1
|
Sung JH. Effective and economical cell therapy for hair regeneration. Biomed Pharmacother 2023; 157:113988. [PMID: 36370520 DOI: 10.1016/j.biopha.2022.113988] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/01/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
We reviewed and summarized the latest reports on the characteristics of stem cells and follicular cells that are under development for hair loss treatment. Compared with conventional medicine, cell therapy could be effective in the long term with a single treatment while having mild adverse effects. Adipose-derived stem cells (ASCs) have the advantages of easy access and large isolation amount compared with dermal papilla cells (DPCs) and dermal sheath cup cells (DSCs), and promote hair growth through the paracrine effect. ASCs have a poor potential in hair neogenesis, therefore, methods to enhance trichogenecity of ASCs should be developed. DSCs can be isolated from the peribulbar dermal sheath cup, while having immune tolerance, and hair inductivity. Therefore, DSCs were first developed and finished the phase II clinical trial; however, the hair growth was not satisfactory. Considering that a single injection of DSCs is effective for at least 9 months in the clinical setting, they can be an alternative therapy for hair regeneration. Though DPCs are not yet studied in clinical trials, we should pay attention to DPCs, as hair loss is associated with gradual reduction of DPCs and DP cell numbers fluctuate over the hair cycle. DPCs could make new hair follicles with epidermal cells, and have an immunomodulatory function to enable allogeneic transplantation. In addition, we can expand large quantities of DPCs with hair inductivity using spheroid culture, hypoxia condition, and growth factor supplement. 'Off-the-shelf' DPC therapy could be effective and economical, and therefore promising for hair regeneration.
Collapse
Affiliation(s)
- Jong-Hyuk Sung
- Epi Biotech Co., Ltd., Incheon, South Korea; College of Pharmacy, Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea.
| |
Collapse
|
2
|
Rajendran RL, Gangadaran P, Kwack MH, Oh JM, Hong CM, Sung YK, Lee J, Ahn BC. Application of extracellular vesicles from mesenchymal stem cells promotes hair growth by regulating human dermal cells and follicles. World J Stem Cells 2022; 14:527-538. [PMID: 36157528 PMCID: PMC9350621 DOI: 10.4252/wjsc.v14.i7.527] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/19/2022] [Accepted: 06/24/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Dermal papillae (DP) and outer root sheath (ORS) cells play important roles in hair growth and regeneration by regulating the activity of hair follicle (HF) cells.
AIM To investigate the effects of human mesenchymal stem cell-derived extracellular vesicles (hMSC-EVs) on DP and ORS cells as well as HFs. EVs are known to regulate various cellular functions. However, the effects of hMSC-EVs on hair growth, particularly on human-derived HF cells (DP and ORS cells), and the possible mechanisms underlying these effects are unknown.
METHODS hMSC-EVs were isolated and characterized using transmission electron microscopy, nanoparticle tracking analysis, western blotting, and flow cytometry. The activation of DP and ORS cells was analyzed using cellular proliferation, migration, western blotting, and real-time polymerase chain reaction. HF growth was evaluated ex vivo using human HFs.
RESULTS Wnt3a is present in a class of hMSC-EVs and associated with the EV membrane. hMSC-EVs promote the proliferation of DP and ORS cells. Moreover, they translocate β-catenin into the nucleus of DP cells by increasing the expression of β-catenin target transcription factors (Axin2, EP2 and LEF1) in DP cells. Treatment with hMSC-EVs also promoted the migration of ORS cells and enhanced the expression of keratin (K) differentiation markers (K6, K16, K17, and K75) in ORS cells. Furthermore, treatment with hMSC-EVs increases hair shaft elongation in cultured human HFs.
CONCLUSION These findings suggest that hMSC-EVs are potential candidates for further preclinical and clinical studies on hair loss treatment.
Collapse
Affiliation(s)
- Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| | - Mi Hee Kwack
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| | - Ji Min Oh
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu 41944, South Korea
| | - Young Kwan Sung
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| | - Jaetae Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu 41944, South Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu 41944, South Korea
| |
Collapse
|
3
|
Abreu CM, Marques AP. Recreation of a hair follicle regenerative microenvironment: Successes and pitfalls. Bioeng Transl Med 2022; 7:e10235. [PMID: 35079623 PMCID: PMC8780054 DOI: 10.1002/btm2.10235] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022] Open
Abstract
The hair follicle (HF) is an exquisite skin appendage endowed with cyclical regenerative capacity; however, de novo follicle formation does not naturally occur. Consequently, patients suffering from extensive skin damage or hair loss are deprived of the HF critical physiological and/or aesthetic functions, severally compromising skin function and the individual's psychosocial well-being. Translation of regenerative strategies has been prevented by the loss of trichogenic capacity that relevant cell populations undergo in culture and by the lack of suitable human-based in vitro testing platforms. Here, we provide a comprehensive overview of the major difficulties associated with HF regeneration and the approaches used to overcome these drawbacks. We describe key cellular requirements and discuss the importance of the HF extracellular matrix and associated signaling for HF regeneration. Finally, we summarize the strategies proposed so far to bioengineer human HF or hair-bearing skin models and disclose future trends for the field.
Collapse
Affiliation(s)
- Carla M. Abreu
- 3B's Research Group, I3Bs ‐ Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineAvePark–Parque de Ciência e Tecnologia, University of MinhoGuimarãesPortugal
- ICVS/3B's–PT Government Associate LaboratoryGuimarãesPortugal
| | - Alexandra P. Marques
- 3B's Research Group, I3Bs ‐ Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineAvePark–Parque de Ciência e Tecnologia, University of MinhoGuimarãesPortugal
- ICVS/3B's–PT Government Associate LaboratoryGuimarãesPortugal
| |
Collapse
|
4
|
Abreu CM, Pirraco RP, Reis RL, Cerqueira MT, Marques AP. Interfollicular epidermal stem-like cells for the recreation of the hair follicle epithelial compartment. Stem Cell Res Ther 2021; 12:62. [PMID: 33451331 PMCID: PMC7811263 DOI: 10.1186/s13287-020-02104-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/14/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hair follicle (HF) development and growth are dependent on epithelial-mesenchymal interactions (EMIs). Dermal papilla (DP) cells are recognized as the key inductive mesenchymal player, but the ideal source of receptive keratinocytes for human HF regeneration is yet to be defined. We herein investigated whether human interfollicular epidermal keratinocytes with stem-like features (EpSlKCs), characterized by a α6bri/CD71dim expression, can replace human hair follicular keratinocytes (HHFKCs) for the recreation of the HF epithelium and respective EMIs. METHODS The α6bri/CD71dim cellular fraction was selected from the whole interfollicular keratinocyte population through fluorescence-activated cell sorting and directly compared with follicular keratinocytes in terms of their proliferative capacity and phenotype. The crosstalk with DP cells was studied in an indirect co-culture system, and EpSlKC hair forming capacity tested in a hair reconstitution assay when combined with DP cells. RESULTS EpSlKCs exhibited a phenotypic profile similar to follicular keratinocytes and were capable of increasing DP cell proliferation and, for short co-culture times, the number of alkaline phosphatase-active cells, suggesting an improvement of their inductivity. Moreover, the recreation of immature HFs and sebaceous glands was observed after EpSlKC and DP cell co-grafting in nude mice. CONCLUSIONS Our results suggest that EpSlKCs are akin to follicular keratinocytes and can crosstalk with DP cells, contributing to HF morphogenesis in vivo, thus representing an attractive epithelial cell source for hair regeneration strategies.
Collapse
Affiliation(s)
- Carla M Abreu
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rogério P Pirraco
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Mariana T Cerqueira
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alexandra P Marques
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
5
|
Jang S, Ohn J, Kang BM, Park M, Kim KH, Kwon O. "Two-Cell Assemblage" Assay: A Simple in vitro Method for Screening Hair Growth-Promoting Compounds. Front Cell Dev Biol 2020; 8:581528. [PMID: 33330459 PMCID: PMC7732514 DOI: 10.3389/fcell.2020.581528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/30/2020] [Indexed: 11/13/2022] Open
Abstract
Alopecia arises due to inadequate hair follicle (HF) stem cell activation or proliferation, resulting in prolongation of the telogen phase of the hair cycle. Increasing therapeutic and cosmetic demand for alleviating alopecia has driven research toward the discovery or synthesis of novel compounds that can promote hair growth by inducing HF stem cell activation or proliferation and initiating the anagen phase. Although several methods for evaluating the hair growth-promoting effects of candidate compounds are being used, most of these methods are difficult to use for large scale simultaneous screening of various compounds. Herein, we introduce a simple and reliable in vitro assay for the simultaneous screening of the hair growth-promoting effects of candidate compounds on a large scale. In this study, we first established a 3D co-culture system of human dermal papilla (hDP) cells and human outer root sheath (hORS) cells in an ultra-low attachment 96-well plate, where the two cell types constituted a polar elongated structure, named "two-cell assemblage (TCA)." We observed that the long axis length of the TCA gradually increased for 5 days, maintaining biological functional integrity as reflected by the increased expression levels of hair growth-associated genes after treatment with hair growth-promoting molecules. Interestingly, the elongation of the TCA was more prominent following treatment with the hair growth-promoting molecules (which occurred in a dose-dependent manner), compared to the control group (p < 0.05). Accordingly, we set the long axis length of the TCA as an endpoint of this assay, using a micro confocal high-content imaging system to measure the length, which can provide reproducible and reliable results in an adequate timescale. The advantages of this assay are: (i) it is physiologically and practically advantageous as it uses 3D cultured two-type human cells which are easily available; (ii) it is simple as it uses length as the only endpoint; and (iii) it is a high throughput system, which screens various compounds simultaneously. In conclusion, the "TCA" assay could serve as an easy and reliable method to validate the hair growth-promoting effect of a large volume of library molecules.
Collapse
Affiliation(s)
- Sunhyae Jang
- Laboratory of Cutaneous Aging and Hair Research, Clinical Research Institute, Seoul National University Hospital, Seoul, South Korea.,Institute of Human Environment Interface Biology, Seoul National University, Seoul, South Korea.,Department of Dermatology, Seoul National University College of Medicine, Seoul, South Korea
| | - Jungyoon Ohn
- Laboratory of Cutaneous Aging and Hair Research, Clinical Research Institute, Seoul National University Hospital, Seoul, South Korea.,Institute of Human Environment Interface Biology, Seoul National University, Seoul, South Korea.,Department of Dermatology, Seoul National University College of Medicine, Seoul, South Korea
| | - Bo Mi Kang
- Laboratory of Cutaneous Aging and Hair Research, Clinical Research Institute, Seoul National University Hospital, Seoul, South Korea.,Institute of Human Environment Interface Biology, Seoul National University, Seoul, South Korea.,Department of Dermatology, Seoul National University College of Medicine, Seoul, South Korea
| | - Minji Park
- Laboratory of Cutaneous Aging and Hair Research, Clinical Research Institute, Seoul National University Hospital, Seoul, South Korea.,Institute of Human Environment Interface Biology, Seoul National University, Seoul, South Korea.,Department of Dermatology, Seoul National University College of Medicine, Seoul, South Korea
| | - Kyu Han Kim
- Laboratory of Cutaneous Aging and Hair Research, Clinical Research Institute, Seoul National University Hospital, Seoul, South Korea.,Institute of Human Environment Interface Biology, Seoul National University, Seoul, South Korea.,Department of Dermatology, Seoul National University College of Medicine, Seoul, South Korea
| | - Ohsang Kwon
- Laboratory of Cutaneous Aging and Hair Research, Clinical Research Institute, Seoul National University Hospital, Seoul, South Korea.,Institute of Human Environment Interface Biology, Seoul National University, Seoul, South Korea.,Department of Dermatology, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
6
|
Bak SS, Park JM, Oh JW, Kim JC, Kim MK, Sung YK. Knockdown of FOXA2 Impairs Hair-Inductive Activity of Cultured Human Follicular Keratinocytes. Front Cell Dev Biol 2020; 8:575382. [PMID: 33117803 PMCID: PMC7578224 DOI: 10.3389/fcell.2020.575382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/17/2020] [Indexed: 01/12/2023] Open
Abstract
Reciprocal interactions between hair-inductive dermal cells and epidermal cells are essential for de novo genesis of hair follicles. Recent studies have shown that outer root sheath (ORS) follicular keratinocytes can be expanded in vitro, but the cultured cells often lose receptivity to hair-inducing dermal signals. In this study, we first investigated whether the hair-inductive activity (trichogenicity) of cultured human ORS follicular keratinocytes was correlated with the cultivation period. ORS follicular keratinocytes from the scalp were cultured for 3, 4, 5, or 6 weeks and were then implanted into nude mice along with freshly isolated neonatal mouse dermal cells. We observed that the trichogenicity of the implanted ORS cells was inversely correlated with their cultivation period. These initial findings prompted us to investigate the differentially expressed genes between the short-term (20 days) and long-term (42 days) cultured ORS cells, trichogenic and non-trichogenic, respectively, by microarray analysis. We found that forkhead box protein A2 (FOXA2) was the most up-regulated transcription factor in the trichogenic ORS cells. Thus, we investigated whether the trichogenicity of the cells was affected by FOXA2 expression. We found a significant decrease in the number of induced hair follicles when the ORS cells were transfected with a FOXA2 small interfering RNA versus control small interfering RNA. Taken together, our data strongly suggest that FOXA2 significantly influences the trichogenicity of human ORS cells.
Collapse
Affiliation(s)
- Soon-Sun Bak
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Jung Min Park
- Department of Anatomy, School of Medicine, Kyungpook National University, Daegu, South Korea.,Clinical Omics Institute, Kyungpook National University, Daegu, South Korea
| | - Ji Won Oh
- Department of Anatomy, School of Medicine, Kyungpook National University, Daegu, South Korea.,Clinical Omics Institute, Kyungpook National University, Daegu, South Korea.,Hair Transplantation Center, Kyungpook National University Hospital, Daegu, South Korea
| | - Jung Chul Kim
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, South Korea.,Hair Transplantation Center, Kyungpook National University Hospital, Daegu, South Korea
| | - Moon Kyu Kim
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, South Korea.,Hair Transplantation Center, Kyungpook National University Hospital, Daegu, South Korea
| | - Young Kwan Sung
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
7
|
Klingenstein S, Klingenstein M, Kleger A, Liebau S. From Hair to iPSCs-A Guide on How to Reprogram Keratinocytes and Why. ACTA ACUST UNITED AC 2020; 55:e121. [PMID: 32956569 DOI: 10.1002/cpsc.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Keratinocytes, as a primary somatic cell source, offer exceptional advantages compared to fibroblasts, which are commonly used for reprogramming. Keratinocytes can beat fibroblasts in reprogramming efficiency and reprogramming time and, in addition, can be easily and non-invasively harvested from human hair roots. However, there is still much to know about acquiring keratinocytes and maintaining them in cell culture. In this article, we want to offer readers the profound knowledge that we have gained since our initial use of keratinocytes for reprogramming more than 10 years ago. Here, all hints and tricks, from plucking the hair roots to growing and maintaining keratinocytes, are described in detail. Additionally, an overview of the currently used reprogramming methods, viral and non-viral, is included, with a special focus on their applicability to keratinocytes. This overview is intended to provide a brief but comprehensive insight into the field of keratinocytes and their use for reprogramming into induced pluripotent stem cells (iPSCs). © 2020 The Authors.
Collapse
Affiliation(s)
- Stefanie Klingenstein
- Institute of Neuroanatomy & Developmental Biology, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Moritz Klingenstein
- Institute of Neuroanatomy & Developmental Biology, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Alexander Kleger
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Stefan Liebau
- Institute of Neuroanatomy & Developmental Biology, Eberhard-Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
8
|
Zhang Q, Wen J, Liu C, Ma C, Bai F, Leng X, Chen Z, Xie Z, Mi J, Wu X. Early-stage bilayer tissue-engineered skin substitute formed by adult skin progenitor cells produces an improved skin structure in vivo. Stem Cell Res Ther 2020; 11:407. [PMID: 32948249 PMCID: PMC7501683 DOI: 10.1186/s13287-020-01924-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/27/2020] [Accepted: 09/03/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND In recent years, significant progress has been made in developing highly complex tissue-engineered skin substitutes (TESSs) for wound healing. However, the lack of skin appendages, such as hair follicles and sweat glands, and the time required, are two major limitations that hinder its broad application in the clinic. Therefore, it is necessary to develop a competent TESS in a short time to meet the needs for clinical applications. METHODS Adult scalp dermal progenitor cells and epidermal stem cells together with type I collagen as a scaffold material were used to reconstitute bilayer TESSs in vitro. TESSs at 4 different culture times (5, 9, 14, and 21 days) were collected and then grafted onto full-thickness wounds created in the dorsal skin of athymic nude/nude mice. The skin specimens formed from grafted TESSs were collected 4 and 8 weeks later and then evaluated for their structure, cell organization, differentiation status, vascularization, and formation of appendages by histological analysis, immunohistochemistry, and immunofluorescent staining. RESULTS Early-stage bilayer TESSs after transplantation had a better efficiency of grafting. A normal structure of stratified epidermis containing multiple differentiated layers of keratinocytes was formed in all grafts from both early-stage and late-stage TESSs, but higher levels of the proliferation marker Ki-67 and the epidermal progenitor marker p63 were found in the epidermis formed from early-stage TESSs. Interestingly, the transplantation of early-stage TESSs produced a thicker dermis that contained more vimentin- and CD31-positive cells, and importantly, hair follicle formation was only observed in the skin grafted from early-stage TESSs. Finally, early-stage TESSs expressed high levels of p63 but had low expression levels of genes involved in the activation of the apoptotic pathway compared to the late-stage TESSs in vitro. CONCLUSIONS Early-stage bilayer TESSs reconstituted from skin progenitor cells contained more competent cells with less activation of the apoptotic pathway and produced a better skin structure, including hair follicles associated with sebaceous glands, after transplantation, which should potentially provide better wound healing when applied in the clinic in the future.
Collapse
Affiliation(s)
- Qun Zhang
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, Shandong, China
| | - Jie Wen
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, Shandong, China
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, China
| | - Chang Liu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, Shandong, China
| | - Chuan Ma
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, Shandong, China
| | - Fuxiang Bai
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, Shandong, China
| | - Xue Leng
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, Shandong, China
| | - Zhihong Chen
- Qilu Children's Hospital of Shandong University, Jinan, China
| | - Zhiwei Xie
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, Shandong, China
- Department of Stomatology, Shengli Oilfield Center Hospital, Dongying, Shandong, China
| | - Jun Mi
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, Shandong, China
| | - Xunwei Wu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, Shandong, China.
| |
Collapse
|
9
|
Bak SS, Kwack MH, Shin HS, Kim JC, Kim MK, Sung YK. Restoration of hair-inductive activity of cultured human follicular keratinocytes by co-culturing with dermal papilla cells. Biochem Biophys Res Commun 2018; 505:360-364. [PMID: 30253942 DOI: 10.1016/j.bbrc.2018.09.125] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 09/20/2018] [Indexed: 11/15/2022]
Abstract
Hair follicle outer root sheath (ORS) cells can be expanded in vitro, but often lose receptivity to hair-inducing dermal signals. Recent studies have shown hair-inductive activity (trichogenicity) can be restored in rat ORS cells expanded with a fibroblast feeder by co-culturing with rat vibrissae dermal papilla (DP) cells. In this study, we investigated whether the trichogenicity of human ORS cells can be restored by co-culturing with human DP cells. ORS cells from human scalp hair follicles were cultured independently or with DP cells for 5 days and implanted into nude mice alongside freshly isolated neonatal mouse dermal cells. Although there was no hair induction when monocultured ORS cells were implanted, it was observed in co-cultured ORS cells. We also observed differential regulation of a number of genes in ORS cells co-cultured with DP cells compared to monocultured ORS cells as examined by microarray. Taken together, our data strongly suggest that human DP cells restore the trichogenicity of co-cultured ORS cells by influencing ORS gene expression through paracrine factors.
Collapse
Affiliation(s)
- Soon Sun Bak
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Mi Hee Kwack
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Hyun Su Shin
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Jung Chul Kim
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Moon Kyu Kim
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Young Kwan Sung
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, South Korea.
| |
Collapse
|
10
|
Gupta AC, Chawla S, Hegde A, Singh D, Bandyopadhyay B, Lakshmanan CC, Kalsi G, Ghosh S. Establishment of an in vitro organoid model of dermal papilla of human hair follicle. J Cell Physiol 2018; 233:9015-9030. [DOI: 10.1002/jcp.26853] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/10/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Abhishak C. Gupta
- Department of Textile Technology, Regenerative Engineering Laboratory Indian Institute of Technology Delhi India
| | - Shikha Chawla
- Department of Textile Technology, Regenerative Engineering Laboratory Indian Institute of Technology Delhi India
| | - Ashok Hegde
- ITC Life Sciences and Technology Centre, ITC Ltd. Bangalore India
| | - Divya Singh
- Department of Textile Technology, Regenerative Engineering Laboratory Indian Institute of Technology Delhi India
| | | | | | - Gurpreet Kalsi
- ITC Life Sciences and Technology Centre, ITC Ltd. Bangalore India
| | - Sourabh Ghosh
- Department of Textile Technology, Regenerative Engineering Laboratory Indian Institute of Technology Delhi India
| |
Collapse
|
11
|
Fan SMY, Tsai CF, Yen CM, Lin MH, Wang WH, Chan CC, Chen CL, Phua KKL, Pan SH, Plikus MV, Yu SL, Chen YJ, Lin SJ. Inducing hair follicle neogenesis with secreted proteins enriched in embryonic skin. Biomaterials 2018; 167:121-131. [PMID: 29567388 PMCID: PMC6050066 DOI: 10.1016/j.biomaterials.2018.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/22/2018] [Accepted: 03/02/2018] [Indexed: 12/17/2022]
Abstract
Organ development is a sophisticated process of self-organization. However, despite growing understanding of the developmental mechanisms, little is known about how to reactivate them postnatally for regeneration. We found that treatment of adult non-hair fibroblasts with cell-free extract from embryonic skin conferred upon them the competency to regenerate hair follicles. Proteomics analysis identified three secreted proteins enriched in the embryonic skin, apolipoprotein-A1, galectin-1 and lumican that together were essential and sufficient to induce new hair follicles. These 3 proteins show a stage-specific co-enrichment in the perifolliculogenetic embryonic dermis. Mechanistically, exposure to embryonic skin extract or to the combination of the 3 proteins altered the gene expression to an inductive hair follicle dermal papilla fibroblast-like profile and activated Igf and Wnt signaling, which are crucial for the regeneration process. Therefore, a cocktail of organ-specific extracellular proteins from the embryonic environment can render adult cells competent to re-engage in developmental interactions for organ neogenesis. Identification of factors that recreate the extracellular context of respective developing tissues can become an important strategy to promote regeneration in adult organs.
Collapse
Affiliation(s)
- Sabrina Mai-Yi Fan
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Chia-Feng Tsai
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan; Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Chien-Mei Yen
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan; Department of Dermatology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Miao-Hsia Lin
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Wei-Hung Wang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Chih-Chieh Chan
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan; Department of Dermatology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Chih-Lung Chen
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan; Department of Dermatology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Kyle K L Phua
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| | - Szu-Hua Pan
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan; Doctoral Degree Program of Translational Medicine, National Taiwan University, Taipei, Taiwan; Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA
| | - Sung-Liang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan; Department of Chemistry, National Taiwan University, Taipei, Taiwan.
| | - Sung-Jan Lin
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan; Department of Dermatology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan; Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
12
|
Zhang Q, Zu T, Zhou Q, Wen J, Leng X, Wu X. The patch assay reconstitutes mature hair follicles by culture-expanded human cells. Regen Med 2017; 12:503-511. [PMID: 28749726 DOI: 10.2217/rme-2017-0017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
AIM We tested whether the a simple injection known as the patch assay could reconstitute mature hair follicles by culture-expanded human cells and explored whether the assay could reflect the trichogenicity of cultured cells. MATERIALS & METHODS Dissociated culture-expanded fetal or adult scalp dermal cells combined with foreskin keratinocytes were subcutaneously injected into the back skin of immunosuppressive mice to form the patch skin. The patches were collected and characterized and were analyzed for hair formation efficiency. RESULTS Using culture-expanded human fetal cells, the patch assay can efficiently reconstitute mature hair follicles and the efficiency of hair formation in the patch assay correlates with cell trichogenicity. CONCLUSION The patch assay has the potential for testing the trichogenicity of human cells.
Collapse
Affiliation(s)
- Qun Zhang
- Suzhou Institute of Shandong University, Building H of NUSP, 388 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu, China.,School of Stomatology, Shandong University, Jinan, Shandong China
| | - Tingjian Zu
- School of Stomatology, Shandong University, Jinan, Shandong China
| | - Qian Zhou
- School of Stomatology, Shandong University, Jinan, Shandong China
| | - Jie Wen
- School of Stomatology, Shandong University, Jinan, Shandong China
| | - Xue Leng
- School of Stomatology, Shandong University, Jinan, Shandong China
| | - Xunwei Wu
- Suzhou Institute of Shandong University, Building H of NUSP, 388 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu, China.,School of Stomatology, Shandong University, Jinan, Shandong China
| |
Collapse
|
13
|
Kizawa K, Fujimori T, Kawai T. Arachidonate 12-Lipoxygenase Inhibitors Promote S100A3 Citrullination in Cultured SW480 Cells and Isolated Hair Follicles. Biol Pharm Bull 2017; 40:516-523. [PMID: 28381806 DOI: 10.1248/bpb.b16-00954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The human hair shaft is covered with multiple scale-like cuticular layers. During the terminal differentiation stage of immature cuticular cells within the hair follicle, cysteine-rich calcium binding S100A3 protein is predominantly translated, and its arginine residues are converted to citrullines by peptidylarginine deiminases (PADI). In this study, we found several naturally occurring compounds (e.g., hinokitiol, escletin, and quercetin) elevate S100A3 citrullination in a human colorectal adenocarcinoma cell line (SW480). Selected compounds similarly promoted cuticular differentiation within isolated human hair follicles. Their promotive activities correlated with the previously reported inhibitory activities of arachidonate 12-lipoxygenase (ALOX12) in vitro. Microarray analysis revealed that ALOX12 inhibitor remarkably up-regulated heparin-binding epidermal growth factor-like growth factor (HBEGF). ALOX12 inhibitor and recombinant HBEGF similarly regulated expression of PADI genes in SW480 cells. In isolated hair follicles, arachidonic acid strongly promoted S100A3 citrullination along with elevation of HBEGF. These results suggest that ALOX12 inhibition efficiently triggers hair cuticle maturation by modulating arachidonate metabolism in concert with HBEGF.
Collapse
Affiliation(s)
- Kenji Kizawa
- Biological Science Research Laboratory, Kao Corporation
| | | | | |
Collapse
|
14
|
Li YC, Lin MW, Yen MH, Fan SMY, Wu JT, Young TH, Cheng JY, Lin SJ. Programmable Laser-Assisted Surface Microfabrication on a Poly(Vinyl Alcohol)-Coated Glass Chip with Self-Changing Cell Adhesivity for Heterotypic Cell Patterning. ACS APPLIED MATERIALS & INTERFACES 2015; 7:22322-22332. [PMID: 26393271 DOI: 10.1021/acsami.5b05978] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Organs are composed of heterotypic cells with patterned architecture that enables intercellular interaction to perform specific functions. In tissue engineering, the ability to pattern heterotypic cells into desired arrangement will allow us to model complex tissues in vitro and to create tissue equivalents for regeneration. This study was aimed at developing a method for fast heterotypic cell patterning with controllable topological manipulation on a glass chip. We found that poly(vinyl alcohol)-coated glass showed a biphasic change in adhesivity to cells in vitro: low adhesivity in the first 24 h and higher adhesivity at later hours due to increased serum protein adsorption. Combining programmable CO2 laser ablation to remove poly(vinyl alcohol) and glass, we were able to create arrays of adhesive microwells of adjustable patterns. We tested whether controllable patterns of epithelial-mesenchymal interaction could be created. When skin dermal papilla cells and fibroblasts were seeded respectively 24 h apart, we were able to pattern these two cells into aggregates of dermal papilla cells in arrays of microwells in a background of fibroblasts sheet. Seeded later, keratinocytes attached to these mesenchymal cells. Keratinocytes contacting dermal papilla cells started to differentiate toward a hair follicle fate, demonstrating patternable epithelial-mesenchymal interaction. This method allows fast adjustable heterotypic cell patterning and surface topology control and can be applied to the investigation of heterotypic cellular interaction and creation of tissue equivalent in vitro.
Collapse
Affiliation(s)
- Yi-Chen Li
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University , No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Meng-Wei Lin
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University , No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Meng-Hua Yen
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University , No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
- Research Center for Applied Sciences, Academia Sinica , Taipei 115-29, Taiwan
| | - Sabrina Mai-Yi Fan
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University , No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
| | - June-Tai Wu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University , Taipei 100, Taiwan
| | - Tai-Horng Young
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University , No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Ji-Yen Cheng
- Research Center for Applied Sciences, Academia Sinica , Taipei 115-29, Taiwan
| | - Sung-Jan Lin
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University , No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
- Department of Dermatology, National Taiwan University Hospital and College of Medicine , Taipei 100, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University , Taipei 100, Taiwan
- Molecular Imaging Center, National Taiwan University , Taipei 100, Taiwan
| |
Collapse
|