Alsberg
- Department of Bioengineering, University of Illinois, Chicago, IL, USA; Departments of Orthopaedics, Pharmacology, and Mechanical & Industrial Engineering, University of Illinois, Chicago, IL, USA
| | - Pieter A J Brama
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Daniel J Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre, Trinity College Dublin and Royal College of Surgeons in Ireland, Dublin, Ireland; Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland.
| |
Collapse
|
8
|
Safety and efficacy of matrix-associated autologous chondrocyte implantation with spheroid technology is independent of spheroid dose after 4 years. Knee Surg Sports Traumatol Arthrosc 2020; 28:1130-1143. [PMID: 31897548 DOI: 10.1007/s00167-019-05786-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 11/04/2019] [Indexed: 01/18/2023]
Abstract
PURPOSE The aim of this study was to investigate the effect of product dose in autologous chondrocyte implantation (ACI) for the treatment of full-thickness cartilage defects of the knee and to assess its influence on clinical and morphological mid-term outcome. METHODS Seventy-five patients were included in this single-blind, randomised, prospective, controlled clinical trial. Patients were assigned randomly to three different dose groups [low (3-7 spheroids/cm2), medium (10-30 spheroids/cm2), or high (40-70 spheroids/cm2)] and assessed using standardised clinical and morphological scoring systems (KOOS, IKDC, MOCART) for 4 years following the intervention. RESULTS The analysis population comprised 75 patients (22 women, 53 men) aged 34 ± 9 years. Defect sizes ranged from 2 to 10 cm2 following intraoperative debridement. The assessment of the primary variable 'overall KOOS' showed a statistically significant improvement, compared with baseline, for each dose group, i.e., at baseline the mean 'overall KOOS' scores were 60.4 ± 13.6, 59.6 ± 15.4, and 51.1 ± 15.4 for the low-, medium-, and high-dose groups, respectively, and 57.0 ± 15.2 for 'all patients'. After 48 months those values improved to 80.0 ± 14.7, 84.0 ± 14.9, and 66.9 ± 21.5 in the respective dose groups and 77.1 ± 18.6 for 'all patients'. Pairwise comparisons of these dose groups did not reveal any statistically significant differences. Likewise, assessment of the subjective IKDC score revealed no statistically significant differences between the three dose groups up to the 48-month visit. However, between 12 and 48 months there was a low, but steady, improvement in the low-dose group and a substantial amelioration in the medium-dose group. The mean MOCART total scores 3 months after treatment were 59.8 ± 10.9, 64.5 ± 10.3, and 64.7 ± 9.4 for the low-, medium-, and high-dose groups, and 62.9 ± 10.3 for 'all patients'; 48 months after treatment these were 73.9 ± 13.1, 78.0 ± 12.4, and 74.3 ± 14.0 for the respective dose groups and 75.5 ± 13.1 for 'all patients'. CONCLUSIONS Results of this study confirm the efficacy and safety of the applied "advanced therapy medicinal product"; no dose dependence was found either for the incidence or for the severity of any adverse reactions. All doses applied in the present study led to significant clinical improvement over time and can therefore be regarded as effective doses. The influence of product doses in the range investigated seems to be low and can be neglected. Thus, the authorised dose range of 10-70 spheroids/cm2 confirmed by this clinical trial offers a broad therapeutic window for the surgeon applying the product, thereby reducing the risk of over- or underdosing. LEVEL OF EVIDENCE I.
Collapse
|
9
|
Daly AC, Sathy BN, Kelly DJ. Engineering large cartilage tissues using dynamic bioreactor culture at defined oxygen conditions. J Tissue Eng 2018; 9:2041731417753718. [PMID: 29399319 PMCID: PMC5788092 DOI: 10.1177/2041731417753718] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 12/22/2017] [Indexed: 11/23/2022] Open
Abstract
Mesenchymal stem cells maintained in appropriate culture conditions are capable of producing robust cartilage tissue. However, gradients in nutrient availability that arise during three-dimensional culture can result in the development of spatially inhomogeneous cartilage tissues with core regions devoid of matrix. Previous attempts at developing dynamic culture systems to overcome these limitations have reported suppression of mesenchymal stem cell chondrogenesis compared to static conditions. We hypothesize that by modulating oxygen availability during bioreactor culture, it is possible to engineer cartilage tissues of scale. The objective of this study was to determine whether dynamic bioreactor culture, at defined oxygen conditions, could facilitate the development of large, spatially homogeneous cartilage tissues using mesenchymal stem cell laden hydrogels. A dynamic culture regime was directly compared to static conditions for its capacity to support chondrogenesis of mesenchymal stem cells in both small and large alginate hydrogels. The influence of external oxygen tension on the response to the dynamic culture conditions was explored by performing the experiment at 20% O2 and 3% O2. At 20% O2, dynamic culture significantly suppressed chondrogenesis in engineered tissues of all sizes. In contrast, at 3% O2 dynamic culture significantly enhanced the distribution and amount of cartilage matrix components (sulphated glycosaminoglycan and collagen II) in larger constructs compared to static conditions. Taken together, these results demonstrate that dynamic culture regimes that provide adequate nutrient availability and a low oxygen environment can be employed to engineer large homogeneous cartilage tissues. Such culture systems could facilitate the scaling up of cartilage tissue engineering strategies towards clinically relevant dimensions.
Collapse
Affiliation(s)
- Andrew C Daly
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.,Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Binulal N Sathy
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.,Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland.,Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Daniel J Kelly
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.,Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
10
|
Sánchez-Téllez DA, Téllez-Jurado L, Rodríguez-Lorenzo LM. Hydrogels for Cartilage Regeneration, from Polysaccharides to Hybrids. Polymers (Basel) 2017; 9:E671. [PMID: 30965974 PMCID: PMC6418920 DOI: 10.3390/polym9120671] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/24/2017] [Accepted: 11/29/2017] [Indexed: 12/12/2022] Open
Abstract
The aims of this paper are: (1) to review the current state of the art in the field of cartilage substitution and regeneration; (2) to examine the patented biomaterials being used in preclinical and clinical stages; (3) to explore the potential of polymeric hydrogels for these applications and the reasons that hinder their clinical success. The studies about hydrogels used as potential biomaterials selected for this review are divided into the two major trends in tissue engineering: (1) the use of cell-free biomaterials; and (2) the use of cell seeded biomaterials. Preparation techniques and resulting hydrogel properties are also reviewed. More recent proposals, based on the combination of different polymers and the hybridization process to improve the properties of these materials, are also reviewed. The combination of elements such as scaffolds (cellular solids), matrices (hydrogel-based), growth factors and mechanical stimuli is needed to optimize properties of the required materials in order to facilitate tissue formation, cartilage regeneration and final clinical application. Polymer combinations and hybrids are the most promising materials for this application. Hybrid scaffolds may maximize cell growth and local tissue integration by forming cartilage-like tissue with biomimetic features.
Collapse
Affiliation(s)
- Daniela Anahí Sánchez-Téllez
- Instituto Politécnico Nacional-ESIQIE, Depto. Ing. en Metalurgia y Materiales, UPALM-Zacatenco, Mexico City 07738, Mexico.
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Av. Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain.
| | - Lucía Téllez-Jurado
- Instituto Politécnico Nacional-ESIQIE, Depto. Ing. en Metalurgia y Materiales, UPALM-Zacatenco, Mexico City 07738, Mexico.
| | - Luís María Rodríguez-Lorenzo
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Av. Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain.
- Department Polymeric Nanomaterials and Biomaterials, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|
11
|
MRTF-A signaling regulates the acquisition of the contractile phenotype in dedifferentiated chondrocytes. Matrix Biol 2016; 62:3-14. [PMID: 27751947 DOI: 10.1016/j.matbio.2016.10.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/09/2016] [Accepted: 10/10/2016] [Indexed: 11/22/2022]
Abstract
Chondrocyte culture as a monolayer for cell number expansion results in dedifferentiation whereby expanded cells acquire contractile features and increased actin polymerization status. This study determined whether the actin polymerization based signaling pathway, myocardin-related transcription factor-a (MRTF-A) is involved in regulating this contractile phenotype. Serial passaging of chondrocytes in monolayer culture to passage 2 resulted in increased gene and protein expression of the contractile molecules alpha-smooth muscle actin, transgelin and vinculin compared to non-passaged, primary cells. This resulted in a functional change as passaged 2, but not primary, chondrocytes were capable of contracting type I collagen gels in a stress-relaxed contraction assay. These changes were associated with increased actin polymerization and MRTF-A nuclear localization. The involvement of actin was demonstrated by latrunculin B depolymerization of actin which reversed these changes. Alternatively cytochalasin D which activates MRTF-A increased gene and protein expression of α-smooth muscle actin, transgelin and vinculin, whereas CCG1423 which deactivates MRTF-A decreased these molecules. The involvement of MRTF-A signaling was confirmed by gene silencing of MRTF or its co-factor serum response factor. Knockdown experiments revealed downregulation of α-smooth muscle actin and transgelin gene and protein expression, and inhibition of gel contraction. These findings demonstrate that passaged chondrocytes acquire a contractile phenotype and that this change is modulated by the actin-MRTF-A-serum response factor signaling pathway.
Collapse
|
12
|
Daly AC, Critchley SE, Rencsok EM, Kelly DJ. A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage. Biofabrication 2016; 8:045002. [DOI: 10.1088/1758-5090/8/4/045002] [Citation(s) in RCA: 247] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
13
|
Meppelink AM, Zhao X, Griffin DJ, Erali R, Gill TJ, Bonassar LJ, Redmond RW, Randolph MA. Hyaline Articular Matrix Formed by Dynamic Self-Regenerating Cartilage and Hydrogels. Tissue Eng Part A 2016; 22:962-70. [PMID: 27324118 DOI: 10.1089/ten.tea.2015.0577] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Injuries to the articular cartilage surface are challenging to repair because cartilage possesses a limited capacity for self-repair. The outcomes of current clinical procedures aimed to address these injuries are inconsistent and unsatisfactory. We have developed a novel method for generating hyaline articular cartilage to improve the outcome of joint surface repair. A suspension of 10(7) swine chondrocytes was cultured under reciprocating motion for 14 days. The resulting dynamic self-regenerating cartilage (dSRC) was placed in a cartilage ring and capped with fibrin and collagen gel. A control group consisted of chondrocytes encapsulated in fibrin gel. Constructs were implanted subcutaneously in nude mice and harvested after 6 weeks. Gross, histological, immunohistochemical, biochemical, and biomechanical analyses were performed. In swine patellar groove, dSRC was implanted into osteochondral defects capped with collagen gel and compared to defects filled with osteochondral plugs, collagen gel, or left empty after 6 weeks. In mice, the fibrin- and collagen-capped dSRC constructs showed enhanced contiguous cartilage matrix formation over the control of cells encapsulated in fibrin gel. Biochemically, the fibrin and collagen gel dSRC groups were statistically improved in glycosaminoglycan and hydroxyproline content compared to the control. There was no statistical difference in the biomechanical data between the dSRC groups and the control. The swine model also showed contiguous cartilage matrix in the dSRC group but not in the collagen gel and empty defects. These data demonstrate the survivability and successful matrix formation of dSRC under the mechanical forces experienced by normal hyaline cartilage in the knee joint. The results from this study demonstrate that dSRC capped with hydrogels successfully engineers contiguous articular cartilage matrix in both nonload-bearing and load-bearing environments.
Collapse
Affiliation(s)
- Amanda M Meppelink
- 1 Plastic Surgery Research Laboratory, Department of Surgery, Massachusetts General Hospital , Boston, Massachusetts
| | - Xing Zhao
- 1 Plastic Surgery Research Laboratory, Department of Surgery, Massachusetts General Hospital , Boston, Massachusetts
| | - Darvin J Griffin
- 2 Meinig School of Biomedical Engineering, Cornell University , Ithaca, New York
| | - Richard Erali
- 3 Laboratory of Musculoskeletal Tissue Engineering, Massachusetts General Hospital , Boston, Massachusetts
| | - Thomas J Gill
- 4 Boston Sports Medicine and Research Institute , Dedham, Massachusetts
| | - Lawrence J Bonassar
- 2 Meinig School of Biomedical Engineering, Cornell University , Ithaca, New York
| | - Robert W Redmond
- 5 Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital , Boston, Massachusetts
| | - Mark A Randolph
- 3 Laboratory of Musculoskeletal Tissue Engineering, Massachusetts General Hospital , Boston, Massachusetts
| |
Collapse
|
14
|
Cunniffe G, Vinardell T, Thompson E, Daly A, Matsiko A, O’Brien F, Kelly D. Chondrogenically primed mesenchymal stem cell-seeded alginate hydrogels promote early bone formation in critically-sized defects. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.07.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
15
|
Prabhakar A, Lynch AP, Ahearne M. Self-Assembled Infrapatellar Fat-Pad Progenitor Cells on a Poly-ε-Caprolactone Film For Cartilage Regeneration. Artif Organs 2015; 40:376-84. [PMID: 26516689 DOI: 10.1111/aor.12565] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cartilage defects resulting from osteoarthritis (OA) or physical injury can severely reduce the quality of life for sufferers. Current treatment options are costly and not always effective in producing stable hyaline cartilage. Here we investigated a new treatment option that could potentially repair and regenerate damaged cartilage tissue. This novel approach involves the application of infrapatellar fat-pad derived chondroprogenitor cells onto a mechanically stable biodegradable polymer film that can be easily implanted into a defect site. Poly-ε-caprolactone (PCL) films were fabricated via solvent casting in either acetone or chloroform. The hydrophobicity, mechanical properties, and surface morphology of the films were examined. Progenitor cells from infrapatellar fat-pad were isolated, expanded, and then seeded onto the films. The cells were allowed to self-assemble on films, and these were then cultured in a chemically defined chondrogenic media for 28 days. The self-assembled tissue was characterized via histological staining, gene expression analysis, immunohistochemistry, and biochemical analysis. Chondrogenic differentiation was induced to generate a cartilaginous matrix upon the films. Despite differences between in the appearance, surface morphology, and mechanical properties of the films cast in chloroform or acetone, both methods produced tissues rich in sulfated glycosaminoglycan and collagen, although the extracellular matrix produced on chloroform-cast films appeared to contain more collagen type II and less collagen type I than acetone-cast films. These self-assembled constructs have the potential to be implanted into defect sites as a potential treatment for cartilage defect regeneration.
Collapse
Affiliation(s)
- Alisha Prabhakar
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Amy P Lynch
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Mark Ahearne
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
16
|
Cunniffe GM, Vinardell T, Murphy JM, Thompson EM, Matsiko A, O’Brien FJ, Kelly DJ. Porous decellularized tissue engineered hypertrophic cartilage as a scaffold for large bone defect healing. Acta Biomater 2015; 23:82-90. [PMID: 26038199 DOI: 10.1016/j.actbio.2015.05.031] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/28/2015] [Accepted: 05/26/2015] [Indexed: 12/19/2022]
Abstract
Clinical translation of tissue engineered therapeutics is hampered by the significant logistical and regulatory challenges associated with such products, prompting increased interest in the use of decellularized extracellular matrix (ECM) to enhance endogenous regeneration. Most bones develop and heal by endochondral ossification, the replacement of a hypertrophic cartilaginous intermediary with bone. The hypothesis of this study is that a porous scaffold derived from decellularized tissue engineered hypertrophic cartilage will retain the necessary signals to instruct host cells to accelerate endogenous bone regeneration. Cartilage tissue (CT) and hypertrophic cartilage tissue (HT) were engineered using human bone marrow derived mesenchymal stem cells, decellularized and the remaining ECM was freeze-dried to generate porous scaffolds. When implanted subcutaneously in nude mice, only the decellularized HT-derived scaffolds were found to induce vascularization and de novo mineral accumulation. Furthermore, when implanted into critically-sized femoral defects, full bridging was observed in half of the defects treated with HT scaffolds, while no evidence of such bridging was found in empty controls. Host cells which had migrated throughout the scaffold were capable of producing new bone tissue, in contrast to fibrous tissue formation within empty controls. These results demonstrate the capacity of decellularized engineered tissues as 'off-the-shelf' implants to promote tissue regeneration.
Collapse
|
17
|
Mesallati T, Buckley CT, Kelly DJ. Engineering cartilaginous grafts using chondrocyte-laden hydrogels supported by a superficial layer of stem cells. J Tissue Eng Regen Med 2015; 11:1343-1353. [PMID: 26010516 DOI: 10.1002/term.2033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 04/03/2015] [Accepted: 04/21/2015] [Indexed: 11/07/2022]
Abstract
During postnatal joint development, progenitor cells that reside in the superficial region of articular cartilage first drive the rapid growth of the tissue and later help direct the formation of mature hyaline cartilage. These developmental processes may provide directions for the optimal structuring of co-cultured chondrocytes (CCs) and multipotent stromal/stem cells (MSCs) required for engineering cartilaginous tissues. The objective of this study was to engineer cartilage grafts by recapitulating aspects of joint development where a population of superficial progenitor cells drives the development of the tissue. To this end, MSCs were either self-assembled on top of CC-laden agarose gels (structured co-culture) or were mixed with CCs before being embedded in an agarose hydrogel (mixed co-culture). Porcine infrapatellar fat pad-derived stem cells (FPSCs) and bone marrow-derived MSCs (BMSCs) were used as sources of progenitor cells. The DNA, sGAG and collagen content of a mixed co-culture of FPSCs and CCs was found to be lower than the combined content of two control hydrogels seeded with CCs and FPSCs only. In contrast, a mixed co-culture of BMSCs and CCs led to increased proliferation and sGAG and collagen accumulation. Of note was the finding that a structured co-culture, at the appropriate cell density, led to greater sGAG accumulation than a mixed co-culture for both MSC sources. In conclusion, assembling MSCs onto CC-laden hydrogels dramatically enhances the development of the engineered tissue, with the superficial layer of progenitor cells driving CC proliferation and cartilage ECM production, mimicking certain aspects of developing cartilage. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Tariq Mesallati
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Ireland
| | - Conor T Buckley
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Ireland
| | - Daniel J Kelly
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin and the Royal College of Surgeons in Ireland, Ireland
| |
Collapse
|
18
|
Sheehy EJ, Mesallati T, Kelly L, Vinardell T, Buckley CT, Kelly DJ. Tissue Engineering Whole Bones Through Endochondral Ossification: Regenerating the Distal Phalanx. Biores Open Access 2015; 4:229-41. [PMID: 26309799 PMCID: PMC4540120 DOI: 10.1089/biores.2015.0014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Novel strategies are urgently required to facilitate regeneration of entire bones lost due to trauma or disease. In this study, we present a novel framework for the regeneration of whole bones by tissue engineering anatomically shaped hypertrophic cartilaginous grafts in vitro that subsequently drive endochondral bone formation in vivo. To realize this, we first fabricated molds from digitized images to generate mesenchymal stem cell-laden alginate hydrogels in the shape of different bones (the temporomandibular joint [TMJ] condyle and the distal phalanx). These constructs could be stimulated in vitro to generate anatomically shaped hypertrophic cartilaginous tissues that had begun to calcify around their periphery. Constructs were then formed into the shape of the distal phalanx to create the hypertrophic precursor of the osseous component of an engineered long bone. A layer of cartilage engineered through self-assembly of chondrocytes served as the articular surface of these constructs. Following chondrogenic priming and subcutaneous implantation, the hypertrophic phase of the engineered phalanx underwent endochondral ossification, leading to the generation of a vascularized bone integrated with a covering layer of stable articular cartilage. Furthermore, spatial bone deposition within the construct could be modulated by altering the architecture of the osseous component before implantation. These findings open up new horizons to whole limb regeneration by recapitulating key aspects of normal bone development.
Collapse
Affiliation(s)
- Eamon J. Sheehy
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Tariq Mesallati
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Lara Kelly
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Tatiana Vinardell
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Conor T. Buckley
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Daniel J. Kelly
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
19
|
Madeira C, Santhagunam A, Salgueiro JB, Cabral JM. Advanced cell therapies for articular cartilage regeneration. Trends Biotechnol 2015; 33:35-42. [DOI: 10.1016/j.tibtech.2014.11.003] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 09/29/2014] [Accepted: 11/07/2014] [Indexed: 01/25/2023]
|
20
|
Liu Y, Buckley CT, Almeida HV, Mulhall KJ, Kelly DJ. Infrapatellar fat pad-derived stem cells maintain their chondrogenic capacity in disease and can be used to engineer cartilaginous grafts of clinically relevant dimensions. Tissue Eng Part A 2014; 20:3050-62. [PMID: 24785365 PMCID: PMC4229863 DOI: 10.1089/ten.tea.2014.0035] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 04/25/2014] [Indexed: 12/27/2022] Open
Abstract
A therapy for regenerating large cartilaginous lesions within the articular surface of osteoarthritic joints remains elusive. While tissue engineering strategies such as matrix-assisted autologous chondrocyte implantation can be used in the repair of focal cartilage defects, extending such approaches to the treatment of osteoarthritis will require a number of scientific and technical challenges to be overcome. These include the identification of an abundant source of chondroprogenitor cells that maintain their chondrogenic capacity in disease, as well as the development of novel approaches to engineer scalable cartilaginous grafts that could be used to resurface large areas of damaged joints. In this study, it is first demonstrated that infrapatellar fat pad-derived stem cells (FPSCs) isolated from osteoarthritic (OA) donors possess a comparable chondrogenic capacity to FPSCs isolated from patients undergoing ligament reconstruction. In a further validation of their functionality, we also demonstrate that FPSCs from OA donors respond to the application of physiological levels of cyclic hydrostatic pressure by increasing aggrecan gene expression and the production of sulfated glycosaminoglycans. We next explored whether cartilaginous grafts could be engineered with diseased human FPSCs using a self-assembly or scaffold-free approach. After examining a range of culture conditions, it was found that continuous supplementation with both transforming growth factor-β3 (TGF-β3) and bone morphogenic protein-6 (BMP-6) promoted the development of tissues rich in proteoglycans and type II collagen. The final phase of the study sought to scale-up this approach to engineer cartilaginous grafts of clinically relevant dimensions (≥2 cm in diameter) by assembling FPSCs onto electrospun PLLA fiber membranes. Over 6 weeks in culture, it was possible to generate robust, flexible cartilage-like grafts of scale, opening up the possibility that tissues engineered using FPSCs derived from OA patients could potentially be used to resurface large areas of joint surfaces damaged by trauma or disease.
Collapse
Affiliation(s)
- Yurong Liu
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Sports Surgery Clinic, Dublin, Ireland
| | - Conor Timothy Buckley
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Henrique V. Almeida
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | | | - Daniel John Kelly
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
21
|
Mesallati T, Buckley CT, Kelly DJ. Engineering articular cartilage-like grafts by self-assembly of infrapatellar fat pad-derived stem cells. Biotechnol Bioeng 2014; 111:1686-98. [DOI: 10.1002/bit.25213] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Tariq Mesallati
- Trinity Centre for Bioengineering; Trinity Biomedical Sciences Institute; Trinity College Dublin; Dublin Ireland
- Department of Mechanical and Manufacturing Engineering; School of Engineering; Trinity College Dublin; Dublin Ireland
| | - Conor T. Buckley
- Trinity Centre for Bioengineering; Trinity Biomedical Sciences Institute; Trinity College Dublin; Dublin Ireland
- Department of Mechanical and Manufacturing Engineering; School of Engineering; Trinity College Dublin; Dublin Ireland
| | - Daniel J. Kelly
- Trinity Centre for Bioengineering; Trinity Biomedical Sciences Institute; Trinity College Dublin; Dublin Ireland
- Department of Mechanical and Manufacturing Engineering; School of Engineering; Trinity College Dublin; Dublin Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER); Trinity College Dublin; Dublin Ireland
| |
Collapse
|