1
|
Shi F, Duan K, Yang Z, Liu Y, Weng J. Improved cell seeding efficiency and cell distribution in porous hydroxyapatite scaffolds by semi-dynamic method. Cell Tissue Bank 2021; 23:313-324. [PMID: 34251541 DOI: 10.1007/s10561-021-09945-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/28/2021] [Indexed: 11/26/2022]
Abstract
Tissue engineering is a promising technique for the repair of bone defects. An efficient and homogeneous distribution of cell seeding into scaffold is a crucial but challenging step in the technique. Murine bone marrow mesenchymal stem cells were seeded into porous hydroxyapatite scaffolds of two morphologies by three methods: static seeding, semi-dynamic seeding, or dynamic perfusion seeding. Seeding efficiency, survival, distribution, and proliferation were quantitatively evaluated. To investigate the performance of the three seeding methods for larger/thicker scaffolds as well as batch seeding of numerous scaffolds, three scaffolds were stacked to form assemblies, and seeding efficiencies and cell distribution were analyzed. The semi-dynamic seeding and static seeding methods produced significantly higher seeding efficiencies, vitalities, and proliferation than did the dynamic perfusion seeding. On the other hand, the semi-dynamic seeding and dynamic perfusion seeding methods resulted in more homogeneous cell distribution than did the static seeding. For stacked scaffold assemblies, the semi-dynamic seeding method also created superior seeding efficiency and longitudinal cell distribution homogeneity. The semi-dynamic seeding method combines the high seeding efficiency of static seeding and satisfactory distribution homogeneity of dynamic seeding while circumventing their disadvantages. It may contribute to improved outcomes of bone tissue engineering.
Collapse
Affiliation(s)
- Feng Shi
- Collaboration and Innovation Center of Tissue Repair Material Engineering Technology, China West Normal University, Nanchong, 637009, Sichuan, China
- College of Life Science, China West Normal University, Nanchong, 637009, Sichuan, China
| | - Ke Duan
- Sichuan Provincial Laboratory of Orthopaedic Engineering, Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Zaijun Yang
- Collaboration and Innovation Center of Tissue Repair Material Engineering Technology, China West Normal University, Nanchong, 637009, Sichuan, China
- College of Life Science, China West Normal University, Nanchong, 637009, Sichuan, China
| | - Yumei Liu
- Collaboration and Innovation Center of Tissue Repair Material Engineering Technology, China West Normal University, Nanchong, 637009, Sichuan, China.
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, Sichuan, China.
| | - Jie Weng
- China Key Laboratory of Advanced Technologies of Materials, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
| |
Collapse
|
2
|
Crowley C, Butler CR, Camilli C, Hynds RE, Kolluri KK, Janes SM, De Coppi P, Urbani L. Non-Invasive Longitudinal Bioluminescence Imaging of Human Mesoangioblasts in Bioengineered Esophagi. Tissue Eng Part C Methods 2020; 25:103-113. [PMID: 30648471 PMCID: PMC6389770 DOI: 10.1089/ten.tec.2018.0351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Esophageal engineering aims to create replacement solutions by generating hollow organs using a combination of cells, scaffolds, and regeneration-stimulating factors. Currently, the fate of cells on tissue-engineered grafts is generally determined retrospectively by histological analyses. Unfortunately, quality-controlled cell seeding protocols for application in human patients are not standard practice. As such, the field requires simple, fast, and reliable techniques for non-invasive, highly specific cell tracking. Here, we show that bioluminescence imaging (BLI) is a suitable method to track human mesoangioblast seeding of an esophageal tubular construct at every stage of the preclinical bioengineering pipeline. In particular, validation of BLI as longitudinal quantitative assessment of cell density, proliferation, seeding efficiency, bioreactor culture, and cell survival upon implantation in vivo was performed against standard methods in 2D cultures and in 3D decellularized esophageal scaffolds. The technique is simple, non-invasive, and provides information on mesoangioblast distribution over entire scaffolds. Bioluminescence is an invaluable tool in the development of complex bioartificial organs and can assist in the development of standardized cell seeding protocols, with the ability to track cells from bioreactor through to implantation.
Collapse
Affiliation(s)
- Claire Crowley
- 1 Stem Cells and Regenerative Medicine Section, UCL Institute of Child Health and Great Ormond Street Children's Hospital, University College London, London, United Kingdom
| | - Colin R Butler
- 1 Stem Cells and Regenerative Medicine Section, UCL Institute of Child Health and Great Ormond Street Children's Hospital, University College London, London, United Kingdom.,2 Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Carlotta Camilli
- 1 Stem Cells and Regenerative Medicine Section, UCL Institute of Child Health and Great Ormond Street Children's Hospital, University College London, London, United Kingdom
| | - Robert E Hynds
- 2 Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Krishna K Kolluri
- 2 Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Sam M Janes
- 2 Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Paolo De Coppi
- 1 Stem Cells and Regenerative Medicine Section, UCL Institute of Child Health and Great Ormond Street Children's Hospital, University College London, London, United Kingdom
| | - Luca Urbani
- 1 Stem Cells and Regenerative Medicine Section, UCL Institute of Child Health and Great Ormond Street Children's Hospital, University College London, London, United Kingdom.,3 Institute of Hepatology London, Foundation for Liver Research, London, United Kingdom
| |
Collapse
|
3
|
Ahmed S, Chauhan VM, Ghaemmaghami AM, Aylott JW. New generation of bioreactors that advance extracellular matrix modelling and tissue engineering. Biotechnol Lett 2019; 41:1-25. [PMID: 30368691 PMCID: PMC6313369 DOI: 10.1007/s10529-018-2611-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/26/2018] [Indexed: 12/12/2022]
Abstract
Bioreactors hold a lot of promise for tissue engineering and regenerative medicine applications. They have multiple uses including cell cultivation for therapeutic production and for in vitro organ modelling to provide a more physiologically relevant environment for cultures compared to conventional static conditions. Bioreactors are often used in combination with scaffolds as the nutrient flow can enhance oxygen and diffusion throughout the 3D constructs to prevent the formation of necrotic cores. A variety of scaffolds have been fabricated to achieve a structural architecture that mimic native extracellular matrix. Future developments of in vitro models will incorporate the ability to non-invasively monitor the cellular microenvironment to enhance the understanding of in vitro conditions. This review details current advancements in bioreactor and scaffold systems and provides insight on how in vitro models can be augmented for future biomedical applications.
Collapse
Affiliation(s)
- Shehnaz Ahmed
- School of Pharmacy, University of Nottingham, Boots Sciences Building, University Park, Nottingham, UK
| | - Veeren M. Chauhan
- School of Pharmacy, University of Nottingham, Boots Sciences Building, University Park, Nottingham, UK
| | - Amir M. Ghaemmaghami
- School of Life Sciences, University of Nottingham, Life Sciences Building, University Park, Nottingham, NG7 2RD UK
| | - Jonathan W. Aylott
- School of Pharmacy, University of Nottingham, Boots Sciences Building, University Park, Nottingham, UK
| |
Collapse
|
4
|
Williams DF. * A Paradigm for the Evaluation of Tissue-Engineering Biomaterials and Templates. Tissue Eng Part C Methods 2017; 23:926-937. [PMID: 28762883 DOI: 10.1089/ten.tec.2017.0181] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Procedures for the evaluation of tissue-engineering processes, including those used for the testing of the relevant biomaterials, have not been developed in a logical manner. This perspectives paper discusses the limitations of testing regimes and recommends a very different approach. The main emphasis is on the existing methods for assessing the biological safety of these biomaterials, which, it is suggested, are irrelevant for evaluating materials that are intended to facilitate the generation of new tissue. An algorithm is proposed that sets out the pathway from materials design and characterization through to the production of a file that sets out full biocompatibility, functionality, and tissue incorporation data that are suitable for regulatory consideration for first-in-man experiences. Central to this algorithm is the choice of animal models and the real-time monitoring of the implanted construct performance.
Collapse
Affiliation(s)
- David F Williams
- Wake Forest Institute of Regenerative Medicine , Winston Salem, North Carolina
| |
Collapse
|