1
|
Xiao M, Yao J, Shao Z, Chen X. Silk-Based 3D Porous Scaffolds for Tissue Engineering. ACS Biomater Sci Eng 2024; 10:2827-2840. [PMID: 38690985 DOI: 10.1021/acsbiomaterials.4c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Silk fibroin, extracted from the silk of the Bombyx mori silkworm, stands out as a biomaterial due to its nontoxic nature, excellent biocompatibility, and adjustable biodegradability. Porous scaffolds, a type of biomaterial, are crucial for creating an optimal microenvironment that supports cell adhesion and proliferation, thereby playing an essential role in tissue remodeling and repair. Therefore, this review focuses on 3D porous silk fibroin-based scaffolds, first summarizing their preparation methods and then detailing their regenerative effects on bone, cartilage, tendon, vascular, neural, skin, hepatic, and tracheal epithelial tissue engineering in recent years.
Collapse
Affiliation(s)
- Menglin Xiao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China
| | - Jinrong Yao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China
| | - Xin Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China
| |
Collapse
|
2
|
Ghosh S, Pati F. Decellularized extracellular matrix and silk fibroin-based hybrid biomaterials: A comprehensive review on fabrication techniques and tissue-specific applications. Int J Biol Macromol 2023; 253:127410. [PMID: 37844823 DOI: 10.1016/j.ijbiomac.2023.127410] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
Biomaterials play a fundamental role in tissue engineering by providing biochemical and physical cues that influence cellular fate and matrix development. Decellularized extracellular matrix (dECM) as a biomaterial is distinguished by its abundant composition of matrix proteins, such as collagen, elastin, fibronectin, and laminin, as well as glycosaminoglycans and proteoglycans. However, the mechanical properties of only dECM-based constructs may not always meet tissue-specific requirements. Recent advancements address this challenge by utilizing hybrid biomaterials that harness the strengths of silk fibroin (SF), which contributes the necessary mechanical properties, while dECM provides essential cellular cues for in vitro studies and tissue regeneration. This review discusses emerging trends in developing such biopolymer blends, aiming to synergistically combine the advantages of SF and dECM through optimal concentrations and desired cross-linking density. We focus on different fabrication techniques and cross-linking methods that have been utilized to fabricate various tissue-engineered hybrid constructs. Furthermore, we survey recent applications of such biomaterials for the regeneration of various tissues, including bone, cartilage, trachea, bladder, vascular graft, heart, skin, liver, and other soft tissues. Finally, the trajectory and prospects of the constructs derived from this blend in the tissue engineering field have been summarized, highlighting their potential for clinical translation.
Collapse
Affiliation(s)
- Soham Ghosh
- BioFab Lab, Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, Telangana, India
| | - Falguni Pati
- BioFab Lab, Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, Telangana, India.
| |
Collapse
|
3
|
Zhou J, Wu N, Zeng J, Liang Z, Qi Z, Jiang H, Chen H, Liu X. Chondrogenic Differentiation of Adipose-Derived Stromal Cells Induced by Decellularized Cartilage Matrix/Silk Fibroin Secondary Crosslinking Hydrogel Scaffolds with a Three-Dimensional Microstructure. Polymers (Basel) 2023; 15:polym15081868. [PMID: 37112015 PMCID: PMC10144539 DOI: 10.3390/polym15081868] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/18/2023] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
Finding an ideal scaffold is always an important issue in the field of cartilage tissue engineering. Both decellularized extracellular matrix and silk fibroin have been used as natural biomaterials for tissue regeneration. In this study, a secondary crosslinking method of γ irradiation and ethanol induction was used to prepare decellularized cartilage extracellular matrix and silk fibroin (dECM-SF) hydrogels with biological activity. Furthermore, the dECM-SF hydrogels were cast in custom-designed molds to produce a three-dimensional multi-channeled structure to improve internal connectivity. The adipose-derived stromal cells (ADSC) were seeded on the scaffolds, cultured in vitro for 2 weeks, and implanted in vivo for another 4 and 12 weeks. The double crosslinked dECM-SF hydrogels exhibited an excellent pore structure after lyophilization. The multi-channeled hydrogel scaffold presents higher water absorption ability, surface wettability, and no cytotoxicity. The addition of dECM and a channeled structure could promote chondrogenic differentiation of ADSC and engineered cartilage formation, confirmed by H&E, safranin O staining, type II collagen immunostaining, and qPCR assay. In conclusion, the hydrogel scaffold fabricated by the secondary crosslinking method has good plasticity and can be used as a scaffold for cartilage tissue engineering. The multi-channeled dECM-SF hydrogel scaffolds possess a chondrogenic induction activity that promotes engineered cartilage regeneration of ADSC in vivo.
Collapse
Affiliation(s)
- Jing Zhou
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, China
| | - Nier Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Jinshi Zeng
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, China
| | - Ziyu Liang
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Zuoliang Qi
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, China
| | - Haiyue Jiang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, China
| | - Haifeng Chen
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Xia Liu
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, China
- Key Laboratory of Reconstruction for Superfacial Tissues and Organs, Beijing 100144, China
| |
Collapse
|
4
|
Zhang X, Liu Y, Zuo Q, Wang Q, Li Z, Yan K, Yuan T, Zhang Y, Shen K, Xie R, Fan W. 3D Bioprinting of Biomimetic Bilayered Scaffold Consisting of Decellularized Extracellular Matrix and Silk Fibroin for Osteochondral Repair. Int J Bioprint 2021; 7:401. [PMID: 34825099 PMCID: PMC8611412 DOI: 10.18063/ijb.v7i4.401] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/20/2021] [Indexed: 12/27/2022] Open
Abstract
Recently, three-dimensional (3D) bioprinting technology is becoming an appealing approach for osteochondral repair. However, it is challenging to develop a bilayered scaffold with anisotropic structural properties to mimic a native osteochondral tissue. Herein, we developed a bioink consisting of decellularized extracellular matrix and silk fibroin to print the bilayered scaffold. The bilayered scaffold mimics the natural osteochondral tissue by controlling the composition, mechanical properties, and growth factor release in each layer of the scaffold. The in vitro results show that each layer of scaffolds had a suitable mechanical strength and degradation rate. Furthermore, the scaffolds encapsulating transforming growth factor-beta (TGF-β) and bone morphogenetic protein-2 (BMP-2) can act as a controlled release system and promote directed differentiation of bone marrow-derived mesenchymal stem cells. Furthermore, the in vivo experiments suggested that the scaffolds loaded with growth factors promoted osteochondral regeneration in the rabbit knee joint model. Consequently, the biomimetic bilayered scaffold loaded with TGF-β and BMP-2 would be a promising strategy for osteochondral repair.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiang Zuo
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qingyun Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zuxi Li
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kai Yan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Yuan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kai Shen
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rui Xie
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weimin Fan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Haghwerdi F, Khozaei Ravari M, Taghiyar L, Shamekhi MA, Jahangir S, Haririan I, Baghaban Eslaminejad M. Application of bone and cartilage extracellular matrices in articular cartilage regeneration. Biomed Mater 2021; 16. [PMID: 34102624 DOI: 10.1088/1748-605x/ac094b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 06/08/2021] [Indexed: 01/02/2023]
Abstract
Articular cartilage has an avascular structure with a poor ability for self-repair; therefore, many challenges arise in cases of trauma or disease. It is of utmost importance to identify the proper biomaterial for tissue repair that has the capability to direct cell recruitment, proliferation, differentiation, and tissue integration by imitating the natural microenvironment of cells and transmitting an orchestra of intracellular signals. Cartilage extracellular matrix (cECM) is a complex nanostructure composed of divergent proteins and glycosaminoglycans (GAGs), which regulate many functions of resident cells. Numerous studies have shown the remarkable capacity of ECM-derived biomaterials for tissue repair and regeneration. Moreover, given the importance of biodegradability, biocompatibility, 3D structure, porosity, and mechanical stability in the design of suitable scaffolds for cartilage tissue engineering, demineralized bone matrix (DBM) appears to be a promising biomaterial for this purpose, as it possesses the aforementioned characteristics inherently. To the best of the authors' knowledge, no comprehensive review study on the use of DBM in cartilage tissue engineering has previously been published. Since so much work is needed to address DBM limitations such as pore size, cell retention, and so on, we decided to draw the attention of researchers in this field by compiling a list of recent publications. This review discusses the implementation of composite scaffolds of natural or synthetic origin functionalized with cECM or DBM in cartilage tissue engineering. Cutting-edge advances and limitations are also discussed in an attempt to provide guidance to researchers and clinicians.
Collapse
Affiliation(s)
- Fatemeh Haghwerdi
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Khozaei Ravari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran Iran
| | - Leila Taghiyar
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran Iran
| | - Mohammad Amin Shamekhi
- Department of Polymer Engineering, Islamic Azad University, Sarvestan Branch, Sarvestan, Iran
| | - Shahrbano Jahangir
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran Iran
| | - Ismaeil Haririan
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center (MBRC), Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran Iran
| |
Collapse
|
6
|
Sanz-Fraile H, Amoros S, Mendizabal I, Galvez-Monton C, Prat-Vidal C, Bayes-Genis A, Navajas D, Farre R, Otero J. Silk-Reinforced Collagen Hydrogels with Raised Multiscale Stiffness for Mesenchymal Cells 3D Culture. Tissue Eng Part A 2021; 26:358-370. [PMID: 32085691 DOI: 10.1089/ten.tea.2019.0199] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Type I collagen hydrogels are of high interest in tissue engineering. With the evolution of 3D bioprinting technologies, a high number of collagen-based scaffolds have been reported for the development of 3D cell cultures. A recent proposal was to mix collagen with silk fibroin derived from Bombyx mori silkworm. Nevertheless, due to the difficulties in the preparation and the characteristics of the protein, several problems such as phase separation and collagen denaturation appear during the procedure. Therefore, the common solution is to diminish the concentration of collagen although in that way the most biologically relevant component is reduced. In this study, we present a new, simple, and effective method to develop a collagen-silk hybrid hydrogel with high collagen concentration and with increased stiffness approaching that of natural tissues, which could be of high interest for the development of cardiac patches for myocardial regeneration and for preconditioning of mesenchymal stem cells (MSCs) to improve their therapeutic potential. Sericin in the silk was preserved by using a physical solubilizing procedure that results in a preserved fibrous structure of type I collagen, as shown by ultrastructural imaging. The macro- and micromechanical properties of the hybrid hydrogels measured by tensile stretch and atomic force microscopy, respectively, showed a more than twofold stiffening than the collagen-only hydrogels. Rheological measurements showed improved printability properties for the developed biomaterial. The suitability of the hydrogels for 3D cell culture was assessed by 3D bioprinting bone marrow-derived MSCs cultured within the scaffolds. The result was a biomaterial with improved printability characteristics that better resembled the mechanical properties of natural soft tissues while preserving biocompatibility owing to the high concentration of collagen. Impact statement In this study, we report the development of silk microfiber-reinforced type I collagen hydrogels for 3D bioprinting and cell culture. In contrast with previously reported studies, a novel physical method allowed the preservation of the silk sericin protein. Hydrogels were stable, showed no phase separation between the biomaterials, and they presented improved printability. An increase between two- and threefold of the multiscale stiffness of the scaffolds was achieved with no need of using additional crosslinkers or complex methods, which could be of high relevance for cardiac patches development and for preconditioning mesenchymal stem cells (MSCs) for therapeutic applications. We demonstrate that bone marrow-derived MSCs can be effectively bioprinted and 3D cultured within the stiffened structures.
Collapse
Affiliation(s)
- Hector Sanz-Fraile
- Unit of Biophysics and Bioengineering, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Susana Amoros
- ICREC Research Program, Germans Trias i Pujol Health Science Research Institute, Badalona, Spain
| | - Irene Mendizabal
- Unit of Biophysics and Bioengineering, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Carolina Galvez-Monton
- ICREC Research Program, Germans Trias i Pujol Health Science Research Institute, Badalona, Spain.,Hearth Institute (iCor), Germans Trias i Pujol University Hospital, Badalona, Spain.,CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Prat-Vidal
- ICREC Research Program, Germans Trias i Pujol Health Science Research Institute, Badalona, Spain.,Hearth Institute (iCor), Germans Trias i Pujol University Hospital, Badalona, Spain.,CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain.,Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Antoni Bayes-Genis
- ICREC Research Program, Germans Trias i Pujol Health Science Research Institute, Badalona, Spain.,Hearth Institute (iCor), Germans Trias i Pujol University Hospital, Badalona, Spain.,CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain.,Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - Daniel Navajas
- Unit of Biophysics and Bioengineering, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ramon Farre
- Unit of Biophysics and Bioengineering, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Institut d'investigacions Biomèdiques Agustí Pi i Sunyer, Barcelona, Spain
| | - Jorge Otero
- Unit of Biophysics and Bioengineering, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
7
|
Mu X, Agostinacchio F, Xiang N, Pei Y, Khan Y, Guo C, Cebe P, Motta A, Kaplan DL. Recent Advances in 3D Printing with Protein-Based Inks. Prog Polym Sci 2021; 115:101375. [PMID: 33776158 PMCID: PMC7996313 DOI: 10.1016/j.progpolymsci.2021.101375] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Three-dimensional (3D) printing is a transformative manufacturing strategy, allowing rapid prototyping, customization, and flexible manipulation of structure-property relationships. Proteins are particularly appealing to formulate inks for 3D printing as they serve as essential structural components of living systems, provide a support presence in and around cells and for tissue functions, and also provide the basis for many essential ex vivo secreted structures in nature. Protein-based inks are beneficial in vivo due to their mechanics, chemical and physical match to the specific tissue, and full degradability, while also to promoting implant-host integration and serving as an interface between technology and biology. Exploiting the biological, chemical, and physical features of protein-based inks can provide key opportunities to meet the needs of tissue engineering and regenerative medicine. Despite these benefits, protein-based inks impose nontrivial challenges to 3D printing such as concentration and rheological features and reconstitution of the structural hierarchy observed in nature that is a source of the robust mechanics and functions of these materials. This review introduces photo-crosslinking mechanisms and rheological principles that underpins a variety of 3D printing techniques. The review also highlights recent advances in the design, development, and biomedical utility of monolithic and composite inks from a range of proteins, including collagen, silk, fibrinogen, and others. One particular focus throughout the review is to introduce unique material characteristics of proteins, including amino acid sequences, molecular assembly, and secondary conformations, which are useful for designing printing inks and for controlling the printed structures. Future perspectives of 3D printing with protein-based inks are also provided to support the promising spectrum of biomedical research accessible to these materials.
Collapse
Affiliation(s)
- Xuan Mu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Francesca Agostinacchio
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
- Department of Industrial Engineering, University of Trento, via Sommarive 9, Trento 38123, Italy
| | - Ning Xiang
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Ying Pei
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yousef Khan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Chengchen Guo
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Peggy Cebe
- Department of Physics and Astronomy, Tufts University, Medford, MA 02155, USA
| | - Antonella Motta
- Department of Industrial Engineering, University of Trento, via Sommarive 9, Trento 38123, Italy
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
8
|
Zhang X, Liu Y, Luo C, Zhai C, Li Z, Zhang Y, Yuan T, Dong S, Zhang J, Fan W. Crosslinker-free silk/decellularized extracellular matrix porous bioink for 3D bioprinting-based cartilage tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111388. [PMID: 33254994 DOI: 10.1016/j.msec.2020.111388] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/14/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Abstract
As cartilage tissue lacks the innate ability to mount an adequate regeneration response, damage to it is detrimental to the quality of life of the subject. The emergence of three-dimensional bioprinting (3DBP) technology presents an opportunity to repair articular cartilage defects. However, widespread adoption of this technique has been impeded by difficulty in preparing a suitable bioink and the toxicity inherent in the chemical crosslinking process of most bioinks. Our objective was to develop a crosslinker-free bioink with the same biological activity as the original cartilage extracellular matrix (ECM) and good mechanical strength. We prepared bioinks containing different concentrations of silk fibroin and decellularized extracellular matrix (SF-dECM bioinks) mixed with bone marrow mesenchymal stem cells (BMSCs) for 3D bioprinting. SF and dECM interconnect with each other through physical crosslinking and entanglement. A porous structure was formed by removing the polyethylene glycol from the SF-dECM bioink. The results showed the SF-dECM construct had a suitable mechanical strength and degradation rate, and the expression of chondrogenesis-specific genes was found to be higher than that of the SF control construct group. Finally, we confirmed that a SF-dECM construct that was designed to release TGF-β3 had the ability to promote chondrogenic differentiation of BMSCs and provided a good cartilage repair environment, suggesting it is an ideal scaffold for cartilage tissue engineering.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yang Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Chunyang Luo
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Chenjun Zhai
- Department of Orthopedics, Yixing People's Hospital, Yixing, Jiangsu 214200, China
| | - Zuxi Li
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yi Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Tao Yuan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Shilei Dong
- Key Lab of Biofabrication of AnHui Higher Education Institution Centre for Advanced Biofabrication, Hefei, Anhui 230601, China
| | - Jiyong Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Weimin Fan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
9
|
Luo C, Xie R, Zhang J, Liu Y, Li Z, Zhang Y, Zhang X, Yuan T, Chen Y, Fan W. Low-Temperature Three-Dimensional Printing of Tissue Cartilage Engineered with Gelatin Methacrylamide. Tissue Eng Part C Methods 2020; 26:306-316. [PMID: 32349648 DOI: 10.1089/ten.tec.2020.0053] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Chunyang Luo
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rui Xie
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiyong Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zuxi Li
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Yuan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yinan Chen
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weimin Fan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Li Z, Zhang X, Yuan T, Zhang Y, Luo C, Zhang J, Liu Y, Fan W. Addition of Platelet-Rich Plasma to Silk Fibroin Hydrogel Bioprinting for Cartilage Regeneration. Tissue Eng Part A 2020; 26:886-895. [PMID: 32031056 DOI: 10.1089/ten.tea.2019.0304] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The recent advent of 3D bioprinting of biopolymers provides a novel method for fabrication of tissue-engineered scaffolds and also offers a potentially promising avenue in cartilage regeneration. Silk fibroin (SF) is one of the most popular biopolymers used for 3D bioprinting, but further application of SF is hindered by its limited biological activities. Incorporation of growth factors (GFs) has been identified as a solution to improve biological function. Platelet-rich plasma (PRP) is an autologous resource of GFs, which has been widely used in clinic. In this study, we have developed SF-based bioinks incorporated with different concentrations of PRP (12.5%, 25%, and 50%; vol/vol). Release kinetic studies show that SF-PRP bioinks could achieve controlled release of GFs. Subsequently, SF-PRP bioinks were successfully fabricated into scaffolds by bioprinting. Our results revealed that SF-PRP scaffolds possessed proper internal pore structure, good biomechanical properties, and a suitable degradation rate for cartilage regeneration. Live/dead staining showed that 3D, printed SF-PRP scaffolds were biocompatible. Moreover, in vitro studies revealed that tissue-engineered cartilage from the SF-PRP group exhibited improved qualities compared with the pure SF controls, according to histological and immunohistochemical findings. Biochemical evaluations confirmed that SF-PRP (50% PRP, v/v) scaffolds allowed the largest increases in collagen and glycosaminoglycan concentrations, when compared with the pure SF group. These findings suggest that 3D, printed SF-PRP scaffolds could be potential candidates for cartilage tissue engineering. Impact statement Three-dimensional bioprinting of silk fibroin (SF) hydrogel as bioinks is a promising strategy for cartilage tissue engineering, but it lacks biological activities, which favors proliferation of seeded cells and secretion of the extracellular matrix. In this study, we have successfully added platelet-rich plasma (PRP) into SF-based bioinks as an autologous source of growth factors. The 3D, printed SF-PRP scaffold showed an enhanced biological property, thus aiding in potential future development of novel cartilage tissue engineering applications.
Collapse
Affiliation(s)
- Zuxi Li
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Yuan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chunyang Luo
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiyong Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weimin Fan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
Rnjak‐Kovacina J, Gerrand Y, Wray LS, Tan B, Joukhdar H, Kaplan DL, Morrison WA, Mitchell GM. Vascular Pedicle and Microchannels: Simple Methods Toward Effective In Vivo Vascularization of 3D Scaffolds. Adv Healthc Mater 2019; 8:e1901106. [PMID: 31714024 DOI: 10.1002/adhm.201901106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/03/2019] [Indexed: 12/28/2022]
Abstract
Poor vascularization remains a key limiting factor in translating advances in tissue engineering to clinical applications. Vascular pedicles (large arteries and veins) isolated in plastic chambers are known to sprout an extensive capillary network. This study examined the effect vascular pedicles and scaffold architecture have on vascularization and tissue integration of implanted silk scaffolds. Porous silk scaffolds with or without microchannels are manufactured to support implantation of a central vascular pedicle, without a chamber, implanted in the groin of Sprague Dawley rats, and assessed morphologically and morphometrically at 2 and 6 weeks. At both time points, blood vessels, connective tissue, and an inflammatory response infiltrate all scaffold pores externally, and centrally when a vascular pedicle is implanted. At week 2, vascular pedicles significantly increase the degree of scaffold tissue infiltration, and both the pedicle and the scaffold microchannels significantly increase vascular volume and vascular density. Interestingly, microchannels contribute to increased scaffold vascularity without affecting overall tissue infiltration, suggesting a direct effect of biomaterial architecture on vascularization. The inclusion of pedicles and microchannels are simple and effective proangiogenic techniques for engineering thick tissue constructs as both increase the speed of construct vascularization in the early weeks post in vivo implantation.
Collapse
Affiliation(s)
- Jelena Rnjak‐Kovacina
- Department of Biomedical EngineeringTufts University Medford MA 02155 USA
- Graduate School of Biomedical EngineeringUniversity of New South Wales Sydney NSW 2052 Australia
| | - Yi‐wen Gerrand
- O'Brien Institute DepartmentSt Vincent's Institute for Medical Research Melbourne VIC 3065 Australia
| | - Lindsay S. Wray
- Department of Biomedical EngineeringTufts University Medford MA 02155 USA
| | - Beryl Tan
- O'Brien Institute DepartmentSt Vincent's Institute for Medical Research Melbourne VIC 3065 Australia
| | - Habib Joukhdar
- Graduate School of Biomedical EngineeringUniversity of New South Wales Sydney NSW 2052 Australia
| | - David L. Kaplan
- Department of Biomedical EngineeringTufts University Medford MA 02155 USA
| | - Wayne A. Morrison
- O'Brien Institute DepartmentSt Vincent's Institute for Medical Research Melbourne VIC 3065 Australia
- Department of Surgery at St Vincent's HospitalUniversity of Melbourne Melbourne VIC 3065 Australia
- Health Sciences FacultyAustralian Catholic University Melbourne VIC 3065 Australia
| | - Geraldine M. Mitchell
- O'Brien Institute DepartmentSt Vincent's Institute for Medical Research Melbourne VIC 3065 Australia
- Department of Surgery at St Vincent's HospitalUniversity of Melbourne Melbourne VIC 3065 Australia
- Health Sciences FacultyAustralian Catholic University Melbourne VIC 3065 Australia
| |
Collapse
|