1
|
Anajafi S, Paryan M, Khoshnazar A, Soleimani M, Mohammadi-Yeganeh S. miRNAs Delivery for Cancer-associated Fibroblasts' Activation and Drug Resistance in Cancer Microenvironment. Endocr Metab Immune Disord Drug Targets 2024; 24:333-347. [PMID: 37612874 DOI: 10.2174/1871530323666230823094556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/25/2023] [Accepted: 07/06/2023] [Indexed: 08/25/2023]
Abstract
Cancer-associated fibroblasts (CAFs) as a major component of cancer stroma contribute to diverse procedures of most solid tumors and might be a targeted cancer therapy approach. Their specified features, related signaling pathways, distinct biomarkers, and sub-populations need to be deciphered. There is a need for CAF extraction or induction for in vitro investigations. Some miRNAs could activate CAF-like phenotype and they also interfere in CAF-mediated drug resistance, aggressiveness, and metastatic behaviors of several cancer cell types. Due to the complex relevance of miRNA and CAFs, these non-coding oligonucleotides may serve as attractive scope for anti-cancer targeted therapies, but the lack of an efficient delivery system is still a major hurdle. Here, we have summarized the investigated information on CAF features, isolation, and induction procedures, and highlighted the miRNA-CAF communications, providing special insight into nano-delivery systems.
Collapse
Affiliation(s)
- Sara Anajafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Paryan
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Amineh Khoshnazar
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Mohammadi-Yeganeh
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Nguyen DT, Liu R, Ogando-Rivas E, Pepe A, Pedro D, Qdaisat S, Nguyen NTY, Lavrador JM, Golde GR, Smolchek RA, Ligon J, Jin L, Tao H, Webber A, Phillpot S, Mitchell DA, Sayour EJ, Huang J, Castillo P, Gregory Sawyer W. Bioconjugated liquid-like solid enhances characterization of solid tumor - chimeric antigen receptor T cell interactions. Acta Biomater 2023; 172:466-479. [PMID: 37788737 DOI: 10.1016/j.actbio.2023.09.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/05/2023]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has demonstrated remarkable success as an immunotherapy for hematological malignancies, and its potential for treating solid tumors is an active area of research. However, limited trafficking and mobility of T cells within the tumor microenvironment (TME) present challenges for CAR T cell therapy in solid tumors. To gain a better understanding of CAR T cell function in solid tumors, we subjected CD70-specific CAR T cells to a challenge by evaluating their immune trafficking and infiltration through a confined 3D microchannel network in a bio-conjugated liquid-like solid (LLS) medium. Our results demonstrated successful CAR T cell migration and anti-tumor activity against CD70-expressing glioblastoma and osteosarcoma tumors. Through comprehensive analysis of cytokines and chemokines, combined with in situ imaging, we elucidated that immune recruitment occurred via chemotaxis, and the effector-to-target ratio plays an important role in overall antitumor function. Furthermore, through single-cell collection and transcriptomic profiling, we identified differential gene expression among the immune subpopulations. Our findings provide valuable insights into the complex dynamics of CAR T cell function in solid tumors, informing future research and development in this promising cancer treatment approach. STATEMENT OF SIGNIFICANCE: The use of specialized immune cells named CAR T cells to combat cancers has demonstrated remarkable success against blood cancers. However, this success is not replicated in solid tumors, such as brain or bone cancers, mainly due to the physical barriers of these solid tumors. Currently, preclinical technologies do not allow for reliable evaluation of tumor-immune cell interactions. To better study these specialized CAR T cells, we have developed an innovative in vitro three-dimensional model that promises to dissect the interactions between tumors and CAR T cells at the single-cell level. Our findings provide valuable insights into the complex dynamics of CAR T cell function in solid tumors, informing future research and development in this promising cancer treatment approach.
Collapse
Affiliation(s)
- Duy T Nguyen
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Ruixuan Liu
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States
| | - Elizabeth Ogando-Rivas
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States
| | - Alfonso Pepe
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Diego Pedro
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Sadeem Qdaisat
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States; University of Florida Genetics Institute, Gainesville, FL 32610, United States
| | - Nhi Tran Yen Nguyen
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Julia M Lavrador
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Griffin R Golde
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Ryan A Smolchek
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - John Ligon
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, 1600 SW Archer Rd, Gainesville, FL 32610, United States
| | - Linchun Jin
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States
| | - Haipeng Tao
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States
| | - Alex Webber
- Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Simon Phillpot
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Duane A Mitchell
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States
| | - Elias J Sayour
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States
| | - Jianping Huang
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States.
| | - Paul Castillo
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, 1600 SW Archer Rd, Gainesville, FL 32610, United States.
| | - W Gregory Sawyer
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States.
| |
Collapse
|
3
|
Marques JROF, González-Alva P, Yu-Tong Lin R, Ferreira Fernandes B, Chaurasia A, Dubey N. Advances in tissue engineering of cancer microenvironment-from three-dimensional culture to three-dimensional printing. SLAS Technol 2023; 28:152-164. [PMID: 37019216 DOI: 10.1016/j.slast.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/27/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
Cancer treatment development is a complex process, with tumor heterogeneity and inter-patient variations limiting the success of therapeutic intervention. Traditional two-dimensional cell culture has been used to study cancer metabolism, but it fails to capture physiologically relevant cell-cell and cell-environment interactions required to mimic tumor-specific architecture. Over the past three decades, research efforts in the field of 3D cancer model fabrication using tissue engineering have addressed this unmet need. The self-organized and scaffold-based model has shown potential to study the cancer microenvironment and eventually bridge the gap between 2D cell culture and animal models. Recently, three-dimensional (3D) bioprinting has emerged as an exciting and novel biofabrication strategy aimed at developing a 3D compartmentalized hierarchical organization with the precise positioning of biomolecules, including living cells. In this review, we discuss the advancements in 3D culture techniques for the fabrication of cancer models, as well as their benefits and limitations. We also highlight future directions associated with technological advances, detailed applicative research, patient compliance, and regulatory challenges to achieve a successful bed-to-bench transition.
Collapse
Affiliation(s)
- Joana Rita Oliveira Faria Marques
- Oral Biology and Biochemistry Research Group (GIBBO), Unidade de Investigação em Ciências Orais e Biomédicas (UICOB), Faculdade de Medicina Dentária, Universidade de Lisboa, Lisboa, Portugal
| | - Patricia González-Alva
- Tissue Bioengineering Laboratory, Postgraduate Studies and Research Division, Faculty of Dentistry, National Autonomous University of Mexico (UNAM), 04510, Mexico, CDMX, Mexico
| | - Ruby Yu-Tong Lin
- Faculty of Dentistry, National University of Singapore, Singapore
| | - Beatriz Ferreira Fernandes
- Oral Biology and Biochemistry Research Group (GIBBO), Unidade de Investigação em Ciências Orais e Biomédicas (UICOB), Faculdade de Medicina Dentária, Universidade de Lisboa, Lisboa, Portugal
| | - Akhilanand Chaurasia
- Department of Oral Medicine, Faculty of Dental Sciences, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Nileshkumar Dubey
- Faculty of Dentistry, National University of Singapore, Singapore; ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore.
| |
Collapse
|
4
|
Pepe A, Laezza A, Ostuni A, Scelsi A, Laurita A, Bochicchio B. Bioconjugation of Carbohydrates to Gelatin Sponges Promoting 3D Cell Cultures. Biomimetics (Basel) 2023; 8:biomimetics8020193. [PMID: 37218779 DOI: 10.3390/biomimetics8020193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/24/2023] Open
Abstract
Gelatin sponges are widely employed as hemostatic agents, and are gaining increasing interest as 3D scaffolds for tissue engineering. To broaden their possible application in the field of tissue engineering, a straightforward synthetic protocol able to anchor the disaccharides, maltose and lactose, for specific cell interactions was developed. A high conjugation yield was confirmed by 1H-NMR and FT-IR spectroscopy, and the morphology of the resulting decorated sponges was characterized by SEM. After the crosslinking reaction, the sponges preserve their porous structure as ascertained by SEM. Finally, HepG2 cells cultured on the decorated gelatin sponges show high viability and significant differences in the cellular morphology as a function of the conjugated disaccharide. More spherical morphologies are observed when cultured on maltose-conjugated gelatin sponges, while a more flattened aspect is discerned when cultured onto lactose-conjugated gelatin sponges. Considering the increasing interest in small-sized carbohydrates as signaling cues on biomaterial surfaces, systematic studies on how small carbohydrates might influence cell adhesion and differentiation processes could take advantage of the described protocol.
Collapse
Affiliation(s)
- Antonietta Pepe
- Laboratory of Protein-Inspired Biomaterials, Department of Science, University of Basilicata, Via Ateneo Lucano, 10, 85100 Potenza, Italy
| | - Antonio Laezza
- Laboratory of Protein-Inspired Biomaterials, Department of Science, University of Basilicata, Via Ateneo Lucano, 10, 85100 Potenza, Italy
| | - Angela Ostuni
- Cellular Biochemistry Laboratory, Department of Science, University of Basilicata, Via Ateneo Lucano, 10, 85100 Potenza, Italy
| | - Alessandra Scelsi
- Laboratory of Protein-Inspired Biomaterials, Department of Science, University of Basilicata, Via Ateneo Lucano, 10, 85100 Potenza, Italy
| | - Alessandro Laurita
- Microscopy Area, Department of Science, University of Basilicata, Via Ateneo Lucano, 10, 85100 Potenza, Italy
| | - Brigida Bochicchio
- Laboratory of Protein-Inspired Biomaterials, Department of Science, University of Basilicata, Via Ateneo Lucano, 10, 85100 Potenza, Italy
| |
Collapse
|
5
|
MUG CCArly: A Novel Autologous 3D Cholangiocarcinoma Model Presents an Increased Angiogenic Potential. Cancers (Basel) 2023; 15:cancers15061757. [PMID: 36980644 PMCID: PMC10046314 DOI: 10.3390/cancers15061757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
Cholangiocarcinoma (CCA) are characterized by their desmoplastic and hypervascularized tumor microenvironment (TME), which is mainly composed of tumor cells and cancer-associated fibroblasts (CAFs). CAFs play a pivotal role in general and CCA tumor progression, angiogenesis, metastasis, and the development of treatment resistance. To our knowledge, no continuous human in vivo-like co-culture model is available for research. Therefore, we aimed to establish a new model system (called MUG CCArly) that mimics the desmoplastic microenvironment typically seen in CCA. Proteomic data comparing the new CCA tumor cell line with our co-culture tumor model (CCTM) indicated a higher gene expression correlation of the CCTM with physiological CCA characteristics. A pro-angiogenic TME that is typically observed in CCA could also be better simulated in the CCTM group. Further analysis of secreted proteins revealed CAFs to be the main source of these angiogenic factors. Our CCTM MUG CCArly represents a new, reproducible, and easy-to-handle 3D CCA model for preclinical studies focusing on CCA-stromal crosstalk, tumor angiogenesis, and invasion, as well as the immunosuppressive microenvironment and the involvement of CAFs in the way that drug resistance develops.
Collapse
|
6
|
Nano-Electrochemical Characterization of a 3D Bioprinted Cervical Tumor Model. Cancers (Basel) 2023; 15:cancers15041327. [PMID: 36831668 PMCID: PMC9954750 DOI: 10.3390/cancers15041327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/31/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Current cancer research is limited by the availability of reliable in vivo and in vitro models that are able to reproduce the fundamental hallmarks of cancer. Animal experimentation is of paramount importance in the progress of research, but it is becoming more evident that it has several limitations due to the numerous differences between animal tissues and real, in vivo human tissues. 3D bioprinting techniques have become an attractive tool for many basic and applied research fields. Concerning cancer, this technology has enabled the development of three-dimensional in vitro tumor models that recreate the characteristics of real tissues and look extremely promising for studying cancer cell biology. As 3D bioprinting is a relatively recently developed technique, there is still a lack of characterization of the chemical cellular microenvironment of 3D bioprinted constructs. In this work, we fabricated a cervical tumor model obtained by 3D bioprinting of HeLa cells in an alginate-based matrix. Characterization of the spheroid population obtained as a function of culturing time was performed by phase-contrast and confocal fluorescence microscopies. Scanning electrochemical microscopy and platinum nanoelectrodes were employed to characterize oxygen concentrations-a fundamental characteristic of the cellular microenvironment-with a high spatial resolution within the 3D bioprinted cervical tumor model; we also demonstrated that the diffusion of a molecular model of drugs in the 3D bioprinted construct, in which the spheroids were embedded, could be measured quantitatively over time using scanning electrochemical microscopy.
Collapse
|
7
|
Troschke-Meurer S, Zumpe M, Meißner L, Siebert N, Grabarczyk P, Forkel H, Maletzki C, Bekeschus S, Lode HN. Chemotherapeutics Used for High-Risk Neuroblastoma Therapy Improve the Efficacy of Anti-GD2 Antibody Dinutuximab Beta in Preclinical Spheroid Models. Cancers (Basel) 2023; 15:cancers15030904. [PMID: 36765861 PMCID: PMC9913527 DOI: 10.3390/cancers15030904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Anti-disialoganglioside GD2 antibody ch14.18/CHO (dinutuximab beta, DB) improved the outcome of patients with high-risk neuroblastoma (HR-NB) in the maintenance phase. We investigated chemotherapeutic compounds used in newly diagnosed patients in combination with DB. Vincristine, etoposide, carboplatin, cisplatin, and cyclophosphamide, as well as DB, were used at concentrations achieved in pediatric clinical trials. The effects on stress ligand and checkpoint expression by neuroblastoma cells and on activation receptors of NK cells were determined by using flow cytometry. NK-cell activity was measured with a CD107a/IFN-γ assay. Long-term cytotoxicity was analyzed in three spheroid models derived from GD2-positive neuroblastoma cell lines (LAN-1, CHLA 20, and CHLA 136) expressing a fluorescent near-infrared protein. Chemotherapeutics combined with DB in the presence of immune cells improved cytotoxic efficacy up to 17-fold compared to in the controls, and the effect was GD2-specific. The activating stress and inhibitory checkpoint ligands on neuroblastoma cells were upregulated by the chemotherapeutics up to 9- and 5-fold, respectively, and activation receptors on NK cells were not affected. The CD107a/IFN-γ assay revealed no additional activation of NK cells by the chemotherapeutics. The synergistic effect of DB with chemotherapeutics seems primarily attributed to the combined toxicity of antibody-dependent cellular cytotoxicity and chemotherapy, which supports further clinical evaluation in frontline induction therapy.
Collapse
Affiliation(s)
- Sascha Troschke-Meurer
- Department of Pediatric Oncology and Hematology, University Medicine Greifswald, Ferdinand-Sauerbruch Strasse 1, 17475 Greifswald, Germany
| | - Maxi Zumpe
- Department of Pediatric Oncology and Hematology, University Medicine Greifswald, Ferdinand-Sauerbruch Strasse 1, 17475 Greifswald, Germany
| | - Lena Meißner
- Department of Pediatric Oncology and Hematology, University Medicine Greifswald, Ferdinand-Sauerbruch Strasse 1, 17475 Greifswald, Germany
| | - Nikolai Siebert
- Department of Pediatric Oncology and Hematology, University Medicine Greifswald, Ferdinand-Sauerbruch Strasse 1, 17475 Greifswald, Germany
| | - Piotr Grabarczyk
- Department of Internal Medicine, Clinic III—Hematology, Oncology, University Medicine Greifswald, Ferdinand-Sauerbruch Strasse 1, 17475 Greifswald, Germany
| | - Hannes Forkel
- Department of Internal Medicine, Clinic III—Hematology, Oncology, University Medicine Greifswald, Ferdinand-Sauerbruch Strasse 1, 17475 Greifswald, Germany
| | - Claudia Maletzki
- Department of Medicine, Clinic III—Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057 Rostock, Germany
| | - Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Holger N. Lode
- Department of Pediatric Oncology and Hematology, University Medicine Greifswald, Ferdinand-Sauerbruch Strasse 1, 17475 Greifswald, Germany
- Correspondence: ; Tel.: +49-3834-86-6300; Fax: +49-3834-86-6410
| |
Collapse
|
8
|
Dozzo A, Chullipalliyalil K, McAuliffe M, O’Driscoll CM, Ryan KB. Nano-Hydroxyapatite/PLGA Mixed Scaffolds as a Tool for Drug Development and to Study Metastatic Prostate Cancer in the Bone. Pharmaceutics 2023; 15:pharmaceutics15010242. [PMID: 36678871 PMCID: PMC9864166 DOI: 10.3390/pharmaceutics15010242] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/26/2022] [Accepted: 12/30/2022] [Indexed: 01/13/2023] Open
Abstract
(1) Background: Three-dimensional (3D) in vitro, biorelevant culture models that recapitulate cancer progression can help elucidate physio-pathological disease cues and enhance the screening of more effective therapies. Insufficient research has been conducted to generate in vitro 3D models to replicate the spread of prostate cancer to the bone, a key metastatic site of the disease, and to understand the interplay between the key cell players. In this study, we aim to investigate PLGA and nano-hydroxyapatite (nHA)/PLGA mixed scaffolds as a predictive preclinical tool to study metastatic prostate cancer (mPC) in the bone and reduce the gap that exists with traditional 2D cultures. (2) Methods: nHA/PLGA mixed scaffolds were produced by electrospraying, compacting, and foaming PLGA polymer microparticles, +/- nano-hydroxyapatite (nHA), and a salt porogen to produce 3D, porous scaffolds. Physicochemical scaffold characterisation together with an evaluation of osteoblastic (hFOB 1.19) and mPC (PC-3) cell behaviour (RT-qPCR, viability, and differentiation) in mono- and co-culture, was undertaken. (3) Results: The results show that the addition of nHA, particularly at the higher-level impacted scaffolds in terms of mechanical and degradation behaviour. The nHA 4 mg resulted in weaker scaffolds, but cell viability increased. Qualitatively, fluorescent imaging of cultures showed an increase in PC-3 cells compared to osteoblasts despite lower initial PC-3 seeding densities. Osteoblast monocultures, in general, caused an upregulation (or at least equivalent to controls) in gene production, which was highest in plain scaffolds and decreased with increases in nHA. Additionally, the genes were downregulated in PC3 and co-cultures. Further, drug toxicity tests demonstrated a significant effect in 2D and 3D co-cultures. (4) Conclusions: The results demonstrate that culture conditions and environment (2D versus 3D, monoculture versus co-culture) and scaffold composition all impact cell behaviour and model development.
Collapse
Affiliation(s)
- Annachiara Dozzo
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, T12 K8AF Cork, Ireland
| | | | - Michael McAuliffe
- Centre for Advanced Photonics & Process Analysis, Munster Technological University Cork, T12 P928 Cork, Ireland
| | - Caitriona M. O’Driscoll
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, T12 K8AF Cork, Ireland
| | - Katie B. Ryan
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, T12 K8AF Cork, Ireland
- Correspondence:
| |
Collapse
|
9
|
Chafran L, Carfagno A, Altalhi A, Bishop B. Green Hydrogel Synthesis: Emphasis on Proteomics and Polymer Particle-Protein Interaction. Polymers (Basel) 2022; 14:4755. [PMID: 36365747 PMCID: PMC9656617 DOI: 10.3390/polym14214755] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 08/26/2023] Open
Abstract
The field of drug discovery has seen significant progress in recent years. These advances drive the development of new technologies for testing compound's effectiveness, as well as their adverse effects on organs and tissues. As an auxiliary tool for drug discovery, smart biomaterials and biopolymers produced from biodegradable monomers allow the manufacture of multifunctional polymeric devices capable of acting as biosensors, of incorporating bioactives and biomolecules, or even mimicking organs and tissues through self-association and organization between cells and biopolymers. This review discusses in detail the use of natural monomers for the synthesis of hydrogels via green routes. The physical, chemical and morphological characteristics of these polymers are described, in addition to emphasizing polymer-particle-protein interactions and their application in proteomics studies. To highlight the diversity of green synthesis methodologies and the properties of the final hydrogels, applications in the areas of drug delivery, antibody interactions, cancer therapy, imaging and biomarker analysis are also discussed, as well as the use of hydrogels for the discovery of antimicrobial and antiviral peptides with therapeutic potential.
Collapse
Affiliation(s)
- Liana Chafran
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110 , USA
| | | | | | - Barney Bishop
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110 , USA
| |
Collapse
|
10
|
Nickl V, Schulz E, Salvador E, Trautmann L, Diener L, Kessler AF, Monoranu CM, Dehghani F, Ernestus RI, Löhr M, Hagemann C. Glioblastoma-Derived Three-Dimensional Ex Vivo Models to Evaluate Effects and Efficacy of Tumor Treating Fields (TTFields). Cancers (Basel) 2022; 14:5177. [PMID: 36358594 PMCID: PMC9658171 DOI: 10.3390/cancers14215177] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 10/02/2023] Open
Abstract
Glioblastoma (GBM) displays a wide range of inter- and intra-tumoral heterogeneity contributing to therapeutic resistance and relapse. Although Tumor Treating Fields (TTFields) are effective for the treatment of GBM, there is a lack of ex vivo models to evaluate effects on patients' tumor biology or to screen patients for treatment efficacy. Thus, we adapted patient-derived three-dimensional tissue culture models to be compatible with TTFields application to tissue culture. Patient-derived primary cells (PDPC) were seeded onto murine organotypic hippocampal slice cultures (OHSC), and microtumor development with and without TTFields at 200 kHz was observed. In addition, organoids were generated from acute material cultured on OHSC and treated with TTFields. Lastly, the effect of TTFields on expression of the Ki67 proliferation marker was evaluated on cultured GBM slices. Microtumors exhibited increased sensitivity towards TTFields compared to monolayer cell cultures. TTFields affected tumor growth and viability, as the size of microtumors and the percentage of Ki67-positive cells decreased after treatment. Nevertheless, variability in the extent of the response was preserved between different patient samples. Therefore, these pre-clinical GBM models could provide snapshots of the tumor to simulate patient treatment response and to investigate molecular mechanisms of response and resistance.
Collapse
Affiliation(s)
- Vera Nickl
- Section Experimental Neurosurgery, Department of Neurosurgery, University of Würzburg, 97080 Würzburg, Germany
| | - Ellina Schulz
- Section Experimental Neurosurgery, Department of Neurosurgery, University of Würzburg, 97080 Würzburg, Germany
| | - Ellaine Salvador
- Section Experimental Neurosurgery, Department of Neurosurgery, University of Würzburg, 97080 Würzburg, Germany
| | - Laureen Trautmann
- Section Experimental Neurosurgery, Department of Neurosurgery, University of Würzburg, 97080 Würzburg, Germany
| | - Leopold Diener
- Section Experimental Neurosurgery, Department of Neurosurgery, University of Würzburg, 97080 Würzburg, Germany
| | - Almuth F. Kessler
- Section Experimental Neurosurgery, Department of Neurosurgery, University of Würzburg, 97080 Würzburg, Germany
| | - Camelia M. Monoranu
- Department of Neuropathology, Institute of Pathology, University of Würzburg, 97080 Würzburg, Germany
| | - Faramarz Dehghani
- Department of Anatomy and Cell Biology, Martin-Luther-University Halle-Wittenberg, 06112 Halle (Saale), Germany
| | - Ralf-Ingo Ernestus
- Section Experimental Neurosurgery, Department of Neurosurgery, University of Würzburg, 97080 Würzburg, Germany
| | - Mario Löhr
- Section Experimental Neurosurgery, Department of Neurosurgery, University of Würzburg, 97080 Würzburg, Germany
| | - Carsten Hagemann
- Section Experimental Neurosurgery, Department of Neurosurgery, University of Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
11
|
Belli C, Antonarelli G, Repetto M, Boscolo Bielo L, Crimini E, Curigliano G. Targeting Cellular Components of the Tumor Microenvironment in Solid Malignancies. Cancers (Basel) 2022; 14:4278. [PMID: 36077813 PMCID: PMC9454727 DOI: 10.3390/cancers14174278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Cancers are composed of transformed cells, characterized by aberrant growth and invasiveness, in close relationship with non-transformed healthy cells and stromal tissue. The latter two comprise the so-called tumor microenvironment (TME), which plays a key role in tumorigenesis, cancer progression, metastatic seeding, and therapy resistance. In these regards, cancer-TME interactions are complex and dynamic, with malignant cells actively imposing an immune-suppressive and tumor-promoting state on surrounding, non-transformed, cells. Immune cells (both lymphoid and myeloid) can be recruited from the circulation and/or bone marrow by means of chemotactic signals, and their functionality is hijacked upon arrival at tumor sites. Molecular characterization of tumor-TME interactions led to the introduction of novel anti-cancer therapies targeting specific components of the TME, such as immune checkpoint blockers (ICB) (i.e., anti-programmed death 1, anti-PD1; anti-Cytotoxic T-Lymphocyte Antigen 4, anti-CTLA4). However, ICB resistance often develops and, despite the introduction of newer technologies able to study the TME at the single-cell level, a detailed understanding of all tumor-TME connections is still largely lacking. In this work, we highlight the main cellular and extracellular components of the TME, discuss their dynamics and functionality, and provide an outlook on the most relevant clinical data obtained with novel TME-targeting agents, with a focus on T lymphocytes, macrophages, and cancer-associated fibroblasts.
Collapse
Affiliation(s)
- Carmen Belli
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Gabriele Antonarelli
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141 Milan, Italy
- Department of Oncology and Haematology (DIPO), University of Milan, 20141 Milan, Italy
| | - Matteo Repetto
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141 Milan, Italy
- Department of Oncology and Haematology (DIPO), University of Milan, 20141 Milan, Italy
| | - Luca Boscolo Bielo
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141 Milan, Italy
- Department of Oncology and Haematology (DIPO), University of Milan, 20141 Milan, Italy
| | - Edoardo Crimini
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141 Milan, Italy
- Department of Oncology and Haematology (DIPO), University of Milan, 20141 Milan, Italy
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141 Milan, Italy
- Department of Oncology and Haematology (DIPO), University of Milan, 20141 Milan, Italy
| |
Collapse
|
12
|
Doffe F, Bonini F, Lakis E, Terry S, Chouaib S, Savagner P. Designing Organoid Models to Monitor Cancer Progression, Plasticity and Resistance: The Right Set Up for the Right Question. Cancers (Basel) 2022; 14:cancers14153559. [PMID: 35892818 PMCID: PMC9330027 DOI: 10.3390/cancers14153559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 01/25/2023] Open
Abstract
The recent trend in 3D cell modeling has fostered the emergence of a wide range of models, addressing very distinct goals ranging from the fundamental exploration of cell–cell interactions to preclinical assays for personalized medicine. It is clear that no single model will recapitulate the complexity and dynamics of in vivo situations. The key is to define the critical points, achieve a specific goal and design a model where they can be validated. In this report, we focused on cancer progression. We describe our model which is designed to emulate breast carcinoma progression during the invasive phase. We chose to provide topological clues to the target cells by growing them on microsupports, favoring a polarized epithelial organization before they are embedded in a 3D matrix. We then watched for cell organization and differentiation for these models, adding stroma cells then immune cells to follow and quantify cell responses to drug treatment, including quantifying cell death and viability, as well as morphogenic and invasive properties. We used model cell lines including Comma Dβ, MCF7 and MCF10A mammary epithelial cells as well as primary breast cancer cells from patient-derived xenografts (PDX). We found that fibroblasts impacted cell response to Docetaxel and Palbociclib. We also found that NK92 immune cells could target breast cancer cells within the 3D configuration, providing quantitative monitoring of cell cytotoxicity. We also tested several sources for the extracellular matrix and selected a hyaluronan-based matrix as a promising alternative to mouse tumor basement membrane extracts for primary human cancer cells. Overall, we validated a new 3D model designed for breast cancer for preclinical use in personalized medicine.
Collapse
Affiliation(s)
- Flora Doffe
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, 94805 Villejuif, France; (F.D.); (S.T.); (S.C.)
| | - Fabien Bonini
- Department of Pathology and Immunology, Faculty of Medicine, University Geneva, 1205 Geneva, Switzerland;
| | | | - Stéphane Terry
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, 94805 Villejuif, France; (F.D.); (S.T.); (S.C.)
| | - Salem Chouaib
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, 94805 Villejuif, France; (F.D.); (S.T.); (S.C.)
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Pierre Savagner
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, 94805 Villejuif, France; (F.D.); (S.T.); (S.C.)
- Correspondence:
| |
Collapse
|
13
|
Tomar A, Uysal-Onganer P, Basnett P, Pati U, Roy I. 3D Disease Modelling of Hard and Soft Cancer Using PHA-Based Scaffolds. Cancers (Basel) 2022; 14:3549. [PMID: 35884609 PMCID: PMC9321847 DOI: 10.3390/cancers14143549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/18/2022] [Indexed: 02/04/2023] Open
Abstract
Tumour cells are shown to change shape and lose polarity when they are cultured in 3D, a feature typically associated with tumour progression in vivo, thus making it significant to study cancer cells in an environment that mimics the in vivo milieu. In this study we established hard (MCF7 and MDA-MB-231, breast cancer) and soft (HCT116, colon cancer) 3D cancer tumour models utilizing a blend of P(3HO-co-3HD) and P(3HB). P(3HO-co-3HD) and P(3HB) belong to a group of natural biodegradable polyesters, PHAs, that are synthesised by microorganisms. The 3D PHA scaffolds produced, with a pore size of 30 to 300 µm, allow for nutrients to diffuse within the scaffold and provide the cells with the flexibility to distribute evenly within the scaffold and grow within the pores. Interestingly, by Day 5, MDA-MB-231 showed dispersed growth in clusters, and MCF7 cells formed an evenly dispersed dense layer, while HCT116 formed large colonies within the pockets of the 3D PHA scaffolds. Our results show Epithelial Mesenchymal Transition (EMT) marker gene expression profiles in the hard tumour cancer models. In the 3D-based PHA scaffolds, MDA-MB-231 cells expressed higher levels of Wnt-11 and mesenchymal markers, such as Snail and its downstream gene Vim mRNAs, while MCF7 cells exhibited no change in their expression. On the other hand, MCF7 cells exhibited a significantly increased E-Cadherin expression as compared to MDA-MB-231 cells. The expression levels of EMT markers were comparative to their expression reported in the tumour samples, making them good representative of cancer models. In future these models will be helpful in mimicking hypoxic tumours, in studying gene expression, cellular signalling, angiogenesis and drug response more accurately than 2D and perhaps other 3D models.
Collapse
Affiliation(s)
- Akanksha Tomar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India;
| | - Pinar Uysal-Onganer
- Cancer Research Group, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London W1W 6UW, UK;
| | - Pooja Basnett
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London W1W 6XH, UK;
| | - Uttam Pati
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India;
| | - Ipsita Roy
- Department of Materials Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
14
|
Dankó T, Petővári G, Raffay R, Sztankovics D, Moldvai D, Vetlényi E, Krencz I, Rókusz A, Sipos K, Visnovitz T, Pápay J, Sebestyén A. Characterisation of 3D Bioprinted Human Breast Cancer Model for In Vitro Drug and Metabolic Targeting. Int J Mol Sci 2022; 23:ijms23137444. [PMID: 35806452 PMCID: PMC9267600 DOI: 10.3390/ijms23137444] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023] Open
Abstract
Monolayer cultures, the less standard three-dimensional (3D) culturing systems, and xenografts are the main tools used in current basic and drug development studies of cancer research. The aim of biofabrication is to design and construct a more representative in vivo 3D environment, replacing two-dimensional (2D) cell cultures. Here, we aim to provide a complex comparative analysis of 2D and 3D spheroid culturing, and 3D bioprinted and xenografted breast cancer models. We established a protocol to produce alginate-based hydrogel bioink for 3D bioprinting and the long-term culturing of tumour cells in vitro. Cell proliferation and tumourigenicity were assessed with various tests. Additionally, the results of rapamycin, doxycycline and doxorubicin monotreatments and combinations were also compared. The sensitivity and protein expression profile of 3D bioprinted tissue-mimetic scaffolds showed the highest similarity to the less drug-sensitive xenograft models. Several metabolic protein expressions were examined, and the in situ tissue heterogeneity representing the characteristics of human breast cancers was also verified in 3D bioprinted and cultured tissue-mimetic structures. Our results provide additional steps in the direction of representing in vivo 3D situations in in vitro studies. Future use of these models could help to reduce the number of animal experiments and increase the success rate of clinical phase trials.
Collapse
Affiliation(s)
- Titanilla Dankó
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (T.D.); (G.P.); (R.R.); (D.S.); (D.M.); (E.V.); (I.K.); (A.R.); (K.S.); (J.P.)
| | - Gábor Petővári
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (T.D.); (G.P.); (R.R.); (D.S.); (D.M.); (E.V.); (I.K.); (A.R.); (K.S.); (J.P.)
| | - Regina Raffay
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (T.D.); (G.P.); (R.R.); (D.S.); (D.M.); (E.V.); (I.K.); (A.R.); (K.S.); (J.P.)
| | - Dániel Sztankovics
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (T.D.); (G.P.); (R.R.); (D.S.); (D.M.); (E.V.); (I.K.); (A.R.); (K.S.); (J.P.)
| | - Dorottya Moldvai
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (T.D.); (G.P.); (R.R.); (D.S.); (D.M.); (E.V.); (I.K.); (A.R.); (K.S.); (J.P.)
| | - Enikő Vetlényi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (T.D.); (G.P.); (R.R.); (D.S.); (D.M.); (E.V.); (I.K.); (A.R.); (K.S.); (J.P.)
| | - Ildikó Krencz
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (T.D.); (G.P.); (R.R.); (D.S.); (D.M.); (E.V.); (I.K.); (A.R.); (K.S.); (J.P.)
| | - András Rókusz
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (T.D.); (G.P.); (R.R.); (D.S.); (D.M.); (E.V.); (I.K.); (A.R.); (K.S.); (J.P.)
| | - Krisztina Sipos
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (T.D.); (G.P.); (R.R.); (D.S.); (D.M.); (E.V.); (I.K.); (A.R.); (K.S.); (J.P.)
| | - Tamás Visnovitz
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary;
- Department of Plant Physiology and Molecular Plant Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/c, 1117 Budapest, Hungary
| | - Judit Pápay
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (T.D.); (G.P.); (R.R.); (D.S.); (D.M.); (E.V.); (I.K.); (A.R.); (K.S.); (J.P.)
| | - Anna Sebestyén
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (T.D.); (G.P.); (R.R.); (D.S.); (D.M.); (E.V.); (I.K.); (A.R.); (K.S.); (J.P.)
- Correspondence: or
| |
Collapse
|
15
|
Romano V, Ruocco MR, Carotenuto P, Barbato A, Venuta A, Acampora V, De Lella S, Vigliar E, Iaccarino A, Troncone G, Calì G, Insabato L, Russo D, Franco B, Masone S, Velotti N, Accurso A, Pellegrino T, Fiume G, Belviso I, Montagnani S, Avagliano A, Arcucci A. Generation and Characterization of a Tumor Stromal Microenvironment and Analysis of Its Interplay with Breast Cancer Cells: An In Vitro Model to Study Breast Cancer-Associated Fibroblast Inactivation. Int J Mol Sci 2022; 23:ijms23126875. [PMID: 35743318 PMCID: PMC9224278 DOI: 10.3390/ijms23126875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 02/01/2023] Open
Abstract
Breast cancer-associated fibroblasts (BCAFs), the most abundant non-cancer stromal cells of the breast tumor microenvironment (TME), dramatically sustain breast cancer (BC) progression by interacting with BC cells. BCAFs, as well as myofibroblasts, display an up regulation of activation and inflammation markers represented by α-smooth muscle actin (α-SMA) and cyclooxygenase 2 (COX-2). BCAF aggregates have been identified in the peripheral blood of metastatic BC patients. We generated an in vitro stromal model consisting of human primary BCAFs grown as monolayers or 3D cell aggregates, namely spheroids and reverted BCAFs, obtained from BCAF spheroids reverted to 2D cell adhesion growth after 216 h of 3D culture. We firstly evaluated the state of activation and inflammation and the mesenchymal status of the BCAF monolayers, BCAF spheroids and reverted BCAFs. Then, we analyzed the MCF-7 cell viability and migration following treatment with conditioned media from the different BCAF cultures. After 216 h of 3D culture, the BCAFs acquired an inactivated phenotype, associated with a significant reduction in α-SMA and COX-2 protein expression. The deactivation of the BCAF spheroids at 216 h was further confirmed by the cytostatic effect exerted by their conditioned medium on MCF-7 cells. Interestingly, the reverted BCAFs also retained a less activated phenotype as indicated by α-SMA protein expression reduction. Furthermore, the reverted BCAFs exhibited a reduced pro-tumor phenotype as indicated by the anti-migratory effect exerted by their conditioned medium on MCF-7 cells. The deactivation of BCAFs without drug treatment is possible and leads to a reduced capability of BCAFs to sustain BC progression in vitro. Consequently, this study could be a starting point to develop new therapeutic strategies targeting BCAFs and their interactions with cancer cells.
Collapse
Affiliation(s)
- Veronica Romano
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (V.R.); (A.V.); (V.A.); (S.D.L.); (E.V.); (A.I.); (G.T.); (I.B.); (S.M.)
| | - Maria Rosaria Ruocco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy;
| | - Pietro Carotenuto
- TIGEM, Telethon Institute of Genetics and Medicine, 80078 Naples, Italy; (P.C.); (A.B.); (B.F.)
- Medical Genetics, Department of Translational Medical Science, University of Naples Federico II, 80131 Naples, Italy
| | - Anna Barbato
- TIGEM, Telethon Institute of Genetics and Medicine, 80078 Naples, Italy; (P.C.); (A.B.); (B.F.)
| | - Alessandro Venuta
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (V.R.); (A.V.); (V.A.); (S.D.L.); (E.V.); (A.I.); (G.T.); (I.B.); (S.M.)
| | - Vittoria Acampora
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (V.R.); (A.V.); (V.A.); (S.D.L.); (E.V.); (A.I.); (G.T.); (I.B.); (S.M.)
| | - Sabrina De Lella
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (V.R.); (A.V.); (V.A.); (S.D.L.); (E.V.); (A.I.); (G.T.); (I.B.); (S.M.)
| | - Elena Vigliar
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (V.R.); (A.V.); (V.A.); (S.D.L.); (E.V.); (A.I.); (G.T.); (I.B.); (S.M.)
| | - Antonino Iaccarino
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (V.R.); (A.V.); (V.A.); (S.D.L.); (E.V.); (A.I.); (G.T.); (I.B.); (S.M.)
| | - Giancarlo Troncone
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (V.R.); (A.V.); (V.A.); (S.D.L.); (E.V.); (A.I.); (G.T.); (I.B.); (S.M.)
| | - Gaetano Calì
- IEOS Istituto di Endocrinologia e Oncologia Sperimentale ‘G. Salvatore’, National Council of Research, 80131 Naples, Italy;
| | - Luigi Insabato
- Anatomic Pathology Unit, Department of Advanced Biomedical Sciences, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (L.I.); (D.R.)
| | - Daniela Russo
- Anatomic Pathology Unit, Department of Advanced Biomedical Sciences, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (L.I.); (D.R.)
| | - Brunella Franco
- TIGEM, Telethon Institute of Genetics and Medicine, 80078 Naples, Italy; (P.C.); (A.B.); (B.F.)
- Medical Genetics, Department of Translational Medical Science, University of Naples Federico II, 80131 Naples, Italy
- Scuola Superiore Meridionale, School for Advanced Studies, 80138 Naples, Italy
| | - Stefania Masone
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Nunzio Velotti
- Department of Advanced Biochemical Sciences, University of Naples Federico II, 80131 Naples, Italy;
| | - Antonello Accurso
- Department of General, Oncological, Bariatric and Endocrine-Metabolic Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Tommaso Pellegrino
- DAI Chirurgia Generale, Endocrinologia, Ortopedia e Riabilitazione, Azienda Ospedaliera Universitaria Federico II, 80131 Naples, Italy;
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Immacolata Belviso
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (V.R.); (A.V.); (V.A.); (S.D.L.); (E.V.); (A.I.); (G.T.); (I.B.); (S.M.)
| | - Stefania Montagnani
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (V.R.); (A.V.); (V.A.); (S.D.L.); (E.V.); (A.I.); (G.T.); (I.B.); (S.M.)
| | - Angelica Avagliano
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (V.R.); (A.V.); (V.A.); (S.D.L.); (E.V.); (A.I.); (G.T.); (I.B.); (S.M.)
- Correspondence: (A.A.); (A.A.); Tel.: +39-081-7463422 (A.A. & A.A.)
| | - Alessandro Arcucci
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (V.R.); (A.V.); (V.A.); (S.D.L.); (E.V.); (A.I.); (G.T.); (I.B.); (S.M.)
- Correspondence: (A.A.); (A.A.); Tel.: +39-081-7463422 (A.A. & A.A.)
| |
Collapse
|
16
|
Lukin I, Erezuma I, Maeso L, Zarate J, Desimone MF, Al-Tel TH, Dolatshahi-Pirouz A, Orive G. Progress in Gelatin as Biomaterial for Tissue Engineering. Pharmaceutics 2022; 14:pharmaceutics14061177. [PMID: 35745750 PMCID: PMC9229474 DOI: 10.3390/pharmaceutics14061177] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/24/2022] [Accepted: 05/28/2022] [Indexed: 02/04/2023] Open
Abstract
Tissue engineering has become a medical alternative in this society with an ever-increasing lifespan. Advances in the areas of technology and biomaterials have facilitated the use of engineered constructs for medical issues. This review discusses on-going concerns and the latest developments in a widely employed biomaterial in the field of tissue engineering: gelatin. Emerging techniques including 3D bioprinting and gelatin functionalization have demonstrated better mimicking of native tissue by reinforcing gelatin-based systems, among others. This breakthrough facilitates, on the one hand, the manufacturing process when it comes to practicality and cost-effectiveness, which plays a key role in the transition towards clinical application. On the other hand, it can be concluded that gelatin could be considered as one of the promising biomaterials in future trends, in which the focus might be on the detection and diagnosis of diseases rather than treatment.
Collapse
Affiliation(s)
- Izeia Lukin
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (I.L.); (I.E.); (L.M.); (J.Z.)
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
| | - Itsasne Erezuma
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (I.L.); (I.E.); (L.M.); (J.Z.)
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
| | - Lidia Maeso
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (I.L.); (I.E.); (L.M.); (J.Z.)
| | - Jon Zarate
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (I.L.); (I.E.); (L.M.); (J.Z.)
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Martin Federico Desimone
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Universidad de Buenos Aires, Buenos Aires 1113, Argentina;
| | - Taleb H. Al-Tel
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Alireza Dolatshahi-Pirouz
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, 2800 Kgs Lyngby, Denmark;
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (I.L.); (I.E.); (L.M.); (J.Z.)
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain
- University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
- Correspondence:
| |
Collapse
|
17
|
Foglietta F, Canaparo R, Cossari S, Panzanelli P, Dosio F, Serpe L. Ultrasound Triggers Hypericin Activation Leading to Multifaceted Anticancer Activity. Pharmaceutics 2022; 14:1102. [PMID: 35631688 PMCID: PMC9146189 DOI: 10.3390/pharmaceutics14051102] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/04/2022] Open
Abstract
The use of ultrasound (US) in combination with a responsive chemical agent (sonosensitizer) can selectively trigger the agent's anticancer activity in a process called sonodynamic therapy (SDT). SDT shares some properties with photodynamic therapy (PDT), which has been clinically approved, but sets itself apart because of its use of US rather than light to achieve better tissue penetration. SDT provides anticancer effects mainly via the sonosensitizer-mediated generation of reactive oxygen species (ROS), although the precise nature of the underpinning mechanism is still under debate. This work investigates the SDT anticancer activity of hypericin (Hyp) in vitro in two- (2D) and three-dimensional (3D) HT-29 colon cancer models, and uses PDT as a yardstick due to its well-known Hyp phototoxicity. The cancer cell uptake and cellular localization of Hyp were investigated first to determine the proper noncytotoxic concentration and incubation time of Hyp for SDT. Furthermore, ROS production, cell proliferation, and cell death were evaluated after Hyp was exposed to US. Since cancer relapse and transporter-mediated multidrug resistance (MDR) are important causes of cancer treatment failure, the US-mediated ability of Hyp to elicit immunogenic cell death (ICD) and overcome MDR was also investigated. SDT showed strong ROS-mediated anticancer activity 48 h after treatment in both the HT-29 models. Specific damage-associated molecular patterns that are consistent with ICD, such as calreticulin (CRT) exposure and high-mobility group box 1 protein (HMGB1) release, were observed after SDT with Hyp. Moreover, the expression of the ABC transporter, P-glycoprotein (P-gp), in HT-29/MDR cells was not able to hinder cancer cell responsiveness to SDT with Hyp. This work reveals, for the first time, the US responsiveness of Hyp with significant anticancer activity being displayed, making it a full-fledged sonosensitizer for the SDT of cancer.
Collapse
Affiliation(s)
- Federica Foglietta
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy; (F.F.); (R.C.); (S.C.); (L.S.)
| | - Roberto Canaparo
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy; (F.F.); (R.C.); (S.C.); (L.S.)
| | - Simone Cossari
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy; (F.F.); (R.C.); (S.C.); (L.S.)
| | - Patrizia Panzanelli
- Department of Neuroscience Rita Levi Montalcini, University of Torino, 10125 Torino, Italy;
| | - Franco Dosio
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy; (F.F.); (R.C.); (S.C.); (L.S.)
| | - Loredana Serpe
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy; (F.F.); (R.C.); (S.C.); (L.S.)
| |
Collapse
|
18
|
Limongi T, Guzzi F, Parrotta E, Candeloro P, Scalise S, Lucchino V, Gentile F, Tirinato L, Coluccio ML, Torre B, Allione M, Marini M, Susa F, Fabrizio ED, Cuda G, Perozziello G. Microfluidics for 3D Cell and Tissue Cultures: Microfabricative and Ethical Aspects Updates. Cells 2022; 11:1699. [PMID: 35626736 PMCID: PMC9139493 DOI: 10.3390/cells11101699] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 12/10/2022] Open
Abstract
The necessity to improve in vitro cell screening assays is becoming ever more important. Pharmaceutical companies, research laboratories and hospitals require technologies that help to speed up conventional screening and therapeutic procedures to produce more data in a short time in a realistic and reliable manner. The design of new solutions for test biomaterials and active molecules is one of the urgent problems of preclinical screening and the limited correlation between in vitro and in vivo data remains one of the major issues. The establishment of the most suitable in vitro model provides reduction in times, costs and, last but not least, in the number of animal experiments as recommended by the 3Rs (replace, reduce, refine) ethical guiding principles for testing involving animals. Although two-dimensional (2D) traditional cell screening assays are generally cheap and practical to manage, they have strong limitations, as cells, within the transition from the three-dimensional (3D) in vivo to the 2D in vitro growth conditions, do not properly mimic the real morphologies and physiology of their native tissues. In the study of human pathologies, especially, animal experiments provide data closer to what happens in the target organ or apparatus, but they imply slow and costly procedures and they generally do not fully accomplish the 3Rs recommendations, i.e., the amount of laboratory animals and the stress that they undergo must be minimized. Microfluidic devices seem to offer different advantages in relation to the mentioned issues. This review aims to describe the critical issues connected with the conventional cells culture and screening procedures, showing what happens in the in vivo physiological micro and nano environment also from a physical point of view. During the discussion, some microfluidic tools and their components are described to explain how these devices can circumvent the actual limitations described in the introduction.
Collapse
Affiliation(s)
- Tania Limongi
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (T.L.); (B.T.); (M.A.); (M.M.); (F.S.); (E.D.F.)
| | - Francesco Guzzi
- Nanotechnology Research Centre, BioNEM Laboratory, Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (F.G.); (P.C.); (F.G.); (L.T.); (M.L.C.)
| | - Elvira Parrotta
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Patrizio Candeloro
- Nanotechnology Research Centre, BioNEM Laboratory, Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (F.G.); (P.C.); (F.G.); (L.T.); (M.L.C.)
| | - Stefania Scalise
- Research Centre for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy; (S.S.); (V.L.); (G.C.)
| | - Valeria Lucchino
- Research Centre for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy; (S.S.); (V.L.); (G.C.)
| | - Francesco Gentile
- Nanotechnology Research Centre, BioNEM Laboratory, Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (F.G.); (P.C.); (F.G.); (L.T.); (M.L.C.)
| | - Luca Tirinato
- Nanotechnology Research Centre, BioNEM Laboratory, Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (F.G.); (P.C.); (F.G.); (L.T.); (M.L.C.)
| | - Maria Laura Coluccio
- Nanotechnology Research Centre, BioNEM Laboratory, Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (F.G.); (P.C.); (F.G.); (L.T.); (M.L.C.)
| | - Bruno Torre
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (T.L.); (B.T.); (M.A.); (M.M.); (F.S.); (E.D.F.)
| | - Marco Allione
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (T.L.); (B.T.); (M.A.); (M.M.); (F.S.); (E.D.F.)
| | - Monica Marini
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (T.L.); (B.T.); (M.A.); (M.M.); (F.S.); (E.D.F.)
| | - Francesca Susa
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (T.L.); (B.T.); (M.A.); (M.M.); (F.S.); (E.D.F.)
| | - Enzo Di Fabrizio
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (T.L.); (B.T.); (M.A.); (M.M.); (F.S.); (E.D.F.)
| | - Giovanni Cuda
- Research Centre for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy; (S.S.); (V.L.); (G.C.)
| | - Gerardo Perozziello
- Nanotechnology Research Centre, BioNEM Laboratory, Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (F.G.); (P.C.); (F.G.); (L.T.); (M.L.C.)
| |
Collapse
|
19
|
Focused Ultrasound Treatment of a Spheroid In Vitro Tumour Model. Cells 2022; 11:cells11091518. [PMID: 35563823 PMCID: PMC9099905 DOI: 10.3390/cells11091518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Ultrasound waves can be applied for diagnostic and therapeutic purposes. Focused ultrasound is approved for tissue ablation, e.g., in the treatment of uterine fibroids or essential tremors. Besides the non-invasive image-guided surgical intervention at temperatures above 55 °C, FUS is investigated in other fields like blood-brain barrier opening, hyperthermia, and neuromodulation. FUS offers potential as an adjuvant therapy in cancer treatment. Therefore, analysis of FUS effects on cancer cells is necessary. We performed studies on two human cancer cell line spheroids using a newly developed high-throughput in vitro FUS applicator with 32 individual transducers. This study aimed to perform basic experiments with a new in vitro FUS device on a 3D tumour model to acquire insight into the effects of FUS at the cellular level. These experiments may contribute to a better understanding and predictions of cancer treatment efficacy. Abstract Focused ultrasound (FUS) is a non-invasive technique producing a variety of biological effects by either thermal or mechanical mechanisms of ultrasound interaction with the targeted tissue. FUS could bring benefits, e.g., tumour sensitisation, immune stimulation, and targeted drug delivery, but investigation of FUS effects at the cellular level is still missing. New techniques are commonly tested in vitro on two-dimensional (2D) monolayer cancer cell culture models. The 3D tumour model—spheroid—is mainly utilised to mimic solid tumours from an architectural standpoint. It is a promising method to simulate the characteristics of tumours in vitro and their various responses to therapeutic alternatives. This study aimed to evaluate the effects of FUS on human prostate and glioblastoma cancer tumour spheroids in vitro. The experimental follow-up enclosed the measurements of spheroid integrity and growth kinetics, DNA damage, and cellular metabolic activity by measuring intracellular ATP content in the spheroids. Our results showed that pulsed FUS treatment induced molecular effects in 3D tumour models. With the disruption of the spheroid integrity, we observed an increase in DNA double-strand breaks, leading to damage in the cancer cells depending on the cancer cell type.
Collapse
|
20
|
Bae J, Choi YS, Cho G, Jang SJ. The Patient-Derived Cancer Organoids: Promises and Challenges as Platforms for Cancer Discovery. Cancers (Basel) 2022; 14:cancers14092144. [PMID: 35565273 PMCID: PMC9105149 DOI: 10.3390/cancers14092144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 02/01/2023] Open
Abstract
The cancer burden is rapidly increasing in most countries, and thus, new anticancer drugs for effective cancer therapy must be developed. Cancer model systems that recapitulate the biological processes of human cancers are one of the cores of the drug development process. PDCO has emerged as a unique model that preserves the genetic, physiological, and histologic characteristics of original cancer, including inter- and intratumoral heterogeneities. Due to these advantages, the PCDO model is increasingly investigated for anticancer drug screening and efficacy testing, preclinical patient stratification, and precision medicine for selecting the most effective anticancer therapy for patients. Here, we review the prospects and limitations of PDCO compared to the conventional cancer models. With advances in culture success rates, co-culture systems with the tumor microenvironment, organoid-on-a-chip technology, and automation technology, PDCO will become the most promising model to develop anticancer drugs and precision medicine.
Collapse
Affiliation(s)
- JuneSung Bae
- Department of Research and Development, OncoClew Co., Ltd., Seoul 04778, Korea; (J.B.); (Y.S.C.); (G.C.)
| | - Yun Sik Choi
- Department of Research and Development, OncoClew Co., Ltd., Seoul 04778, Korea; (J.B.); (Y.S.C.); (G.C.)
| | - Gunsik Cho
- Department of Research and Development, OncoClew Co., Ltd., Seoul 04778, Korea; (J.B.); (Y.S.C.); (G.C.)
| | - Se Jin Jang
- Department of Research and Development, OncoClew Co., Ltd., Seoul 04778, Korea; (J.B.); (Y.S.C.); (G.C.)
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, Seoul 05505, Korea
- Correspondence: ; Tel.: +82-2-498-2644; Fax: +82-2-498-2655
| |
Collapse
|
21
|
A Comparative Study on the Adipogenic Differentiation of Mesenchymal Stem/Stromal Cells in 2D and 3D Culture. Cells 2022; 11:cells11081313. [PMID: 35455993 PMCID: PMC9029885 DOI: 10.3390/cells11081313] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSC) are capable of renewing the progenitor cell fraction or differentiating in a tissue-specific manner. Adipogenic differentiation of adipose-tissue-derived MSC (adMSC) is important in various pathological processes. Adipocytes and their progenitors are metabolically active and secrete molecules (adipokines) that have both pro- and anti-inflammatory properties. Cell culturing in 2D is commonly used to study cellular responses, but the 2D environment does not reflect the structural situation for most cell types. Therefore, 3D culture systems have been developed to create an environment considered more physiological. Since knowledge about the effects of 3D cultivation on adipogenic differentiation is limited, we investigated its effects on adipogenic differentiation and adipokine release of adMSC (up to 28 days) and compared these with the effects in 2D. We demonstrated that cultivation conditions are crucial for cell behavior: in both 2D and 3D culture, adipogenic differentiation occurred only after specific stimulation. While the size and structure of adipogenically stimulated 3D spheroids remained stable during the experiment, the unstimulated spheroids showed signs of disintegration. Adipokine release was dependent on culture dimensionality; we found upregulated adiponectin and downregulated pro-inflammatory factors. Our findings are relevant for cell therapeutic applications of adMSC in complex, three-dimensionally arranged tissues.
Collapse
|
22
|
Cancer-Associated Fibroblasts: Mechanisms of Tumor Progression and Novel Therapeutic Targets. Cancers (Basel) 2022; 14:cancers14051231. [PMID: 35267539 PMCID: PMC8909913 DOI: 10.3390/cancers14051231] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The tumor microenvironment plays an important role in determining the biological behavior of several of the more aggressive malignancies. Among the various cell types evident in the tumor “field”, cancer-associated fibroblasts (CAFs) are a heterogenous collection of activated fibroblasts secreting a wide repertoire of factors that regulate tumor development and progression, inflammation, drug resistance, metastasis and recurrence. Insensitivity to chemotherapeutics and metastatic spread are the major contributors to cancer patient mortality. This review discusses the complex interactions between CAFs and the various populations of normal and neoplastic cells that interact within the dynamic confines of the tumor microenvironment with a focus on the involved pathways and genes. Abstract Cancer-associated fibroblasts (CAFs) are a heterogenous population of stromal cells found in solid malignancies that coexist with the growing tumor mass and other immune/nonimmune cellular elements. In certain neoplasms (e.g., desmoplastic tumors), CAFs are the prominent mesenchymal cell type in the tumor microenvironment, where their presence and abundance signal a poor prognosis in multiple cancers. CAFs play a major role in the progression of various malignancies by remodeling the supporting stromal matrix into a dense, fibrotic structure while secreting factors that lead to the acquisition of cancer stem-like characteristics and promoting tumor cell survival, reduced sensitivity to chemotherapeutics, aggressive growth and metastasis. Tumors with high stromal fibrotic signatures are more likely to be associated with drug resistance and eventual relapse. Clarifying the molecular basis for such multidirectional crosstalk among the various normal and neoplastic cell types present in the tumor microenvironment may yield novel targets and new opportunities for therapeutic intervention. This review highlights the most recent concepts regarding the complexity of CAF biology including CAF heterogeneity, functionality in drug resistance, contribution to a progressively fibrotic tumor stroma, the involved signaling pathways and the participating genes.
Collapse
|
23
|
Dhakal B, Li CMY, Li R, Yeo K, Wright JA, Gieniec KA, Vrbanac L, Sammour T, Lawrence M, Thomas M, Lewis M, Perry J, Worthley DL, Woods SL, Drew P, Sallustio BC, Smith E, Horowitz JD, Maddern GJ, Licari G, Fenix K. The Antianginal Drug Perhexiline Displays Cytotoxicity against Colorectal Cancer Cells In Vitro: A Potential for Drug Repurposing. Cancers (Basel) 2022; 14:cancers14041043. [PMID: 35205791 PMCID: PMC8869789 DOI: 10.3390/cancers14041043] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 01/05/2023] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related death worldwide. Perhexiline, a prophylactic anti-anginal drug, has been reported to have anti-tumour effects both in vitro and in vivo. Perhexiline as used clinically is a 50:50 racemic mixture ((R)-P) of (-) and (+) enantiomers. It is not known if the enantiomers differ in terms of their effects on cancer. In this study, we examined the cytotoxic capacity of perhexiline and its enantiomers ((-)-P and (+)-P) on CRC cell lines, grown as monolayers or spheroids, and patient-derived organoids. Treatment of CRC cell lines with (R)-P, (-)-P or (+)-P reduced cell viability, with IC50 values of ~4 µM. Treatment was associated with an increase in annexin V staining and caspase 3/7 activation, indicating apoptosis induction. Caspase 3/7 activation and loss of structural integrity were also observed in CRC cell lines grown as spheroids. Drug treatment at clinically relevant concentrations significantly reduced the viability of patient-derived CRC organoids. Given these in vitro findings, perhexiline, as a racemic mixture or its enantiomers, warrants further investigation as a repurposed drug for use in the management of CRC.
Collapse
Affiliation(s)
- Bimala Dhakal
- Department of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia; (B.D.); (C.M.Y.L.); (R.L.); (K.Y.); (P.D.); (E.S.); (G.J.M.)
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, The University of Adelaide, Woodville, SA 5011, Australia; (B.C.S.); (J.D.H.)
| | - Celine Man Ying Li
- Department of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia; (B.D.); (C.M.Y.L.); (R.L.); (K.Y.); (P.D.); (E.S.); (G.J.M.)
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, The University of Adelaide, Woodville, SA 5011, Australia; (B.C.S.); (J.D.H.)
| | - Runhao Li
- Department of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia; (B.D.); (C.M.Y.L.); (R.L.); (K.Y.); (P.D.); (E.S.); (G.J.M.)
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, The University of Adelaide, Woodville, SA 5011, Australia; (B.C.S.); (J.D.H.)
- Medical Oncology, The Queen Elizabeth Hospital, Woodville, SA 5011, Australia
| | - Kenny Yeo
- Department of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia; (B.D.); (C.M.Y.L.); (R.L.); (K.Y.); (P.D.); (E.S.); (G.J.M.)
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, The University of Adelaide, Woodville, SA 5011, Australia; (B.C.S.); (J.D.H.)
| | - Josephine A. Wright
- Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, SA 5005, Australia; (J.A.W.); (K.A.G.); (L.V.); (T.S.); (D.L.W.); (S.L.W.)
| | - Krystyna A. Gieniec
- Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, SA 5005, Australia; (J.A.W.); (K.A.G.); (L.V.); (T.S.); (D.L.W.); (S.L.W.)
- Department of Medical Specialties, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Laura Vrbanac
- Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, SA 5005, Australia; (J.A.W.); (K.A.G.); (L.V.); (T.S.); (D.L.W.); (S.L.W.)
- Department of Medical Specialties, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Tarik Sammour
- Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, SA 5005, Australia; (J.A.W.); (K.A.G.); (L.V.); (T.S.); (D.L.W.); (S.L.W.)
- Department of Medical Specialties, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia
- Colorectal Unit, Department of Surgery, Royal Adelaide Hospital, Adelaide, SA 5005, Australia; (M.L.); (M.T.); (M.L.); (J.P.)
| | - Matthew Lawrence
- Colorectal Unit, Department of Surgery, Royal Adelaide Hospital, Adelaide, SA 5005, Australia; (M.L.); (M.T.); (M.L.); (J.P.)
| | - Michelle Thomas
- Colorectal Unit, Department of Surgery, Royal Adelaide Hospital, Adelaide, SA 5005, Australia; (M.L.); (M.T.); (M.L.); (J.P.)
| | - Mark Lewis
- Colorectal Unit, Department of Surgery, Royal Adelaide Hospital, Adelaide, SA 5005, Australia; (M.L.); (M.T.); (M.L.); (J.P.)
| | - Joanne Perry
- Colorectal Unit, Department of Surgery, Royal Adelaide Hospital, Adelaide, SA 5005, Australia; (M.L.); (M.T.); (M.L.); (J.P.)
| | - Daniel L. Worthley
- Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, SA 5005, Australia; (J.A.W.); (K.A.G.); (L.V.); (T.S.); (D.L.W.); (S.L.W.)
| | - Susan L. Woods
- Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, SA 5005, Australia; (J.A.W.); (K.A.G.); (L.V.); (T.S.); (D.L.W.); (S.L.W.)
- Department of Medical Specialties, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Paul Drew
- Department of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia; (B.D.); (C.M.Y.L.); (R.L.); (K.Y.); (P.D.); (E.S.); (G.J.M.)
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, The University of Adelaide, Woodville, SA 5011, Australia; (B.C.S.); (J.D.H.)
| | - Benedetta C. Sallustio
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, The University of Adelaide, Woodville, SA 5011, Australia; (B.C.S.); (J.D.H.)
- Discipline of Pharmacology, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Eric Smith
- Department of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia; (B.D.); (C.M.Y.L.); (R.L.); (K.Y.); (P.D.); (E.S.); (G.J.M.)
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, The University of Adelaide, Woodville, SA 5011, Australia; (B.C.S.); (J.D.H.)
- Medical Oncology, The Queen Elizabeth Hospital, Woodville, SA 5011, Australia
| | - John D. Horowitz
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, The University of Adelaide, Woodville, SA 5011, Australia; (B.C.S.); (J.D.H.)
| | - Guy J. Maddern
- Department of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia; (B.D.); (C.M.Y.L.); (R.L.); (K.Y.); (P.D.); (E.S.); (G.J.M.)
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, The University of Adelaide, Woodville, SA 5011, Australia; (B.C.S.); (J.D.H.)
| | - Giovanni Licari
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, The University of Adelaide, Woodville, SA 5011, Australia; (B.C.S.); (J.D.H.)
- Discipline of Pharmacology, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia
- Correspondence: (G.L.); (K.F.)
| | - Kevin Fenix
- Department of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia; (B.D.); (C.M.Y.L.); (R.L.); (K.Y.); (P.D.); (E.S.); (G.J.M.)
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, The University of Adelaide, Woodville, SA 5011, Australia; (B.C.S.); (J.D.H.)
- Correspondence: (G.L.); (K.F.)
| |
Collapse
|
24
|
Magnetic Compression of Tumor Spheroids Increases Cell Proliferation In Vitro and Cancer Progression In Vivo. Cancers (Basel) 2022; 14:cancers14020366. [PMID: 35053529 PMCID: PMC8773997 DOI: 10.3390/cancers14020366] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 02/04/2023] Open
Abstract
A growing tumor is submitted to ever-evolving mechanical stress. Endoscopic procedures add additional constraints. However, the impact of mechanical forces on cancer progression is still debated. Herein, a set of magnetic methods is proposed to form tumor spheroids and to subject them to remote deformation, mimicking stent-imposed compression. Upon application of a permanent magnet, the magnetic tumor spheroids (formed from colon cancer cells or from glioblastoma cells) are compressed by 50% of their initial diameters. Such significant deformation triggers an increase in the spheroid proliferation for both cell lines, correlated with an increase in the number of proliferating cells toward its center and associated with an overexpression of the matrix metalloproteinase-9 (MMP-9). In vivo peritoneal injection of the spheroids made from colon cancer cells confirmed the increased aggressiveness of the compressed spheroids, with almost a doubling of the peritoneal cancer index (PCI), as compared with non-stimulated spheroids. Moreover, liver metastasis of labeled cells was observed only in animals grafted with stimulated spheroids. Altogether, these results demonstrate that a large compression of tumor spheroids enhances cancer proliferation and metastatic process and could have implications in clinical procedures where tumor compression plays a role.
Collapse
|
25
|
Nii T, Tabata Y. Immunosuppressive mesenchymal stem cells aggregates incorporating hydrogel microspheres promote an in vitro invasion of cancer cells. Regen Ther 2022; 18:516-522. [PMID: 34977285 PMCID: PMC8668441 DOI: 10.1016/j.reth.2021.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 12/20/2022] Open
Abstract
Introduction The objective of this study is to design a co-culture system of cancer cells and three-dimensional (3D) mesenchymal stem cells (MSC) aggregates for the in vitro evaluation of cancer invasion. Methods First, the MSC of an immunosuppressive phenotype (MSC2) were prepared by the MSC stimulation of polyriboinosinic polyribocytidylic acid. By simple mixing MSC2 and gelatin hydrogel microspheres (GM) in a U-bottomed well of 96 well plates which had been pre-coated with poly (vinyl alcohol), 3D MSC2 aggregates incorporating GM were obtained. The amount of chemokine (C–C motif) ligand 5 (CCL5) secreted from the MSC2 aggregates incorporating GM. Finally, an invasion assay was performed to evaluate the cancer invasion rate by co-cultured cancer cells and the 3D MSC2 incorporating GM. Results The amount of CCL5 secreted for the 3D MSC2 aggregates incorporating GM was significantly higher than that of two-dimensional (2D) MSC, 2D MSC2, and 3D MSC aggregates incorporating GM. When MDA-MB-231 human breast cancer cells were co-cultured with the 3D MSC2 aggregates incorporating GM, the invasion rate of cancer cells was significantly high compared with that of 2D MSC or 2D MSC2 and 3D MSC aggregates incorporating GM. In addition, high secretion of matrix metalloproteinase-2 was observed for the 3D MSC2 aggregates/cancer cells system. Conclusions It is concluded that the co-culture system of 3D MSC2 aggregates incorporating GM and cancer cells is promising to evaluate the invasion of cancer cells in vitro. This invasion model is an important tool for anti-cancer drug screening. Mesenchymal stem cells of an immunosuppressive phenotype (MSC2) were obtained. 3D MSC2 aggregates incorporating gelatin hydrogel microspheres were prepared. 3D MSC2 aggregates promoted the invasion rate of cancer cells.
Collapse
Key Words
- (CCL)5, chemokine (C–C motif) ligand
- 2D, two-dimensional
- 3D, three-dimensional
- Anti-cancer drug screening
- CAF, cancer-associated fibroblasts
- Cancer invasion model
- DDW, double-distilled water
- DMEM, Dulbecco's modified Eagle's medium
- ELISA, enzyme-linked immunosolvent assay
- FCS, fetal calf serum
- GM, gelatin hydrogel microspheres
- Gelatin hydrogel microspheres
- MEM, minimum essential medium
- MMP, matrix metalloproteinase
- MSC, mesenchymal stem cells
- MSC2, MSC of an immunosuppressive phenotype
- Mesenchymal stem cells
- PBS, phosphate buffered-saline
- PVA, poly (vinyl alcohol)
- TAM, tumor-associated macrophages
- Three-dimensional cell culture
Collapse
Affiliation(s)
- Teruki Nii
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
26
|
Microglia-like Cells Promote Neuronal Functions in Cerebral Organoids. Cells 2021; 11:cells11010124. [PMID: 35011686 PMCID: PMC8750120 DOI: 10.3390/cells11010124] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 12/17/2022] Open
Abstract
Human cerebral organoids, derived from induced pluripotent stem cells, offer a unique in vitro research window to the development of the cerebral cortex. However, a key player in the developing brain, the microglia, do not natively emerge in cerebral organoids. Here we show that erythromyeloid progenitors (EMPs), differentiated from induced pluripotent stem cells, migrate to cerebral organoids, and mature into microglia-like cells and interact with synaptic material. Patch-clamp electrophysiological recordings show that the microglia-like population supported the emergence of more mature and diversified neuronal phenotypes displaying repetitive firing of action potentials, low-threshold spikes and synaptic activity, while multielectrode array recordings revealed spontaneous bursting activity and increased power of gamma-band oscillations upon pharmacological challenge with NMDA. To conclude, microglia-like cells within the organoids promote neuronal and network maturation and recapitulate some aspects of microglia-neuron co-development in vivo, indicating that cerebral organoids could be a useful biorealistic human in vitro platform for studying microglia-neuron interactions.
Collapse
|
27
|
Xie H, Appelt JW, Jenkins RW. Going with the Flow: Modeling the Tumor Microenvironment Using Microfluidic Technology. Cancers (Basel) 2021; 13:cancers13236052. [PMID: 34885161 PMCID: PMC8656483 DOI: 10.3390/cancers13236052] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/20/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The clinical success of cancer immunotherapy targeting immune checkpoints (e.g., PD-1, CTLA-4) has ushered in a new era of cancer therapeutics aimed at promoting antitumor immunity in hopes of offering durable clinical responses for patients with advanced, metastatic cancer. This success has also reinvigorated interest in developing tumor model systems that recapitulate key features of antitumor immune responses to complement existing in vivo tumor models. Patient-derived tumor models have emerged in recent years to facilitate study of tumor–immune dynamics. Microfluidic technology has enabled development of microphysiologic systems (MPSs) for the evaluation of the tumor microenvironment, which have shown early promise in studying tumor–immune dynamics. Further development of microfluidic-based “tumor-on-a-chip” MPSs to study tumor–immune interactions may overcome several key challenges currently facing tumor immunology. Abstract Recent advances in cancer immunotherapy have led a paradigm shift in the treatment of multiple malignancies with renewed focus on the host immune system and tumor–immune dynamics. However, intrinsic and acquired resistance to immunotherapy limits patient benefits and wider application. Investigations into the mechanisms of response and resistance to immunotherapy have demonstrated key tumor-intrinsic and tumor-extrinsic factors. Studying complex interactions with multiple cell types is necessary to understand the mechanisms of response and resistance to cancer therapies. The lack of model systems that faithfully recapitulate key features of the tumor microenvironment (TME) remains a challenge for cancer researchers. Here, we review recent advances in TME models focusing on the use of microfluidic technology to study and model the TME, including the application of microfluidic technologies to study tumor–immune dynamics and response to cancer therapeutics. We also discuss the limitations of current systems and suggest future directions to utilize this technology to its highest potential.
Collapse
Affiliation(s)
- Hongyan Xie
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (H.X.); (J.W.A.)
| | - Jackson W. Appelt
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (H.X.); (J.W.A.)
| | - Russell W. Jenkins
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (H.X.); (J.W.A.)
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Sciences, Harvard Medical School, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Correspondence: ; Tel.: +617-726-9372; Fax: +844-542-5959
| |
Collapse
|
28
|
Nkune NW, Simelane NWN, Montaseri H, Abrahamse H. Photodynamic Therapy-Mediated Immune Responses in Three-Dimensional Tumor Models. Int J Mol Sci 2021; 22:12618. [PMID: 34884424 PMCID: PMC8657498 DOI: 10.3390/ijms222312618] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising non-invasive phototherapeutic approach for cancer therapy that can eliminate local tumor cells and produce systemic antitumor immune responses. In recent years, significant efforts have been made in developing strategies to further investigate the immune mechanisms triggered by PDT. The majority of in vitro experimental models still rely on the two-dimensional (2D) cell cultures that do not mimic a three-dimensional (3D) cellular environment in the human body, such as cellular heterogeneity, nutrient gradient, growth mechanisms, and the interaction between cells as well as the extracellular matrix (ECM) and therapeutic resistance to anticancer treatments. In addition, in vivo animal studies are highly expensive and time consuming, which may also show physiological discrepancies between animals and humans. In this sense, there is growing interest in the utilization of 3D tumor models, since they precisely mimic different features of solid tumors. This review summarizes the characteristics and techniques for 3D tumor model generation. Furthermore, we provide an overview of innate and adaptive immune responses induced by PDT in several in vitro and in vivo tumor models. Future perspectives are highlighted for further enhancing PDT immune responses as well as ideal experimental models for antitumor immune response studies.
Collapse
Affiliation(s)
| | | | | | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Johannesburg 2028, South Africa; (N.W.N.); (N.W.N.S.); (H.M.)
| |
Collapse
|
29
|
Nii T. Strategies Using Gelatin Microparticles for Regenerative Therapy and Drug Screening Applications. Molecules 2021; 26:molecules26226795. [PMID: 34833885 PMCID: PMC8617939 DOI: 10.3390/molecules26226795] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Abstract
Gelatin, a denatured form of collagen, is an attractive biomaterial for biotechnology. In particular, gelatin particles have been noted due to their attractive properties as drug carriers. The drug release from gelatin particles can be easily controlled by the crosslinking degree of gelatin molecule, responding to the purpose of the research. The gelatin particles capable of drug release are effective in wound healing, drug screening models. For example, a sustained release of growth factors for tissue regeneration at the injured sites can heal a wound. In the case of the drug screening model, a tissue-like model composed of cells with high activity by the sustained release of drug or growth factor provides reliable results of drug effects. Gelatin particles are effective in drug delivery and the culture of spheroids or cell sheets because the particles prevent hypoxia-derived cell death. This review introduces recent research on gelatin microparticles-based strategies for regenerative therapy and drug screening models.
Collapse
Affiliation(s)
- Teruki Nii
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan;
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
30
|
Development of Breast Cancer Spheroids to Evaluate Cytotoxic Response to an Anticancer Peptide. Pharmaceutics 2021; 13:pharmaceutics13111863. [PMID: 34834277 PMCID: PMC8619419 DOI: 10.3390/pharmaceutics13111863] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022] Open
Abstract
Breast cancer (BC) is the most commonly diagnosed cancer in women and one of the most common causes of cancer-related deaths. Despite intense research efforts, BC treatment still remains challenging. Improved drug development strategies are needed for impactful benefit to patients. Current preclinical studies rely mostly on cell-based screenings, using two-dimensional (2D) cell monolayers that do not mimic in vivo tumors properly. Herein, we explored the development and characterization of three-dimensional (3D) models, named spheroids, of the most aggressive BC subtypes (triple-negative breast cancer-TNBC; and human-epidermal growth receptor-2-HER2+), using the liquid overlay technique with several selected cell lines. In these cell line-derived spheroids, we studied cell density, proliferation, ultrastructure, apoptosis, reactive oxygen species (ROS) production, and cell permeabilization (live/dead). The results showed a formation of compact and homogeneous spheroids on day 7 after seeding 2000 cells/well for MDA-MB-231 and 5000 cells/well for BT-20 and BT-474. Next, we compared the efficacy of a model anticancer peptide (ACP) in cell monolayers and spheroids. Overall, the results demonstrated spheroids to be less sensitive to treatment than cell monolayers, revealing the need for more robust models in drug development.
Collapse
|
31
|
Es HA, Cox TR, Sarafraz-Yazdi E, Thiery JP, Warkiani ME. Pirfenidone Reduces Epithelial-Mesenchymal Transition and Spheroid Formation in Breast Carcinoma through Targeting Cancer-Associated Fibroblasts (CAFs). Cancers (Basel) 2021; 13:5118. [PMID: 34680267 PMCID: PMC8533995 DOI: 10.3390/cancers13205118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 02/04/2023] Open
Abstract
The aim of this study was to assess the effects of pirfenidone (PFD) on promoting epithelial-mesenchymal-transition (EMT) and stemness features in breast carcinoma cells through targeting cancer-associated-fibroblasts (CAFs). Using The Cancer Genome Atlas (TCGA) database, we analyzed the association between stromal index, EMT, and stemness-related genes across 1084 breast cancer patients, identifying positive correlation between YAP1, EMT, and stemness genes in samples with a high-stromal index. We monitored carcinoma cell invasion and spheroid formation co-cultured with CAFs in a 3D microfluidic device, followed by exposing carcinoma cells, spheroids, and CAFs with PFD. We depicted a positive association between the high-stromal index and the expression of EMT and stemness genes. High YAP1 expression in samples correlated with more advanced EMT status and stromal index. Additionally, we found that CAFs promoted spheroid formation and induced the expression of YAP1, VIM, and CD44 in spheroids. Treatment with PFD reduced carcinoma cell migration and decreased the expression of these genes at the protein level. The cytokine profiling showed significant depletion of various EMT- and stemness-regulated cytokines, particularly IL8, CCL17, and TNF-beta. These data highlight the potential application of PFD on inhibiting EMT and stemness in carcinoma cells through the targeting of critical cytokines.
Collapse
Affiliation(s)
- Hamidreza Aboulkheyr Es
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia;
| | - Thomas R Cox
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia;
| | | | - Jean Paul Thiery
- Comprehensive Cancer Center, Institute Gustave Roussy, 94805 Villejuif, France;
- Guangzhou Laboratory, Guangzhou 510000, China
- Center of Biomedical Engineering, Sechenov University, Moscow 119991, Russia
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia;
- Center of Biomedical Engineering, Sechenov University, Moscow 119991, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| |
Collapse
|
32
|
Mitsui R, Matsukawa M, Nakagawa K, Isomura E, Kuwahara T, Nii T, Tanaka S, Tabata Y. Efficient cell transplantation combining injectable hydrogels with control release of growth factors. Regen Ther 2021; 18:372-383. [PMID: 34632010 PMCID: PMC8479297 DOI: 10.1016/j.reth.2021.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/01/2021] [Accepted: 09/11/2021] [Indexed: 11/18/2022] Open
Abstract
Introduction The objective of this study is to investigate the effect of gelatin microspheres incorporating growth factors on the therapeutic efficacy in cell transplantation. The strength of this study is to combine gelatin hydrogel microspheres incorporating basic fibroblast growth factor and platelet growth factor mixture (GM/GF) with bioabsorbable injectable hydrogels (iGel) for transplantation of adipose-derived stem cells (ASCs). Methods The rats ASCs suspended in various solutions were transplanted in masseter muscle. Rats were euthanized 2, 7, 14 days after injection for measurement of the number of ASCs retention in the muscle and morphological evaluation of muscle fibers and the inflammation of the injected tissue by histologic and immunofluorescent stain. Results Following the injection into the skeletal muscle, the GM/GF allowed the growth factors to release at the injection site over one week. When ASCs were transplanted into skeletal muscle using iGel incorporating GM/GF (iGel+GM/GF), the number of cells grafted was significantly high compared with other control groups. Moreover, for the groups to which GM/GF was added, the cells transplanted survived, and the Myo-D expression of a myoblast marker was observed at the region of cells transplanted. Conclusions The growth factors released for a long time likely enhance the proliferative and differentiative capacity of cells. The simple combination with iGel and GM/GF allowed ASCs to enhance their survival at the injected site and consequently achieve improved therapeutic efficacy in cell transplantation. The rats adipose-derived stem cells (ASCs) suspended in various solutions were transplanted in masseter muscle. The number of cells transplanted using this study's technology was significantly high compared with other control groups. For the groups with growth factors, the Myo-D (myoblast marker) expression was observed at the region of cells transplanted.
Collapse
Key Words
- ASCs, adipose-derived stem cells
- Adipose-derived stem cells
- DMEM, Dulbecco modified Eagle medium
- Drug delivery system
- ELISA, Enzyme-Linked ImmunoSorbent Assay
- GM, gelatin hydrogel microspheres
- GM/GF, GM containing bFGF and PGFM
- HGF, hepatocyte growth factor
- Injectable hydrogel
- PBS, phosphate-buffered saline solution
- PGFM, platelet growth factor mixture
- Stem cell transplantation
- VEGF, vascular endothelial growth factor
- bFGF, basic fibroblast growth factor
- iGel+GM/GF, iGel incorporating GM/GF
- iGel, bioabsorbable injectable hydrogels
Collapse
Affiliation(s)
- Ryo Mitsui
- First Department of Oral and Maxillofacial Surgery, Osaka University, Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Makoto Matsukawa
- First Department of Oral and Maxillofacial Surgery, Osaka University, Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kiyoko Nakagawa
- First Department of Oral and Maxillofacial Surgery, Osaka University, Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Emiko Isomura
- First Department of Oral and Maxillofacial Surgery, Osaka University, Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toshie Kuwahara
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Teruki Nii
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Susumu Tanaka
- First Department of Oral and Maxillofacial Surgery, Osaka University, Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Corresponding author. 53 Kawara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan. Fax: +81-75-751-4646.
| |
Collapse
|
33
|
Paradiso F, Serpelloni S, Francis LW, Taraballi F. Mechanical Studies of the Third Dimension in Cancer: From 2D to 3D Model. Int J Mol Sci 2021; 22:10098. [PMID: 34576261 PMCID: PMC8472581 DOI: 10.3390/ijms221810098] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/11/2022] Open
Abstract
From the development of self-aggregating, scaffold-free multicellular spheroids to the inclusion of scaffold systems, 3D models have progressively increased in complexity to better mimic native tissues. The inclusion of a third dimension in cancer models allows researchers to zoom out from a significant but limited cancer cell research approach to a wider investigation of the tumor microenvironment. This model can include multiple cell types and many elements from the extracellular matrix (ECM), which provides mechanical support for the tissue, mediates cell-microenvironment interactions, and plays a key role in cancer cell invasion. Both biochemical and biophysical signals from the extracellular space strongly influence cell fate, the epigenetic landscape, and gene expression. Specifically, a detailed mechanistic understanding of tumor cell-ECM interactions, especially during cancer invasion, is lacking. In this review, we focus on the latest achievements in the study of ECM biomechanics and mechanosensing in cancer on 3D scaffold-based and scaffold-free models, focusing on each platform's level of complexity, up-to-date mechanical tests performed, limitations, and potential for further improvements.
Collapse
Affiliation(s)
- Francesca Paradiso
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX 77030, USA; (F.P.); (S.S.)
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6445 Main St., Houston, TX 77030, USA
- Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Singleton Park, Swansea, Wales SA2 8PP, UK;
| | - Stefano Serpelloni
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX 77030, USA; (F.P.); (S.S.)
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6445 Main St., Houston, TX 77030, USA
| | - Lewis W. Francis
- Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Singleton Park, Swansea, Wales SA2 8PP, UK;
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX 77030, USA; (F.P.); (S.S.)
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6445 Main St., Houston, TX 77030, USA
| |
Collapse
|
34
|
Franchi-Mendes T, Eduardo R, Domenici G, Brito C. 3D Cancer Models: Depicting Cellular Crosstalk within the Tumour Microenvironment. Cancers (Basel) 2021; 13:4610. [PMID: 34572836 PMCID: PMC8468887 DOI: 10.3390/cancers13184610] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/11/2022] Open
Abstract
The tumour microenvironment plays a critical role in tumour progression and drug resistance processes. Non-malignant cell players, such as fibroblasts, endothelial cells, immune cells and others, interact with each other and with the tumour cells, shaping the disease. Though the role of each cell type and cell communication mechanisms have been progressively studied, the complexity of this cellular network and its role in disease mechanism and therapeutic response are still being unveiled. Animal models have been mainly used, as they can represent systemic interactions and conditions, though they face recognized limitations in translational potential due to interspecies differences. In vitro 3D cancer models can surpass these limitations, by incorporating human cells, including patient-derived ones, and allowing a range of experimental designs with precise control of each tumour microenvironment element. We summarize the role of each tumour microenvironment component and review studies proposing 3D co-culture strategies of tumour cells and non-malignant cell components. Moreover, we discuss the potential of these modelling approaches to uncover potential therapeutic targets in the tumour microenvironment and assess therapeutic efficacy, current bottlenecks and perspectives.
Collapse
Affiliation(s)
- Teresa Franchi-Mendes
- iBET—Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (T.F.-M.); (R.E.); (G.D.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Rodrigo Eduardo
- iBET—Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (T.F.-M.); (R.E.); (G.D.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Giacomo Domenici
- iBET—Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (T.F.-M.); (R.E.); (G.D.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Catarina Brito
- iBET—Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (T.F.-M.); (R.E.); (G.D.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
35
|
Biomaterial-Assisted Regenerative Medicine. Int J Mol Sci 2021; 22:ijms22168657. [PMID: 34445363 PMCID: PMC8395440 DOI: 10.3390/ijms22168657] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 12/11/2022] Open
Abstract
This review aims to show case recent regenerative medicine based on biomaterial technologies. Regenerative medicine has arousing substantial interest throughout the world, with “The enhancement of cell activity” one of the essential concepts for the development of regenerative medicine. For example, drug research on drug screening is an important field of regenerative medicine, with the purpose of efficient evaluation of drug effects. It is crucial to enhance cell activity in the body for drug research because the difference in cell condition between in vitro and in vivo leads to a gap in drug evaluation. Biomaterial technology is essential for the further development of regenerative medicine because biomaterials effectively support cell culture or cell transplantation with high cell viability or activity. For example, biomaterial-based cell culture and drug screening could obtain information similar to preclinical or clinical studies. In the case of in vivo studies, biomaterials can assist cell activity, such as natural healing potential, leading to efficient tissue repair of damaged tissue. Therefore, regenerative medicine combined with biomaterials has been noted. For the research of biomaterial-based regenerative medicine, the research objective of regenerative medicine should link to the properties of the biomaterial used in the study. This review introduces regenerative medicine with biomaterial.
Collapse
|
36
|
Dong Z, Meng X, Yang W, Zhang J, Sun P, Zhang H, Fang X, Wang DA, Fan C. Progress of gelatin-based microspheres (GMSs) as delivery vehicles of drug and cell. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111949. [PMID: 33641932 DOI: 10.1016/j.msec.2021.111949] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/13/2022]
Abstract
Gelatin has various attractive features as biomedical materials, for instance, biocompatibility, low immunogenicity, biodegradability, and ease of manipulation. In recent years, various gelatin-based microspheres (GMSs) have been fabricated with innovative technologies to serve as sustained delivery vehicles of drugs and genetic materials as well as beneficial bacteria. Moreover, GMSs have exhibited promising potentials to act as both cell carriers and 3D scaffold components in tissue engineering and regenerative medicine, which not only exhibit excellent injectability but also could be integrated into a macroscale construct with the laden cells. Herein, we aim to thoroughly summarize the recent progress in the preparations and biomedical applications of GMSs and then to point out the research direction in future. First, various methods for the fabrication of GMSs will be described. Second, the recent use of GMSs in tumor embolization and in the delivery of cells, drugs, and genetic material as well as bacteria will be presented. Finally, several key factors that may enhance the improvement of GMSs were suggested as delivery vehicles.
Collapse
Affiliation(s)
- Zuoxiang Dong
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266000, Shandong, China; Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Xinyue Meng
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266000, Shandong, China
| | - Wei Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266000, Shandong, China
| | - Jinfeng Zhang
- Department of Surgery, Songshan Hospital of Qingdao University, Qingdao 266021, Shandong, China
| | - Peng Sun
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Huawei Zhang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Xing Fang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Dong-An Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region; Shenzhen Research Institute, City University of Hong Kong, Shenzhen Hi-tech Industrial Park, Shenzhen, Guangdong 518057, China; Karolinska Institute Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong Special Administrative Region.
| | - Changjiang Fan
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266000, Shandong, China.
| |
Collapse
|
37
|
Management of lymph node metastasis via local chemotherapy can prevent distant metastasis and improve survival in mice. J Control Release 2020; 329:847-857. [PMID: 33065097 DOI: 10.1016/j.jconrel.2020.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/14/2020] [Accepted: 10/09/2020] [Indexed: 01/08/2023]
Abstract
Management of lymph node metastasis (LNM) by conventional modalities such as radiotherapy and systemic chemotherapy exhibit limited LNM selectivity and therefore can cause off-target adverse events. While development of LNM-specific drug delivery systems has tremendous potential to provide a safer treatment modality and improve cancer treatment, precise assessment of therapeutic efficacy and implications has been challenging due to lack of a suitable preclinical model. Here, we established an experimental LNM model in mice by directly seeding cancer cells into a lymph node (LN), which developed spontaneous LNM-borne distant metastasis (DM) in the absence of a primary tumor. In the model, early, but not late, management of LNM before thereof tumor cells systemically disseminated could confer significant survival benefit, which suggests that time to LNM management is critical. Systematic comparative assessment of various local drug delivery systems revealed that a micellar formulation could achieve highly LNM-specific delivery of a chemotherapeutic agent, which was superior to systemic chemotherapy, effective at a very low dose, and safe. This study suggests not only that the experimental LNM model provides a useful preclinical model to study LNM management and its therapeutic implications but also that micelles are a promising drug delivery system for LNM management via local administration.
Collapse
|
38
|
Three-Dimensional Culture System of Cancer Cells Combined with Biomaterials for Drug Screening. Cancers (Basel) 2020; 12:cancers12102754. [PMID: 32987868 PMCID: PMC7601447 DOI: 10.3390/cancers12102754] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary For the research and development of drug discovery, it is of prime importance to construct the three-dimensional (3D) tissue models in vitro. To this end, the enhancement design of cell function and activity by making use of biomaterials is essential. In this review, 3D culture systems of cancer cells combined with several biomaterials for anticancer drug screening are introduced. Abstract Anticancer drug screening is one of the most important research and development processes to develop new drugs for cancer treatment. However, there is a problem resulting in gaps between the in vitro drug screening and preclinical or clinical study. This is mainly because the condition of cancer cell culture is quite different from that in vivo. As a trial to mimic the in vivo cancer environment, there has been some research on a three-dimensional (3D) culture system by making use of biomaterials. The 3D culture technologies enable us to give cancer cells an in vitro environment close to the in vivo condition. Cancer cells modified to replicate the in vivo cancer environment will promote the biological research or drug discovery of cancers. This review introduces the in vitro research of 3D cell culture systems with biomaterials in addition to a brief summary of the cancer environment.
Collapse
|
39
|
Murata Y, Jo JI, Tabata Y. Molecular Beacon Imaging to Visualize Ki67 mRNA for Cell Proliferation Ability. Tissue Eng Part A 2020; 27:526-535. [PMID: 32723028 DOI: 10.1089/ten.tea.2020.0127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The objective of this study is to visualize the ability of cell proliferation based on molecular beacons (MB). Two types of MB to detect messenger RNA (mRNA) were used. One is a Ki67 MB of a target for cell proliferation ability. The other one is a glyceraldehyde-3-phosphate dehydrogenase (GAPDH) MB as a control of stable fluorescence in cells. To enhance the MB internalization into cells, the MB were incorporated into cationized gelatin nanospheres (cGNS). There was no difference in the physicochemical properties and the cell internalization between the cGNSKi67 MB and cGNSGAP MB. When basic fibroblast growth factor (bFGF) was added to KUM6 cells of a mouse bone marrow-derived mesenchymal stem cell line, the expression of Ki67 and the cell proliferation increased with the bFGF concentration. After the incubation for the cell internalization of cGNS incorporating MB (cGNSMB), the cells were further incubated for 24 h with or without different concentrations of bFGF. The fluorescence of cGNSKi67 MB significantly increased with the increase of bFGF concentration, whereas that of cGNSGAP MB was constant, irrespective of the bFGF concentration. A time-lapse imaging assay revealed a fast enhancement of cGNSKi67 MB fluorescence after the bFGF addition compared with no bFGF addition. On the other hand, for cGNSGAP MB, a constant fluorescence was observed even at any time point after the bFGF addition. It is concluded that the cGNSMB system is promising for the chronological visualization of proliferation ability in living cells.
Collapse
Affiliation(s)
- Yuki Murata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Jun-Ichiro Jo
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
40
|
Nii T, Kuwahara T, Makino K, Tabata Y. A Co-Culture System of Three-Dimensional Tumor-Associated Macrophages and Three-Dimensional Cancer-Associated Fibroblasts Combined with Biomolecule Release for Cancer Cell Migration. Tissue Eng Part A 2020; 26:1272-1282. [PMID: 32434426 DOI: 10.1089/ten.tea.2020.0095] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The objective of this study is to design a cancer invasion model by making use of cancer-associated fibroblasts (CAF) or tumor-associated macrophages (TAM) and gelatin hydrogel microspheres (GM) for the sustained release of drugs. The GM containing adenosine (A) (GM-A) were prepared and cultured with TAM to obtain three-dimensional (3D) TAM aggregates incorporating GM-A (3D TAM-GM-A). The GM-A incorporation enabled TAM to enhance the secretion level of vascular endothelial growth factor. When co-cultured with HepG2 liver cancer cells in an invasion assay, the 3D TAM-GM-A promoted the invasion rate of cancer cells. In addition, the E-cadherin expression level decreased to a significantly greater extent compared with that co-cultured with TAM aggregates incorporating GM, whereas the significantly higher expression of N-cadherin and Vimentin was observed. This indicates that the epithelial-mesenchymal transition event was induced. The GM containing transforming growth factor-β1 (TGF-β1) were prepared to incorporate into 3D CAF (3D CAF-GM-TGF-β1). Following a co-culture of mixed 3D CAF-GM-TGF-β1 and 3D TAM-GM-A and every HepG2, MCF-7 breast cancer cell, or WA-hT lung cancer cell, the invasion rate of every cancer cell enhanced depending on the mixing ratio of 3D TAM-GM-A and 3D CAF-GM-TGF-β1. The amount of matrix metalloproteinase-2 (MMP-2) secreted also enhanced, and the enhancement was well corresponded with that of cancer cell invasion rate. The higher MMP secretion assists the breakdown of basement membrane, leading to the higher rate of cancer cell invasion. This model is a promising 3D culture system to evaluate the invasion ability of various cancer cells in vitro. Impact statement This study proposes a cell culture system to enhance the tumor-associated macrophage function based on the combination of three-dimensional (3D) cell aggregates and gelatin hydrogel microspheres (GM) for adenosine delivery. An additional combination of 3D cancer-associated fibroblasts incorporating GM containing transforming growth factor-β1 allowed cancer cells to enhance their invasion rate. This co-culture system is promising to evaluate the ability of cancer cell invasion for anticancer drug screening.
Collapse
Affiliation(s)
- Teruki Nii
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Toshie Kuwahara
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kimiko Makino
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan.,Center for Drug Delivery Research, Tokyo University of Science, Noda, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
41
|
Song H, Cai GH, Liang J, Ao DS, Wang H, Yang ZH. Three-dimensional culture and clinical drug responses of a highly metastatic human ovarian cancer HO-8910PM cells in nanofibrous microenvironments of three hydrogel biomaterials. J Nanobiotechnology 2020; 18:90. [PMID: 32527266 PMCID: PMC7291456 DOI: 10.1186/s12951-020-00646-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/01/2020] [Indexed: 01/18/2023] Open
Abstract
Background Ovarian cancer is a highly aggressive malignant disease in gynecologic cancer. It is an urgent task to develop three-dimensional (3D) cell models in vitro and dissect the cell progression-related drug resistance mechanisms in vivo. In the present study, RADA16-I peptide has the reticulated nanofiber scaffold networks in hydrogel, which is utilized to develop robust 3D cell culture of a high metastatic human ovarian cancer HO-8910PM cell line accompanied with the counterparts of Matrigel and collagen I. Results Consequently, HO-8910PM cells were successfully cultivated in three types of hydrogel biomaterials, such as RADA16-I hydrogel, Matrigel, and collagen I, according to 3D cell culture protocols. Designer RADA16-I peptide had well-defined nanofiber networks architecture in hydrogel, which provided nanofiber cell microenvironments analogous to Matrigel and collagen I. 3D-cultured HO-8910PM cells in RADA16-I hydrogel, Matrigel, and collagen I showed viable cell proliferation, proper cell growth, and diverse cell shapes in morphology at the desired time points. For a long 3D cell culture period, HO-8910PM cells showed distinct cell aggregate growth patterns in RADA16-I hydrogel, Matrigel, and collagen I, such as cell aggregates, cell colonies, cell clusters, cell strips, and multicellular tumor spheroids (MCTS). The cell distribution and alignment were described vigorously. Moreover, the molecular expression of integrin β1, E-cadherin and N-cadherin were quantitatively analyzed in 3D-cultured MCTS of HO-8910PM cells by immunohistochemistry and western blotting assays. The chemosensitivity assay for clinical drug responses in 3D context indicated that HO-8910PM cells in three types of hydrogels showed significantly higher chemoresistance to cisplatin and paclitaxel compared to 2D flat cell culture, including IC50 values and inhibition rates. Conclusion Based on these results, RADA16-I hydrogel is a highly competent, high-profile, and proactive nanofiber scaffold to maintain viable cell proliferation and high cell vitality in 3D cell models, which may be particularly utilized to develop useful clinical drug screening platform in vitro.
Collapse
Affiliation(s)
- Hong Song
- College of Basic Medicine, Zunyi Medical University, No.201 Dalian Road, Huichuan District, Zunyi, Guizhou, 563003, China
| | - Guo-Hui Cai
- College of Basic Medicine, Zunyi Medical University, No.201 Dalian Road, Huichuan District, Zunyi, Guizhou, 563003, China
| | - Jian Liang
- School of Resources and Environment, ABA Normal University, Shuimo Town, Wenchuan County, Aba Prefecture, Sichuan, 623002, China
| | - Di-Shu Ao
- College of Basic Medicine, Zunyi Medical University, No.201 Dalian Road, Huichuan District, Zunyi, Guizhou, 563003, China
| | - Huan Wang
- College of Basic Medicine, Zunyi Medical University, No.201 Dalian Road, Huichuan District, Zunyi, Guizhou, 563003, China
| | - Ze-Hong Yang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, No.17 People's South Road, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
42
|
Nii T, Makino K, Tabata Y. A cancer invasion model of cancer-associated fibroblasts aggregates combined with TGF-β1 release system. Regen Ther 2020; 14:196-204. [PMID: 32154334 PMCID: PMC7058408 DOI: 10.1016/j.reth.2020.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/02/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction The objective of this study is to design a cancer invasion model where the cancer invasion rate can be regulated in vitro. Methods Cancer-associated fibroblasts (CAF) aggregates incorporating gelatin hydrogel microspheres (GM) containing various concentrations of transforming growth factor-β1 (TGF-β1) (CAF-GM-TGF-β1) were prepared. Alpha-smooth muscle actin (α-SMA) for the CAF aggregates was measured to investigate the CAF activation level by changing the concentration of TGF-β1. An invasion assay was performed to evaluate the cancer invasion rate by co-cultured of cancer cells with various CAF-GM-TGF-β1. Results The expression level of α-SMA for CAF increased with an increased in the TGF-β1 concentration. When co-cultured with various types of CAF-GM-TGF-β1, the cancer invasion rate was well correlated with the α-SMA level. It is conceivable that the TGF-β1 concentration could modify the level of CAF activation, leading to the invasion rate of cancer cells. In addition, at the high concentrations of TGF-β1, the effect of a matrix metalloproteinase (MMP) inhibitor on the cancer invasion rate was observed. The higher invasion rate would be achieved through the higher MMP production. Conclusions The present model is promising to realize the cancer invasion whose rate can be modified by changing the TGF-β1 concentration. This invasion model would be a promising tool for anti-cancer drug screening. TGF-β1 was controlled release from gelatin hydrogel microspheres. CAF were activated by increased TGF-β1 concentration. There was a good correlation between invasion rate and TGF-β1 concentration. Higher invasion rate would be achieved through matrix metalloproteinase production.
Collapse
Key Words
- 2D, two-dimensional
- 3D, three-dimensional
- Anti-cancer drug screening
- CAF, cancer-associated fibroblasts
- Cancer invasion model
- DDW, double-distilled water
- Drug delivery system
- ELISA, enzyme-linked immunosolvent assay
- FCS, fetal calf serum
- GM, gelatin hydrogel microspheres
- Gelatin hydrogel microspheres
- MEM, minimum essential medium
- MMP, matrix metalloproteinase
- PBS, phosphate buffered-saline
- PLGA, poly (lactic-co-glycolic acid)
- PVA, poly (vinyl alcohol)
- TGF-β1, transforming growth factor-β1
- Three-dimensional cell culture
- α-SMA, alpha-smooth muscle actin
Collapse
Affiliation(s)
- Teruki Nii
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.,Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda, 278-8510, Japan
| | - Kimiko Makino
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda, 278-8510, Japan.,Center for Drug Delivery Research, Tokyo University of Science, 2641, Yamazaki, Noda, 278-8510, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|