1
|
Bartolo MK, Newman S, Dandridge O, Halewood C, Accardi MA, Dini D, Amis AA. An ovine knee simulator: description and proof of concept. Front Bioeng Biotechnol 2024; 12:1410053. [PMID: 38994124 PMCID: PMC11237960 DOI: 10.3389/fbioe.2024.1410053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/05/2024] [Indexed: 07/13/2024] Open
Abstract
Aims The ovine stifle is an established model for evaluation of knee treatments, such as meniscus replacement. This study introduces a novel ovine gait simulator for pre-testing of surgical treatments prior to in vivo animal trials. Furthermore, we describe a pilot study that assessed gait kinematics and contact pressures of native ovine stifle joints and those implanted with a novel fiber-matrix reinforced polyvinyl alcohol-polyethylene glycol (PVA-PEG) hydrogel meniscus to illustrate the efficacy of the simulator. Methods The gait simulator controlled femoral flexion-extension and applied a 980N axial contact force to the distal tibia, whose movement was guided by the natural ligaments. Five right ovine stifle joints were implanted with a PVA-PEG total medial meniscus replacement, fixed to the tibia via transosseous tunnels and interference screws. Six intact and five implanted right ovine stifle joints were tested for 500 k gait cycles at 1.55 Hz. Implanted stifle joint contact pressures and kinematics in the simulator were compared to the intact group. Contact pressures were measured at 55° flexion using pressure sensitive film inserted sub-meniscally. 3D kinematics were measured optically across two 30-s captures. Results Peak contact pressures in intact stifles were 3.6 ± 1.0 MPa and 6.0 ± 2.1 MPa in the medial and lateral condyles (p < 0.05) and did not differ significantly from previous studies (p > 0.4). Medial peak implanted pressures were 4.3 ± 2.2 MPa (p > 0.4 versus intact), while lateral peak pressures (9.4 ± 0.8 MPa) were raised post medial compartment implantation (p < 0.01). The range of motion for intact joints was flexion/extension 37° ± 1°, varus/valgus 1° ± 1°, external/internal rotation 5° ± 3°, lateral/medial translation 2 ± 1 mm, anterior/posterior translation 3 ± 1 mm and distraction/compression 1 ± 1 mm. Ovine joint kinematics in the simulator did not differ significantly from published in vivo data for the intact group, and the intact and implanted groups were comparable (p > 0.01), except for in distraction-compression (p < 0.01). Conclusion These findings show correspondence of the ovine simulator kinematics with in vivo gait parameters. The efficacy of the simulator to evaluate novel treatments was demonstrated by implanting a PVA-PEG hydrogel medial meniscal replacement, which restored the medial peak contact pressures but not lateral. This novel simulator may enable future work on the development of surgical procedures, derisking subsequent work in live animals.
Collapse
Affiliation(s)
- Maria Kristina Bartolo
- Biomechanics Group, Mechanical Engineering Department, Imperial College London, London, United Kingdom
- Orthonika Ltd, London, United Kingdom
| | - Simon Newman
- Department of Surgery and Cancer, Imperial College London School of Medicine, London, United Kingdom
| | - Oliver Dandridge
- Biomechanics Group, Mechanical Engineering Department, Imperial College London, London, United Kingdom
- Orthonika Ltd, London, United Kingdom
| | - Camilla Halewood
- Department of Surgery and Cancer, Imperial College London School of Medicine, London, United Kingdom
| | | | - Daniele Dini
- Biomechanics Group, Mechanical Engineering Department, Imperial College London, London, United Kingdom
| | - Andrew A. Amis
- Biomechanics Group, Mechanical Engineering Department, Imperial College London, London, United Kingdom
| |
Collapse
|
2
|
Modina SC, Aidos L, Millar VRH, Pallaoro M, Polito U, Veronesi MC, Peretti GM, Mangiavini L, Carnevale L, Boschetti F, Abbate F, Di Giancamillo A. Postnatal morpho-functional development of a dog's meniscus. Ann Anat 2023; 250:152141. [PMID: 37499701 DOI: 10.1016/j.aanat.2023.152141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
This study evaluates the morpho-functional modifications that characterize meniscal development from neonatal to adult dogs. Even if menisci are recognized as essential structures for the knee joint, poor information is available about their morphogenesis, in particular in dog models. Menisci from a group of Dobermann Pinchers aged 0, 10, 30 days, and 4 years (T0, T10, T30, adult, respectively) were analyzed by SEM, histochemistry (Safranin O and Picro Sirius Red Staining analyzed under a polarized light microscope), immunofluorescences (collagen type I and II), biomechanical (compression) and biochemical analyses (glycosaminoglycans, GAGs, and DNA content). SEM analyses revealed that the T0 meniscus is a bulgy structure that during growth tends to flatten, firstly in the inner zone (T10) and then even in the outer zone (T30), until the achievement of the completely smooth adult final shape. These results were further supported by the histochemistry analyses in which the deposition of GAGs started from T30, and the presence of type I birefringent collagen fibers was observed from T0 to T30, while poorly refringent type III collagen fibers were observed in the adult dogs. Double immunofluorescence analyses also evidenced that the neonatal meniscus contains mainly type I collagen fibers, as well as the T10 meniscus, and demonstrated a more evident regionalization and crimping in the T30 and adult meniscus. Young's elastic modulus of the meniscus in T0 and T10 animals was lower than the T30 animals, and this last group was also lower than adult ones (T0-T10 vs T30 vs adult). Biochemical analysis confirmed that cellularity decreases over time from neonatal to adult (p < 0.01). The same decreasing trend was observed in GAGs deposition. These results may suggest that the postnatal development of canine meniscus may be related to the progressive functional locomotory development: after birth, the meniscus acquires its functionality over time, through movement, load, and growth itself.
Collapse
Affiliation(s)
- Silvia Clotilde Modina
- Department of Veterinary Medicine and Animal Science, University of Milan, Via dell'Università, 6, 26900 Lodi, Italy
| | - Lucia Aidos
- Department of Veterinary Medicine and Animal Science, University of Milan, Via dell'Università, 6, 26900 Lodi, Italy
| | | | - Margherita Pallaoro
- Department of Veterinary Medicine and Animal Science, University of Milan, Via dell'Università, 6, 26900 Lodi, Italy
| | - Umberto Polito
- Department of Veterinary Medicine and Animal Science, University of Milan, Via dell'Università, 6, 26900 Lodi, Italy
| | - Maria Cristina Veronesi
- Department of Veterinary Medicine and Animal Science, University of Milan, Via dell'Università, 6, 26900 Lodi, Italy
| | - Giuseppe Maria Peretti
- Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli, 31, 20133 Milan, Italy; IRCCS, Ospedale Galeazzi - Sant'Ambrogio, Via Cristina Belgioioso 173, 20157, Milan, Italy
| | - Laura Mangiavini
- Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli, 31, 20133 Milan, Italy; IRCCS, Ospedale Galeazzi - Sant'Ambrogio, Via Cristina Belgioioso 173, 20157, Milan, Italy
| | - Liliana Carnevale
- Department of Veterinary Medicine and Animal Science, University of Milan, Via dell'Università, 6, 26900 Lodi, Italy
| | - Federica Boschetti
- IRCCS, Ospedale Galeazzi - Sant'Ambrogio, Via Cristina Belgioioso 173, 20157, Milan, Italy; Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Polytechnic University of Milan, 20133 Milan, Italy
| | - Francesco Abbate
- Department of Veterinary Sciences, University of Messina, Polo Universitario S.S. Annunziata, 98168 Messina, Italy
| | - Alessia Di Giancamillo
- Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli, 31, 20133 Milan, Italy.
| |
Collapse
|
3
|
Gonzalez-Leon EA, Hu JC, Athanasiou KA. Yucatan Minipig Knee Meniscus Regional Biomechanics and Biochemical Structure Support its Suitability as a Large Animal Model for Translational Research. Front Bioeng Biotechnol 2022; 10:844416. [PMID: 35265605 PMCID: PMC8899164 DOI: 10.3389/fbioe.2022.844416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/03/2022] [Indexed: 11/23/2022] Open
Abstract
Knee meniscus injuries are the most frequent causes of orthopedic surgical procedures in the U.S., motivating tissue engineering attempts and the need for suitable animal models. Despite extensive use in cardiovascular research and the existence of characterization data for the menisci of farm pigs, the farm pig may not be a desirable preclinical model for the meniscus due to rapid weight gain. Minipigs are conducive to in vivo experiments due to their slower growth rate than farm pigs and similarity in weight to humans. However, characterization of minipig knee menisci is lacking. The objective of this study was to extensively characterize structural and functional properties within different regions of both medial and lateral Yucatan minipig knee menisci to inform this model’s suitability as a preclinical model for meniscal therapies. Menisci measured 23.2–24.8 mm in anteroposterior length (33–40 mm for human), 7.7–11.4 mm in width (8.3–14.8 mm for human), and 6.4–8.4 mm in peripheral height (5–7 mm for human). Per wet weight, biochemical evaluation revealed 23.9–31.3% collagen (COL; 22% for human) and 1.20–2.57% glycosaminoglycans (GAG; 0.8% for human). Also, per dry weight, pyridinoline crosslinks (PYR) were 0.12–0.16% (0.12% for human) and, when normalized to collagen content, reached as high as 1.45–1.96 ng/µg. Biomechanical testing revealed circumferential Young’s modulus of 78.4–116.2 MPa (100–300 MPa for human), circumferential ultimate tensile strength (UTS) of 18.2–25.9 MPa (12–18 MPa for human), radial Young’s modulus of 2.5–10.9 MPa (10–30 MPa for human), radial UTS of 2.5–4.2 MPa (1–4 MPa for human), aggregate modulus of 157–287 kPa (100–150 kPa for human), and shear modulus of 91–147 kPa (120 kPa for human). Anisotropy indices ranged from 11.2–49.4 and 6.3–11.2 for tensile stiffness and strength (approximately 10 for human), respectively. Regional differences in mechanical and biochemical properties within the minipig medial meniscus were observed; specifically, GAG, PYR, PYR/COL, radial stiffness, and Young’s modulus anisotropy varied by region. The posterior region of the medial meniscus exhibited the lowest radial stiffness, which is also seen in humans and corresponds to the most prevalent location for meniscal lesions. Overall, similarities between minipig and human menisci support the use of minipigs for meniscus translational research.
Collapse
|
4
|
Hart DA, Nakamura N, Shrive NG. Perspective: Challenges Presented for Regeneration of Heterogeneous Musculoskeletal Tissues that Normally Develop in Unique Biomechanical Environments. Front Bioeng Biotechnol 2021; 9:760273. [PMID: 34650964 PMCID: PMC8505961 DOI: 10.3389/fbioe.2021.760273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/13/2021] [Indexed: 11/30/2022] Open
Abstract
Perspective: Musculoskeletal (MSK) tissues such as articular cartilage, menisci, tendons, and ligaments are often injured throughout life as a consequence of accidents. Joints can also become compromised due to the presence of inflammatory diseases such as rheumatoid arthritis. Thus, there is a need to develop regenerative approaches to address such injuries to heterogeneous tissues and ones that occur in heterogeneous environments. Such injuries can compromise both the biomechanical integrity and functional capability of these tissues. Thus, there are several challenges to overcome in order to enhance success of efforts to repair and regenerate damaged MSK tissues. Challenges: 1. MSK tissues arise during development in very different biological and biomechanical environments. These early tissues serve as a template to address the biomechanical requirements evolving during growth and maturation towards skeletal maturity. Many of these tissues are heterogeneous and have transition points in their matrix. The heterogeneity of environments thus presents a challenge to replicate with regard to both the cells and the ECM. 2. Growth and maturation of musculoskeletal tissues occurs in the presence of anabolic mediators such as growth hormone and the IGF-1 family of proteins which decline with age and are low when there is a greater need for the repair and regeneration of injured or damaged tissues with advancing age. Thus, there is the challenge of re-creating an anabolic environment to enhance incorporation of implanted constructs. 3. The environments associated with injury or chronic degeneration of tissues are often catabolic or inflammatory. Thus, there is the challenge of creating a more favorable in vivo environment to facilitate the successful implantation of in vitro engineered constructs to regenerate damaged tissues. Conclusions: The goal of regenerating MSK tissues has to be to meet not only the biological requirements (components and structure) but also the heterogeneity of function (biomechanics) in vivo. Furthermore, for many of these tissues, the regenerative approach has to overcome the site of injury being influenced by catabolism/inflammation. Attempts to date using both endogenous cells, exogenous cells and scaffolds of various types have been limited in achieving long term outcomes, but progress is being made.
Collapse
Affiliation(s)
- David A Hart
- Department of Surgery, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.,Bone and Joint Health Strategic Clinical Network, Alberta Health Services, Edmonton, AB, Canada.,McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB, Canada
| | - Norimasa Nakamura
- Institute for Medical Science in Sport, Osaka Health Science University, Osaka, Japan
| | - Nigel G Shrive
- McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB, Canada.,Biomedical Engineering Graduate Program, Department of Civil Engineering, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
5
|
Wang X, Ding Y, Li H, Mo X, Wu J. Advances in electrospun scaffolds for meniscus tissue engineering and regeneration. J Biomed Mater Res B Appl Biomater 2021; 110:923-949. [PMID: 34619021 DOI: 10.1002/jbm.b.34952] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 07/14/2021] [Accepted: 09/22/2021] [Indexed: 01/14/2023]
Abstract
The meniscus plays a critical role in maintaining the homeostasis, biomechanics, and structural stability of the knee joint. Unfortunately, it is predisposed to damages either from sports-related trauma or age-related degeneration. The meniscus has an inherently limited capacity for tissue regeneration. Self-healing of injured adult menisci only occurs in the peripheral vascularized portion, while the spontaneous repair of the inner avascular region seems never happens. Repair, replacement, and regeneration of menisci through tissue engineering strategies are promising to address this problem. Recently, many scaffolds for meniscus tissue engineering have been proposed for both experimental and preclinical investigations. Electrospinning is a feasible and versatile technique to produce nano- to micro-scale fibers that mimic the microarchitecture of native extracellular matrix and is an effective approach to prepare nanofibrous scaffolds for constructing engineered meniscus. Electrospun scaffolds are reported to be capable of inducing colonization of meniscus cells by modulating local extracellular density and stimulating endogenous regeneration by driving reprogramming of meniscus wound microenvironment. Electrospun nanofibrous scaffolds with tunable mechanical properties, controllable anisotropy, and various porosities have shown promises for meniscus repair and regeneration and will undoubtedly inspire more efforts in exploring effective therapeutic approaches towards clinical applications. In this article, we review the current advances in the use of electrospun nanofibrous scaffolds for meniscus tissue engineering and repair and discuss prospects for future studies.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Key Laboratory of Science and Technology of Eco-Textile & Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Yangfan Ding
- Key Laboratory of Science and Technology of Eco-Textile & Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Haiyan Li
- Key Laboratory of Science and Technology of Eco-Textile & Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Xiumei Mo
- Key Laboratory of Science and Technology of Eco-Textile & Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Jinglei Wu
- Key Laboratory of Science and Technology of Eco-Textile & Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China.,Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Abstract
The menisci are fibrocartilaginous semilunar structures in the knee that provide load support. Injury to the meniscus alters its load sharing and biomechanical profile. Knee arthroscopy with meniscus débridement is the most common orthopaedic surgical procedure done in the United States. The current goals of meniscal surgery are to preserve native meniscal tissue and maintain structural integrity. Meniscal preservation is critical to maintain the normal mechanics and homeostasis of the knee; however, it is not always feasible because of the structure's poor blood supply and often requires removal of irreparable tissue with meniscectomy. Efforts have increasingly focused on the promotion of meniscal healing and the replacement of damaged menisci with allografts, scaffolds, meniscal implants, or substitutes. The purpose of this article was to review current and future meniscal salvage treatments such as meniscus transplant, synthetic arthroplasty, and possible bioprinted meniscus to allow patients to maintain quality of life, limit pain, and delay osteoarthritis.
Collapse
|
7
|
Bansal S, Floyd ER, Kowalski MA, Aikman E, Elrod P, Burkey K, Chahla J, LaPrade RF, Maher SA, Robinson JL, Patel JM. Meniscal repair: The current state and recent advances in augmentation. J Orthop Res 2021; 39:1368-1382. [PMID: 33751642 PMCID: PMC8249336 DOI: 10.1002/jor.25021] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/04/2021] [Accepted: 03/02/2021] [Indexed: 02/04/2023]
Abstract
Meniscal injuries represent one of the most common orthopedic injuries. The most frequent treatment is partial resection of the meniscus, or meniscectomy, which can affect joint mechanics and health. For this reason, the field has shifted gradually towards suture repair, with the intent of preservation of the tissue. "Save the Meniscus" is now a prolific theme in the field; however, meniscal repair can be challenging and ineffective in many scenarios. The objectives of this review are to present the current state of surgical management of meniscal injuries and to explore current approaches being developed to enhance meniscal repair. Through a systematic literature review, we identified meniscal tear classifications and prevalence, approaches being used to improve meniscal repair, and biological- and material-based systems being developed to promote meniscal healing. We found that biologic augmentation typically aims to improve cellular incorporation to the wound site, vascularization in the inner zones, matrix deposition, and inflammatory relief. Furthermore, materials can be used, both with and without contained biologics, to further support matrix deposition and tear integration, and novel tissue adhesives may provide the mechanical integrity that the meniscus requires. Altogether, evaluation of these approaches in relevant in vitro and in vivo models provides new insights into the mechanisms needed to salvage meniscal tissue, and along with regulatory considerations, may justify translation to the clinic. With the need to restore long-term function to injured menisci, biologists, engineers, and clinicians are developing novel approaches to enhance the future of robust and consistent meniscal reparative techniques.
Collapse
Affiliation(s)
- Sonia Bansal
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | - Kyley Burkey
- University of Kansas Medical Center, Kansas City, Kansas, USA
| | | | | | | | | | - Jay M. Patel
- Emory University, Atlanta, Georgia, USA
- Atlanta VA Medical Center, Decatur, Georgia, USA
| |
Collapse
|
8
|
Kisiday JD, Liebig BE, Goodrich LR. Adult ovine chondrocytes in expansion culture adopt progenitor cell properties that are favorable for cartilage tissue engineering. J Orthop Res 2020; 38:1996-2005. [PMID: 32222117 PMCID: PMC8442064 DOI: 10.1002/jor.24671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 02/18/2020] [Accepted: 03/06/2020] [Indexed: 02/04/2023]
Abstract
Human chondrocytes in expansion culture can become progenitor-like in their ability to proliferate extensively and secrete neocartilage in chondrogenic culture. Sheep are used as a large animal model for cartilage tissue engineering, although for testing progenitor-like chondrocytes it is important that ovine chondrocytes resemble human in the ability to adopt progenitor properties. Here, we investigate whether ovine chondrocytes can adopt progenitor properties as indicated by rapid proliferation in a colony-forming fashion, and high levels of neocartilage secretion in chondrogenic culture. In conditions known to promote expansion of mesenchymal stromal cells, ovine chondrocytes proliferated through approximately 12 population doublings in 10 days. Time-lapse imaging indicated rapid proliferation in a colony-forming pattern. Expanded ovine chondrocytes that were seeded into agarose and cultured in chondrogenic medium accumulated neocartilage over 2 weeks, to a greater extent than primary chondrocytes. These data confirm that ovine chondrocytes resemble human chondrocytes in their ability to acquire progenitor properties that are important for cartilage tissue engineering. Given the broad interest in using progenitor cells to heal connective tissues, next we compared proliferation and trilineage differentiation of ovine chondrocytes, meniscus cells, and tenocytes. Meniscus cells and tenocytes experienced more than 13 population doublings in 10 days. In chondrogenic culture, cartilage matrix accumulation, and gene expression were largely similar among the cell types. All cell types resisted osteogenesis, while expanded tenocytes and meniscal cells were capable of adipogenesis. While ovine connective tissue cells demonstrated limited lineage plasticity, these data support the potential to promote certain progenitor properties with expansion.
Collapse
Affiliation(s)
- John D. Kisiday
- Department of Clinical Sciences, Orthopaedic Reserch CenterC. Wayne McIlwraith Translational Medicine Institute Fort Collins Colorado
| | - Bethany E. Liebig
- Department of Clinical Sciences, Orthopaedic Reserch CenterC. Wayne McIlwraith Translational Medicine Institute Fort Collins Colorado
| | - Laurie R. Goodrich
- Department of Clinical Sciences, Orthopaedic Reserch CenterC. Wayne McIlwraith Translational Medicine Institute Fort Collins Colorado
| |
Collapse
|
9
|
Ribitsch I, Baptista PM, Lange-Consiglio A, Melotti L, Patruno M, Jenner F, Schnabl-Feichter E, Dutton LC, Connolly DJ, van Steenbeek FG, Dudhia J, Penning LC. Large Animal Models in Regenerative Medicine and Tissue Engineering: To Do or Not to Do. Front Bioeng Biotechnol 2020; 8:972. [PMID: 32903631 PMCID: PMC7438731 DOI: 10.3389/fbioe.2020.00972] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022] Open
Abstract
Rapid developments in Regenerative Medicine and Tissue Engineering has witnessed an increasing drive toward clinical translation of breakthrough technologies. However, the progression of promising preclinical data to achieve successful clinical market authorisation remains a bottleneck. One hurdle for progress to the clinic is the transition from small animal research to advanced preclinical studies in large animals to test safety and efficacy of products. Notwithstanding this, to draw meaningful and reliable conclusions from animal experiments it is critical that the species and disease model of choice is relevant to answer the research question as well as the clinical problem. Selecting the most appropriate animal model requires in-depth knowledge of specific species and breeds to ascertain the adequacy of the model and outcome measures that closely mirror the clinical situation. Traditional reductionist approaches in animal experiments, which often do not sufficiently reflect the studied disease, are still the norm and can result in a disconnect in outcomes observed between animal studies and clinical trials. To address these concerns a reconsideration in approach will be required. This should include a stepwise approach using in vitro and ex vivo experiments as well as in silico modeling to minimize the need for in vivo studies for screening and early development studies, followed by large animal models which more closely resemble human disease. Naturally occurring, or spontaneous diseases in large animals remain a largely untapped resource, and given the similarities in pathophysiology to humans they not only allow for studying new treatment strategies but also disease etiology and prevention. Naturally occurring disease models, particularly for longer lived large animal species, allow for studying disorders at an age when the disease is most prevalent. As these diseases are usually also a concern in the chosen veterinary species they would be beneficiaries of newly developed therapies. Improved awareness of the progress in animal models is mutually beneficial for animals, researchers, human and veterinary patients. In this overview we describe advantages and disadvantages of various animal models including domesticated and companion animals used in regenerative medicine and tissue engineering to provide an informed choice of disease-relevant animal models.
Collapse
Affiliation(s)
- Iris Ribitsch
- Veterm, Department for Companion Animals and Horses, University Equine Hospital, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Pedro M. Baptista
- Laboratory of Organ Bioengineering and Regenerative Medicine, Health Research Institute of Aragon (IIS Aragon), Zaragoza, Spain
| | - Anna Lange-Consiglio
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Luca Melotti
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Marco Patruno
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Florien Jenner
- Veterm, Department for Companion Animals and Horses, University Equine Hospital, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Eva Schnabl-Feichter
- Clinical Unit of Small Animal Surgery, Department for Companion Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Luke C. Dutton
- Department of Clinical Sciences and Services, Royal Veterinary College, Hertfordshire, United Kingdom
| | - David J. Connolly
- Clinical Unit of Small Animal Surgery, Department for Companion Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Frank G. van Steenbeek
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Jayesh Dudhia
- Department of Clinical Sciences and Services, Royal Veterinary College, Hertfordshire, United Kingdom
| | - Louis C. Penning
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
10
|
Patel JM, Brzezinski A, Ghodbane SA, Tarapore R, Lu TM, Gatt CJ, Dunn MG. Personalized Fiber-Reinforcement Networks for Meniscus Reconstruction. J Biomech Eng 2020; 142:051008. [PMID: 31701130 DOI: 10.1115/1.4045402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Indexed: 11/08/2022]
Abstract
The menisci are fibrocartilaginous tissues that are crucial to the load-sharing and stability of the knee, and when injured, these properties are compromised. Meniscus replacement scaffolds have utilized the circumferential alignment of fibers to recapitulate the microstructure of the native meniscus; however, specific consideration of size, shape, and morphology has been largely overlooked. The purpose of this study was to personalize the fiber-reinforcement network of a meniscus reconstruction scaffold. Human cadaveric menisci were measured for a host of tissue (length, width) and subtissue (regional widths, root locations) properties, which all showed considerable variability between donors. Next, the asymmetrical fiber network was optimized to minimize the error between the dimensions of measured menisci and predicted fiber networks, providing a 51.0% decrease (p = 0.0091) in root-mean-square (RMS) error. Finally, a separate set of human cadaveric knees was obtained, and donor-specific fiber-reinforced scaffolds were fabricated. Under cyclic loading for load-distribution analysis, in situ implantation of personalized scaffolds following total meniscectomy restored contact area (253.0 mm2 to 488.9 mm2, p = 0.0060) and decreased contact stress (1.96 MPa to 1.03 MPa, p = 0.0025) to near-native values (597.4 mm2 and 0.83 MPa). Clinical use of personalized meniscus devices that restore physiologic contact stress distributions may prevent the development of post-traumatic osteoarthritis following meniscal injury.
Collapse
Affiliation(s)
- Jay M Patel
- Department of Orthopaedic Surgery, Rutgers Biomedical and Health Sciences, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901; Department of Biomedical Engineering, Rutgers-The State University of New Jersey, Piscataway, NJ 08854; McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA 19104
| | - Andrzej Brzezinski
- Department of Orthopaedic Surgery, Rutgers Biomedical and Health Sciences, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| | - Salim A Ghodbane
- Department of Orthopaedic Surgery, Rutgers Biomedical and Health Sciences, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901; Department of Biomedical Engineering, Rutgers-The State University of New Jersey, Piscataway, NJ 08854
| | - Rae Tarapore
- Department of Orthopaedic Surgery, Rutgers Biomedical and Health Sciences, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| | - Tyler M Lu
- Department of Orthopaedic Surgery, Rutgers Biomedical and Health Sciences, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| | - Charles J Gatt
- Department of Orthopaedic Surgery, Rutgers Biomedical and Health Sciences, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901; Department of Biomedical Engineering, Rutgers-The State University of New Jersey, Piscataway, NJ 08854
| | - Michael G Dunn
- Department of Orthopaedic Surgery, Rutgers Biomedical and Health Sciences, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901; Department of Biomedical Engineering, Rutgers-The State University of New Jersey, Piscataway, NJ 08854
| |
Collapse
|
11
|
Nakagawa Y, Fortier LA, Mao JJ, Lee CH, Goodale MB, Koff MF, Uppstrom TJ, Croen B, Wada S, Carballo CB, Potter HG, Rodeo SA. Long-term Evaluation of Meniscal Tissue Formation in 3-dimensional-Printed Scaffolds With Sequential Release of Connective Tissue Growth Factor and TGF-β3 in an Ovine Model. Am J Sports Med 2019; 47:2596-2607. [PMID: 31386550 PMCID: PMC7422478 DOI: 10.1177/0363546519865513] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Artificial meniscal scaffolds are being developed to prevent development of osteoarthritis after meniscectomy. Previously, it was reported that 3-dimensional (3D) anatomic scaffolds loaded with connective tissue growth factor (CTGF) and transforming growth factor β3 (TGF-β3) achieved meniscal regeneration in an ovine model. This was a relatively short-term study (3 months postoperative), and outcome analyses did not include magnetic resonance imaging (MRI). PURPOSE To evaluate long-term outcome of meniscal replacement with growth factor-laden poly-ε-caprolactone (PCL) scaffolds. STUDY DESIGN Controlled laboratory study. METHODS Anatomically shaped ovine meniscal scaffolds were fabricated from PCL with a 3D printer based on MRI data. Skeletally mature sheep (N = 34) were randomly allocated to 3 groups: scaffold without growth factor (0-µg group), scaffold with CTGF microspheres (µS) (5 µg) + TGF-β3 µS (5 µg) (5-µg group), and scaffold with CTGF µS (10 µg) + TGF-β3 µS (10 µg) (10-µg group). Unilateral medial meniscal replacement was performed. Animals were euthanized at 6 or 12 months. Regenerated meniscus, articular cartilage status, and synovial reaction were evaluated quantitatively with gross inspection, histology, and MRI. Kruskal-Wallis and Dunn tests were used to compare the 3 groups. RESULTS Remnants of the PCL scaffold were evident in the 6-month specimens and were decreased but still present at 12 months in most animals. There were no significant differences among groups in gross inspection, histology, or MRI for either meniscal regeneration or articular cartilage protection. All experimental groups exhibited articular cartilage degeneration as compared with control (nonoperated). In terms of synovitis, there were no clear differences among groups, suggesting that growth factors did not increase inflammation and fibrosis. MRI revealed that meniscal extrusion was observed in most animals (82.7%). CONCLUSION Previously, the combination of CTGF and TGF-β3 was shown to stimulate mesenchymal stem cells into a fibrochondrocyte lineage. CTGF and TGF-β3 did not aggravate synovitis, suggesting no adverse response to the combination of 3D-printed PCL scaffold combined with CTGF and TGF-β3. Further work will be required to improve scaffold fixation to avoid meniscal extrusion. CLINICAL RELEVANCE A significant advantage of this technique is the ability to print custom-fit scaffolds from MRI-generated templates. In addition, average-size menisci could be printed and available for off-the-shelf applications. Based on the 1-year duration of the study, the approach appears to be promising for meniscal regeneration in humans.
Collapse
Affiliation(s)
- Yusuke Nakagawa
- Laboratory for Joint Tissue Repair and Regeneration,
Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New
York, USA., Department of Cartilage Regeneration, Graduate
School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Lisa A. Fortier
- Department of Clinical Sciences, College of
Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Jeremy J. Mao
- Tissue Engineering and Regenerative Medicine
Laboratory, Columbia University Medical Center, Columbia University, New York, New
York, USA
| | - Chang Hun Lee
- Tissue Engineering and Regenerative Medicine
Laboratory, Columbia University Medical Center, Columbia University, New York, New
York, USA
| | - Margaret B. Goodale
- Department of Clinical Sciences, College of
Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Matthew F. Koff
- Department of Radiology and Imaging, Hospital for
Special Surgery, New York, New York, USA
| | - Tyler J. Uppstrom
- Laboratory for Joint Tissue Repair and Regeneration,
Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New
York, USA
| | - Brett Croen
- Laboratory for Joint Tissue Repair and Regeneration,
Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New
York, USA
| | - Susumu Wada
- Laboratory for Joint Tissue Repair and Regeneration,
Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New
York, USA
| | - Camila B. Carballo
- Laboratory for Joint Tissue Repair and Regeneration,
Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New
York, USA
| | - Hollis G. Potter
- Department of Radiology and Imaging, Hospital for
Special Surgery, New York, New York, USA
| | - Scott A. Rodeo
- Address correspondence to Scott A. Rodeo, MD,
Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA., Laboratory for Joint Tissue Repair and Regeneration,
Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New
York, USA
| |
Collapse
|
12
|
Zellmann P, Ribitsch I, Handschuh S, Peham C. Finite Element Modelling Simulated Meniscus Translocation and Deformation during Locomotion of the Equine Stifle. Animals (Basel) 2019; 9:ani9080502. [PMID: 31370196 PMCID: PMC6720206 DOI: 10.3390/ani9080502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Meniscal tears are one of the most common soft tissue injuries in the equine stifle joint. To date no optimal treatment strategy to heal meniscal tissue is available. Accordingly, there is a need to improve treatment for meniscal injuries and thus to identify appropriate translational animal models. A possible alternative to animal experimentation is the use of finite element modelling (FEMg). FEMg allows simulation of time dependent changes in tissues resulting from biomechanical strains. We developed a finite element model (FEM) of the equine stifle joint to identify pressure peaks and simulate translocation and deformation of the menisci at different joint angles under loading conditions. The FEM model was tested across a range of motion of approximately 30°. Pressure load was higher overall in the lateral meniscus than in the medial meniscus. Accordingly, the simulation showed higher translocation and deformation throughout the whole range of motion in the lateral compared to the medial meniscus. The results encourage further refinement of this FEM model for studying loading patterns on menisci and articular cartilages as well as the resulting mechanical stress in the subchondral bone. A functional FEM model can not only help identify segments in the femoro–tibial joint which are predisposed to injury, but also provide better understanding of the progression of certain stifle disorders, simulate treatment/surgery effects and to optimize implant/transplant properties in order to most closely resemble natural tissue. Abstract We developed a finite element model (FEM) of the equine stifle joint to identify pressure peaks and simulate translocation and deformation of the menisci. A series of sectional magnetic resonance images (1.5 T) of the stifle joint of a 23 year old Shetland pony gelding served as basis for image segmentation. Based on the 3D polygon models of femur, tibia, articular cartilages, menisci, collateral ligaments and the meniscotibial ligaments, an FEM model was generated. Tissue material properties were assigned based on data from human (Open knee(s) project) and bovine femoro-tibial joint available in the literature. The FEM model was tested across a range of motion of approximately 30°. Pressure load was overall higher in the lateral meniscus than in the medial. Accordingly, the simulation showed higher translocation and deformation in the lateral compared to the medial meniscus. The results encourage further refinement of this model for studying loading patterns on menisci and articular cartilages as well as the resulting mechanical stress in the subchondral bone (femur and tibia). A functional FEM model can not only help identify segments in the stifle which are predisposed to injury, but also to better understand the progression of certain stifle disorders, simulate treatment/surgery effects and to optimize implant/transplant properties.
Collapse
Affiliation(s)
- Pasquale Zellmann
- Department for Companion Animals and Horses, University Equine Hospital, Vetmeduni Vienna, 1210 Vienna, Austria
| | - Iris Ribitsch
- Department for Companion Animals and Horses, University Equine Hospital, Vetmeduni Vienna, 1210 Vienna, Austria.
| | - Stephan Handschuh
- VetCore Facility for Research, Imaging Unit, Vetmeduni Vienna, 1210 Vienna, Austria
| | - Christian Peham
- Department for Companion Animals and Horses, University Equine Hospital, Vetmeduni Vienna, 1210 Vienna, Austria
| |
Collapse
|
13
|
Ghodbane SA, Brzezinski A, Patel JM, Plaff WH, Marzano KN, Gatt CJ, Dunn MG. Partial Meniscus Replacement with a Collagen-Hyaluronan Infused Three-Dimensional Printed Polymeric Scaffold. Tissue Eng Part A 2019; 25:379-389. [PMID: 30351200 PMCID: PMC6916120 DOI: 10.1089/ten.tea.2018.0160] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/05/2018] [Indexed: 12/11/2022] Open
Abstract
IMPACT STATEMENT The only FDA-approved partial meniscus scaffold, the Collagen Meniscus Implant (CMI), is not approved for reimbursement by government and only reimbursable by certain private insurers. Scaffolds with improved mechanical properties and greater efficacy are needed. A previous study (Ghodbane, et al. DOI: 10.1002/jbm.b.34331) demonstrated the ability of our novel acellular, off-the shelf scaffold to restore knee biomechanics following partial meniscectomy, which could potentially decrease the risk of osteoarthritis following partial meniscectomy, providing the motivation for this study. This article presents a first-in-animal feasibility study.
Collapse
Affiliation(s)
- Salim A. Ghodbane
- Department of Orthopaedic Surgery, Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences, New Brunswick, New Jersey
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Andrzej Brzezinski
- Department of Orthopaedic Surgery, Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences, New Brunswick, New Jersey
| | - Jay M. Patel
- Department of Orthopaedic Surgery, Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences, New Brunswick, New Jersey
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - William H. Plaff
- Department of Orthopaedic Surgery, Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences, New Brunswick, New Jersey
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Kristen N. Marzano
- Department of Orthopaedic Surgery, Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences, New Brunswick, New Jersey
| | - Charles J. Gatt
- Department of Orthopaedic Surgery, Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences, New Brunswick, New Jersey
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Michael G. Dunn
- Department of Orthopaedic Surgery, Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences, New Brunswick, New Jersey
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| |
Collapse
|
14
|
Ghodbane SA, Patel JM, Brzezinski A, Lu TM, Gatt CJ, Dunn MG. Biomechanical characterization of a novel collagen-hyaluronan infused 3D-printed polymeric device for partial meniscus replacement. J Biomed Mater Res B Appl Biomater 2019; 107:2457-2465. [PMID: 30775847 DOI: 10.1002/jbm.b.34336] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 12/08/2018] [Accepted: 01/26/2019] [Indexed: 12/21/2022]
Abstract
The menisci transmit load by increasing the contact area and decreasing peak contact stresses on the articular surfaces. Meniscal lesions are among the most common orthopedic injuries, and resulting meniscectomies are associated with adverse polycaprolactone contact mechanics changes and, ultimately, an increased likelihood of osteoarthritis. Meniscus scaffolds were fabricated by 3D-printing a network of circumferential and radial filaments of resorbable polymer (poly(desaminotyrosyl-tyrosine dodecyl ester dodecanoate)) and infused with collagen-hyaluronan. The scaffold demonstrated an instantaneous compressive modulus (1.66 ± 0.44 MPa) comparable to native meniscus (1.52 ± 0.59 MPa). The scaffold aggregate modulus (1.33 ± 0.51 MPa) was within 2% of the native value (1.31 ± 0.36 MPa). In tension, the scaffold displayed a comparable stiffness to native tissue (127.6-97.1 N/mm) and an ultimate load of 33% of the native value. Suture pull-out load of scaffolds (83.1 ± 10.0 N) was within 10% of native values (91.5 ± 15.4 N). Contact stress analysis demonstrated the scaffold reduced peak contact stress by 60-67% and increased contact area by 38%, relative to partial meniscectomy. This is the first meniscal scaffold to match both the axial compressive properties and the circumferential tensile stiffness of the native meniscus. The improvement of joint contact mechanics, relative to partial meniscectomy alone, motivates further investigation using a large animal model. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B:2457-2465, 2019.
Collapse
Affiliation(s)
- Salim A Ghodbane
- Department of Orthopaedic Surgery, Rutgers Biomedical and Health Sciences - Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA.,Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Jay M Patel
- Department of Orthopaedic Surgery, Rutgers Biomedical and Health Sciences - Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA.,Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Andrzej Brzezinski
- Department of Orthopaedic Surgery, Rutgers Biomedical and Health Sciences - Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Tyler M Lu
- Department of Orthopaedic Surgery, Rutgers Biomedical and Health Sciences - Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Charles J Gatt
- Department of Orthopaedic Surgery, Rutgers Biomedical and Health Sciences - Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA.,Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Michael G Dunn
- Department of Orthopaedic Surgery, Rutgers Biomedical and Health Sciences - Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA.,Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
15
|
Donahue RP, Gonzalez-Leon EA, Hu JC, Athanasiou KA. Considerations for translation of tissue engineered fibrocartilage from bench to bedside. J Biomech Eng 2018; 141:2718210. [PMID: 30516244 PMCID: PMC6611470 DOI: 10.1115/1.4042201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/27/2018] [Indexed: 12/25/2022]
Abstract
Fibrocartilage is found in the knee meniscus, the temporomandibular joint (TMJ) disc, the pubic symphysis, the annulus fibrosus of intervertebral disc, tendons, and ligaments. These tissues are notoriously difficult to repair due to their avascularity, and limited clinical repair and replacement options exist. Tissue engineering has been proposed as a route to repair and replace fibrocartilages. Using the knee meniscus and TMJ disc as examples, this review describes how fibrocartilages can be engineered toward translation to clinical use. Presented are fibrocartilage anatomy, function, epidemiology, pathology, and current clinical treatments because they inform design criteria for tissue engineered fibrocartilages. Methods for how native tissues are characterized histomorphologically, biochemically, and mechanically to set gold standards are described. Then, provided is a review of fibrocartilage-specific tissue engineering strategies, including the selection of cell sources, scaffold or scaffold-free methods, and biochemical and mechanical stimuli. In closing, the Food and Drug Administration paradigm is discussed to inform researchers of both the guidance that exists and the questions that remain to be answered with regard to bringing a tissue engineered fibrocartilage product to the clinic.
Collapse
Affiliation(s)
- Ryan P. Donahue
- Department of Biomedical Engineering,
University of California, Irvine,
Irvine, CA 92697
e-mail:
| | - Erik A. Gonzalez-Leon
- Department of Biomedical Engineering,
University of California, Irvine,
Irvine, CA 92697
e-mail:
| | - Jerry C. Hu
- Department of Biomedical Engineering,
University of California, Irvine,
Irvine, CA 92697
e-mail:
| | - Kyriacos A. Athanasiou
- Fellow ASME
Department of Biomedical Engineering,
University of California, Irvine
Irvine, CA 92697
e-mail:
| |
Collapse
|
16
|
Patel JM, Ghodbane SA, Brzezinski A, Gatt CJ, Dunn MG. Tissue-Engineered Total Meniscus Replacement With a Fiber-Reinforced Scaffold in a 2-Year Ovine Model. Am J Sports Med 2018; 46:1844-1856. [PMID: 29953287 DOI: 10.1177/0363546517752668] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Meniscus injuries and associated meniscectomies cause patients long-term pain and discomfort and can lead to joint deterioration. PURPOSE To evaluate a collagen-hyaluronan sponge reinforced with synthetic resorbable polymer fiber for total meniscus reconstruction in a long-term ovine model. STUDY DESIGN Controlled laboratory study. METHODS Eleven skeletally mature sheep were implanted with the total meniscus scaffold. At 2 years, explants were evaluated biologically (radial/circumferential histology, immunofluorescence) and mechanically (compression, tension), and articular surfaces were examined for damage. RESULTS The fiber-reinforced scaffold induced formation of functional neomeniscus tissue that was intact in 8 of 11 animals. The implant was remodeled into organized circumferentially aligned collagen bundles to resist meniscus hoop stresses. Moreover, type II collagen and proteoglycan deposition near the inner margin suggested a direct response to compressive stresses and confirmed fibrocartilage formation. Cartilage damage was observed, but end-stage (severe) joint deterioration associated with meniscectomy was avoided, even with limitations regarding the ovine surgical procedure and postoperative care. CONCLUSION A fiber-reinforced total meniscus replacement device induces formation of functional neomeniscus tissue that has the potential to prevent catastrophic joint deterioration associated with meniscectomy. CLINICAL RELEVANCE An off-the-shelf meniscus device that can be remodeled into functional tissue and thus prevent or delay the onset of osteoarthritis could address a widespread clinical need after meniscus injury.
Collapse
Affiliation(s)
- Jay M Patel
- Department of Orthopaedic Surgery, Rutgers Biomedical and Health Sciences-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA.,Department of Biomedical Engineering, Rutgers-The State University of New Jersey, Piscataway, New Jersey, USA.,McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Salim A Ghodbane
- Department of Orthopaedic Surgery, Rutgers Biomedical and Health Sciences-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA.,Department of Biomedical Engineering, Rutgers-The State University of New Jersey, Piscataway, New Jersey, USA
| | - Andrzej Brzezinski
- Department of Orthopaedic Surgery, Rutgers Biomedical and Health Sciences-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Charles J Gatt
- Department of Orthopaedic Surgery, Rutgers Biomedical and Health Sciences-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA.,Department of Biomedical Engineering, Rutgers-The State University of New Jersey, Piscataway, New Jersey, USA
| | - Michael G Dunn
- Department of Orthopaedic Surgery, Rutgers Biomedical and Health Sciences-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA.,Department of Biomedical Engineering, Rutgers-The State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
17
|
Zhu J, Moawad AR, Wang CY, Li HF, Ren JY, Dai YF. Advances in in vitro production of sheep embryos. Int J Vet Sci Med 2018; 6:S15-S26. [PMID: 30761316 PMCID: PMC6161858 DOI: 10.1016/j.ijvsm.2018.02.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 02/07/2018] [Accepted: 02/09/2018] [Indexed: 12/18/2022] Open
Abstract
Sheep is an important livestock in the world providing meat, milk and wool for human beings. With increasing human population, the worldwide needs of production of sheep have elevated. To meet the needs, the assistant reproductive technology including ovine in vitro embryo production (ovine IVP) is urgently required to enhance the effective production of sheep in the world. To learn the status of ovine IVP, we collected some publications related to ovine IVP through PubMed and analyzed the progress in ovine IVP made in the last five years (2012-2017). We made comparisons of these data and found that the recent advances in ovine IVP has been made slowly comparable to that of ovine IVP two decades ago. Therefore, we suggested two strategies or approaches to tackle the main problems in ovine IVP and expect that the efficiency of ovine IVP could be improved significantly when the approaches would be implemented.
Collapse
Affiliation(s)
- Jie Zhu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China
| | - Adel R. Moawad
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, PO BOX 12211, Giza, Egypt
| | - Chun-Yu Wang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China
| | - Hui-Feng Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China
| | - Jing-Yu Ren
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China
| | - Yan-Feng Dai
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|