1
|
Molins B, Rodríguez A, Llorenç V, Adán A. Biomaterial engineering strategies for modeling the Bruch's membrane in age-related macular degeneration. Neural Regen Res 2024; 19:2626-2636. [PMID: 38595281 PMCID: PMC11168499 DOI: 10.4103/nrr.nrr-d-23-01789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/03/2024] [Accepted: 02/06/2024] [Indexed: 04/11/2024] Open
Abstract
Age-related macular degeneration, a multifactorial inflammatory degenerative retinal disease, ranks as the leading cause of blindness in the elderly. Strikingly, there is a scarcity of curative therapies, especially for the atrophic advanced form of age-related macular degeneration, likely due to the lack of models able to fully recapitulate the native structure of the outer blood retinal barrier, the prime target tissue of age-related macular degeneration. Standard in vitro systems rely on 2D monocultures unable to adequately reproduce the structure and function of the outer blood retinal barrier, integrated by the dynamic interaction of the retinal pigment epithelium, the Bruch's membrane, and the underlying choriocapillaris. The Bruch's membrane provides structural and mechanical support and regulates the molecular trafficking in the outer blood retinal barrier, and therefore adequate Bruch's membrane-mimics are key for the development of physiologically relevant models of the outer blood retinal barrier. In the last years, advances in the field of biomaterial engineering have provided novel approaches to mimic the Bruch's membrane from a variety of materials. This review provides a discussion of the integrated properties and function of outer blood retinal barrier components in healthy and age-related macular degeneration status to understand the requirements to adequately fabricate Bruch's membrane biomimetic systems. Then, we discuss novel materials and techniques to fabricate Bruch's membrane-like scaffolds for age-related macular degeneration in vitro modeling, discussing their advantages and challenges with a special focus on the potential of Bruch's membrane-like mimics based on decellularized tissue.
Collapse
Affiliation(s)
- Blanca Molins
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d’Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Andrea Rodríguez
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d’Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Víctor Llorenç
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d’Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Institut Clínic d’Oftalmologia (ICOF), Hospital Clínic Barcelona, Spain
| | - Alfredo Adán
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d’Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Institut Clínic d’Oftalmologia (ICOF), Hospital Clínic Barcelona, Spain
| |
Collapse
|
2
|
Wendland RJ, Tucker BA, Worthington KS. Influence of Substrate Stiffness on iPSC-Derived Retinal Pigmented Epithelial Cells. Stem Cells Transl Med 2024; 13:582-592. [PMID: 38560893 PMCID: PMC11165161 DOI: 10.1093/stcltm/szae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/03/2024] [Indexed: 04/04/2024] Open
Abstract
Retinal degenerative diseases are a major cause of blindness involving the dysfunction of photoreceptors, retinal pigmented epithelium (RPE), or both. A promising treatment approach involves replacing these cells via surgical transplantation, and previous work has shown that cell delivery scaffolds are vital to ensure sufficient cell survival. Thus, identifying scaffold properties that are conducive to cell viability and maturation (such as suitable material and mechanical properties) is critical to ensuring a successful treatment approach. In this study, we investigated the effect of scaffold stiffness on human RPE attachment, survival, and differentiation, comparing immortalized (ARPE-19) and stem cell-derived RPE (iRPE) cells. Polydimethylsiloxane was used as a model polymer substrate, and varying stiffness (~12 to 800 kPa) was achieved by modulating the cross-link-to-base ratio. Post-attachment changes in gene and protein expression were assessed using qPCR and immunocytochemistry. We found that while ARPE-19 and iRPE exhibited significant differences in morphology and expression of RPE markers, substrate stiffness did not have a substantial impact on cell growth or maturation for either cell type. These results highlight the differences in expression between immortalized and iPSC-derived RPE cells, and also suggest that stiffnesses in this range (~12-800 kPa) may not result in significant differences in RPE growth and maturation, an important consideration in scaffold design.
Collapse
Affiliation(s)
- Rion J Wendland
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
- Institute for Vision Research, Department of Ophthalmology and Visual Science, University of Iowa, Iowa City, IA, USA
| | - Budd A Tucker
- Institute for Vision Research, Department of Ophthalmology and Visual Science, University of Iowa, Iowa City, IA, USA
| | - Kristan S Worthington
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
- Institute for Vision Research, Department of Ophthalmology and Visual Science, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
3
|
Kolodkin-Gal I, Dash O, Rak R. Probiotic cultivated meat: bacterial-based scaffolds and products to improve cultivated meat. Trends Biotechnol 2024; 42:269-281. [PMID: 37805297 DOI: 10.1016/j.tibtech.2023.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 10/09/2023]
Abstract
Cultivated meat is emerging to replace traditional livestock industries, which have ecological costs, including land and water overuse and considerable carbon emissions. During cultivated meat production, mammalian cells can increase their numbers dramatically through self-renewal/proliferation and transform into mature cells, such as muscle or fat cells, through maturation/differentiation. Here, we address opportunities for introducing probiotic bacteria into the cultivated meat industry, including using them to produce renewable antimicrobials and scaffolding materials. We also offer solutions to challenges, including the growth of bacteria and mammalian cells, the effect of probiotic bacteria on production costs, and the effect of bacteria and their products on texture and taste. Our summary provides a promising framework for applying microbial composites in the cultivated meat industry.
Collapse
Affiliation(s)
- Ilana Kolodkin-Gal
- Scojen Institute for Synthetic Biology, Reichman University, Herzliya, Israel.
| | - Orit Dash
- Department of Animal Sciences, Faculty of Agriculture and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel; Institute of Animal Science, ARO, The Volcani Center, Rishon LeZion, Israel
| | - Roni Rak
- Institute of Animal Science, ARO, The Volcani Center, Rishon LeZion, Israel.
| |
Collapse
|
4
|
Kruczek K, Swaroop A. Patient stem cell-derived in vitro disease models for developing novel therapies of retinal ciliopathies. Curr Top Dev Biol 2023; 155:127-163. [PMID: 38043950 DOI: 10.1016/bs.ctdb.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Primary cilia are specialized organelles on the surface of almost all cells in vertebrate tissues and are primarily involved in the detection of extracellular stimuli. In retinal photoreceptors, cilia are uniquely modified to form outer segments containing components required for the detection of light in stacks of membrane discs. Not surprisingly, vision impairment is a frequent phenotype associated with ciliopathies, a heterogeneous class of conditions caused by mutations in proteins required for formation, maintenance and/or function of primary cilia. Traditionally, immortalized cell lines and model organisms have been used to provide insights into the biology of ciliopathies. The advent of methods for reprogramming human somatic cells into pluripotent stem cells has enabled the generation of in vitro disease models directly from patients suffering from ciliopathies. Such models help us in investigating pathological mechanisms specific to human physiology and in developing novel therapeutic approaches. In this article, we review current protocols to differentiate human pluripotent stem cells into retinal cell types, and discuss how these cellular and/or organoid models can be utilized to interrogate pathobiology of ciliopathies affecting the retina and for testing prospective treatments.
Collapse
Affiliation(s)
- Kamil Kruczek
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, United States.
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
5
|
Mahaling B, Low SWY, Ch S, Addi UR, Ahmad B, Connor TB, Mohan RR, Biswas S, Chaurasia SS. Next-Generation Nanomedicine Approaches for the Management of Retinal Diseases. Pharmaceutics 2023; 15:2005. [PMID: 37514191 PMCID: PMC10383092 DOI: 10.3390/pharmaceutics15072005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Retinal diseases are one of the leading causes of blindness globally. The mainstay treatments for these blinding diseases are laser photocoagulation, vitrectomy, and repeated intravitreal injections of anti-vascular endothelial growth factor (VEGF) or steroids. Unfortunately, these therapies are associated with ocular complications like inflammation, elevated intraocular pressure, retinal detachment, endophthalmitis, and vitreous hemorrhage. Recent advances in nanomedicine seek to curtail these limitations, overcoming ocular barriers by developing non-invasive or minimally invasive delivery modalities. These modalities include delivering therapeutics to specific cellular targets in the retina, providing sustained delivery of drugs to avoid repeated intravitreal injections, and acting as a scaffold for neural tissue regeneration. These next-generation nanomedicine approaches could potentially revolutionize the treatment landscape of retinal diseases. This review describes the availability and limitations of current treatment strategies and highlights insights into the advancement of future approaches using next-generation nanomedicines to manage retinal diseases.
Collapse
Affiliation(s)
- Binapani Mahaling
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Shermaine W Y Low
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sanjay Ch
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad 500078, India
| | - Utkarsh R Addi
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Baseer Ahmad
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Thomas B Connor
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Rajiv R Mohan
- One-Health One-Medicine Ophthalmology and Vision Research Program, University of Missouri, Columbia, MO 65211, USA
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad 500078, India
| | - Shyam S Chaurasia
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
6
|
Zdraveva E, Gaurina Srček V, Kraljić K, Škevin D, Slivac I, Obranović M. Agro-Industrial Plant Proteins in Electrospun Materials for Biomedical Application. Polymers (Basel) 2023; 15:2684. [PMID: 37376328 DOI: 10.3390/polym15122684] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Plant proteins are receiving a lot of attention due to their abundance in nature, customizable properties, biodegradability, biocompatibility, and bioactivity. As a result of global sustainability concerns, the availability of novel plant protein sources is rapidly growing, while the extensively studied ones are derived from byproducts of major agro-industrial crops. Owing to their beneficial properties, a significant effort is being made to investigate plant proteins' application in biomedicine, such as making fibrous materials for wound healing, controlled drug release, and tissue regeneration. Electrospinning technology is a versatile platform for creating nanofibrous materials fabricated from biopolymers that can be modified and functionalized for various purposes. This review focuses on recent advancements and promising directions for further research of an electrospun plant protein-based system. The article highlights examples of zein, soy, and wheat proteins to illustrate their electrospinning feasibility and biomedical potential. Similar assessments with proteins from less-represented plant sources, such as canola, pea, taro, and amaranth, are also described.
Collapse
Affiliation(s)
- Emilija Zdraveva
- Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 28, 10000 Zagreb, Croatia
| | - Višnja Gaurina Srček
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Klara Kraljić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Dubravka Škevin
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Igor Slivac
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Marko Obranović
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| |
Collapse
|
7
|
Leung KS, Shirazi S, Cooper LF, Ravindran S. Biomaterials and Extracellular Vesicle Delivery: Current Status, Applications and Challenges. Cells 2022; 11:cells11182851. [PMID: 36139426 PMCID: PMC9497093 DOI: 10.3390/cells11182851] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 12/14/2022] Open
Abstract
In this review, we will discuss the current status of extracellular vesicle (EV) delivery via biopolymeric scaffolds for therapeutic applications and the challenges associated with the development of these functionalized scaffolds. EVs are cell-derived membranous structures and are involved in many physiological processes. Naïve and engineered EVs have much therapeutic potential, but proper delivery systems are required to prevent non-specific and off-target effects. Targeted and site-specific delivery using polymeric scaffolds can address these limitations. EV delivery with scaffolds has shown improvements in tissue remodeling, wound healing, bone healing, immunomodulation, and vascular performance. Thus, EV delivery via biopolymeric scaffolds is becoming an increasingly popular approach to tissue engineering. Although there are many types of natural and synthetic biopolymers, the overarching goal for many tissue engineers is to utilize biopolymers to restore defects and function as well as support host regeneration. Functionalizing biopolymers by incorporating EVs works toward this goal. Throughout this review, we will characterize extracellular vesicles, examine various biopolymers as a vehicle for EV delivery for therapeutic purposes, potential mechanisms by which EVs exert their effects, EV delivery for tissue repair and immunomodulation, and the challenges associated with the use of EVs in scaffolds.
Collapse
Affiliation(s)
- Kasey S. Leung
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Sajjad Shirazi
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Lyndon F. Cooper
- School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Sriram Ravindran
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA
- Correspondence:
| |
Collapse
|
8
|
Gullapalli VK, Zarbin MA. New Prospects for Retinal Pigment Epithelium Transplantation. Asia Pac J Ophthalmol (Phila) 2022; 11:302-313. [PMID: 36041145 DOI: 10.1097/apo.0000000000000521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/28/2022] [Indexed: 11/26/2022] Open
Abstract
ABSTRACT Retinal pigment epithelium (RPE) transplants rescue photoreceptors in selected animal models of retinal degenerative disease. Early clinical studies of RPE transplants as treatment for age-related macular degeneration (AMD) included autologous and allogeneic transplants of RPE suspensions and RPE sheets for atrophic and neovascular complications of AMD. Subsequent studies explored autologous RPE-Bruch membrane-choroid transplants in patients with neovascular AMD with occasional marked visual benefit, which establishes a rationale for RPE transplants in late-stage AMD. More recent work has involved transplantation of autologous and allogeneic stem cell-derived RPE for patients with AMD and those with Stargardt disease. These early-stage clinical trials have employed RPE suspensions and RPE monolayers on biocompatible scaffolds. Safety has been well documented, but evidence of efficacy is variable. Current research involves development of better scaffolds, improved modulation of immune surveillance, and modification of the extracellular milieu to improve RPE survival and integration with host retina.
Collapse
Affiliation(s)
| | - Marco A Zarbin
- Iinstitute of Ophthalmology and visual Science, Rutgers-New Jersey Medical School, Rutgers University, Newark, NJ, US
| |
Collapse
|
9
|
Dehghan S, Mirshahi R, Shoae-Hassani A, Naseripour M. Human-induced pluripotent stem cells-derived retinal pigmented epithelium, a new horizon for cells-based therapies for age-related macular degeneration. Stem Cell Res Ther 2022; 13:217. [PMID: 35619143 PMCID: PMC9137077 DOI: 10.1186/s13287-022-02894-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 05/02/2022] [Indexed: 02/07/2023] Open
Abstract
Retinal pigment epithelium (RPE) degeneration is the hallmark of age-related macular degeneration (AMD). AMD, as one of the most common causes of irreversible visual impairment worldwide, remains in need of an appropriate approach to restore retinal function. Wet AMD, which is characterized by neovascular formation, can be stabilized by currently available therapies, including laser photocoagulation, photodynamic therapy, and intraocular injections of anti-VEFG (anti-vascular endothelial growth factor) therapy or a combination of these modalities. Unlike wet AMD, there is no effective therapy for progressive dry (non-neovascular) AMD. However, stem cell-based therapies, a part of regenerative medicine, have shown promising results for retinal degenerative diseases such as AMD. The goal of RPE cell therapy is to return the normal structure and function of the retina by re-establishing its interaction with photoreceptors, which is essential to vision. Considering the limited source of naturally occurring RPE cells, recent progress in stem cell research has allowed the generation of RPE cells from human pluripotent cells, both embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSC). Since iPSCs face neither ethical arguments nor significant immunological considerations when compared to ESCs, they open a new horizon for cell therapy of AMD. The current study aims to discuss AMD, review the protocols for making human iPSCs-derived RPEs, and summarize recent developments in the field of iPSC-derived RPEs cell therapy.
Collapse
Affiliation(s)
- Samaneh Dehghan
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Eye Research Center, The Five Senses Health Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Mirshahi
- Eye Research Center, The Five Senses Health Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Shoae-Hassani
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Masood Naseripour
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Eye Research Center, The Five Senses Health Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Wang S, Lin S, Xue B, Wang C, Yan N, Guan Y, Hu Y, Wen X. Bruch's-Mimetic Nanofibrous Membranes Functionalized with the Integrin-Binding Peptides as a Promising Approach for Human Retinal Pigment Epithelium Cell Transplantation. Molecules 2022; 27:1429. [PMID: 35209218 PMCID: PMC8874486 DOI: 10.3390/molecules27041429] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/02/2022] [Accepted: 01/27/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND This study aimed to develop an ultrathin nanofibrous membrane able to, firstly, mimic the natural fibrous architecture of human Bruch's membrane (BM) and, secondly, promote survival of retinal pigment epithelial (RPE) cells after surface functionalization of fibrous membranes. METHODS Integrin-binding peptides (IBPs) that specifically interact with appropriate adhesion receptors on RPEs were immobilized on Bruch's-mimetic membranes to promote coverage of RPEs. Surface morphologies, Fourier-transform infrared spectroscopy spectra, contact angle analysis, Alamar Blue assay, live/dead assay, immunofluorescence staining, and scanning electron microscopy were used to evaluate the outcome. RESULTS Results showed that coated membranes maintained the original morphology of nanofibers. After coating with IBPs, the water contact angle of the membrane surfaces varied from 92.38 ± 0.67 degrees to 20.16 ± 0.81 degrees. RPE cells seeded on IBP-coated membranes showed the highest viability at all time points (Day 1, p < 0.05; Day 3, p < 0.01; Days 7 and 14, p < 0.001). The proliferation rate of RPE cells on uncoated poly(ε-caprolactone) (PCL) membranes was significantly lower than that of IBP-coated membranes (p < 0.001). SEM images showed a well-organized hexa/polygonal monolayer of RPE cells on IBP-coated membranes. RPE cells proliferated rapidly, contacted, and became confluent. RPE cells formed a tight adhesion with nanofibers under high-magnification SEM. Our findings confirmed that the IBP-coated PCL membrane improved the attachment, proliferation, and viability of RPE cells. In addition, in this study, we used serum-free culture for RPE cells and short IBPs without immunogenicity to prevent graft rejection and immunogenicity during transplantation. CONCLUSIONS These results indicated that the biomimic BM-IBP-RPE nanofibrous graft might be a new, practicable approach to increase the success rate of RPE cell transplantation.
Collapse
Affiliation(s)
- Shaocheng Wang
- Endocrine Department, Third Central Hospital of Tianjin, Tianjin 300170, China; (S.W.); (N.Y.); (Y.G.)
- Tianjin Key Laboratory of Artificial Cell, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin 300170, China
- Department of Chemical and Life Science Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; (S.L.); (B.X.); (C.W.)
| | - Siyong Lin
- Department of Chemical and Life Science Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; (S.L.); (B.X.); (C.W.)
- Department of Ophthalmology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Bo Xue
- Department of Chemical and Life Science Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; (S.L.); (B.X.); (C.W.)
| | - Chenyu Wang
- Department of Chemical and Life Science Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; (S.L.); (B.X.); (C.W.)
| | - Nana Yan
- Endocrine Department, Third Central Hospital of Tianjin, Tianjin 300170, China; (S.W.); (N.Y.); (Y.G.)
- Tianjin Key Laboratory of Artificial Cell, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin 300170, China
| | - Yueyan Guan
- Endocrine Department, Third Central Hospital of Tianjin, Tianjin 300170, China; (S.W.); (N.Y.); (Y.G.)
- Tianjin Key Laboratory of Artificial Cell, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin 300170, China
| | - Yuntao Hu
- Department of Ophthalmology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Xuejun Wen
- Department of Chemical and Life Science Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; (S.L.); (B.X.); (C.W.)
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai 200065, China
- International Institute for Biomedical Biomaterials (IBM), Zhengzhou 450018, China
| |
Collapse
|
11
|
Zhang Z, Gong L, Li M, Wei G, Liu Y. The osteogenic differentiation of human bone marrow stromal cells induced by nanofiber scaffolds using bioinformatics. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166245. [PMID: 34391896 DOI: 10.1016/j.bbadis.2021.166245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/26/2021] [Accepted: 08/09/2021] [Indexed: 11/16/2022]
Abstract
This article aims to investigate the mechanism of behaviors of human bone marrow stromal cells (hBMSCs) affected by scaffold structure combining Monte Carlo feature selection (MFCS), incremental feature selection (IFS) and support vector machine (SVM). The specific differentially expressed genes (DEGs) of hBMSCs cultured on nanofiber (NF) scaffolds and freeform fabrication (FFF) scaffolds were obtained. Key genes were screened from common genes between osteogenic DEGs and NF specific DEGs with MFCS, IFS and SVM. The results demonstrated that NF scaffolds induced hBMSCs to express more genes related to osteogenic differentiation. Finally, 16 key genes were identified among the common genes. The common genes were significantly enriched in Rap1 signaling pathway, extracellular matrix and ossification. The results in this study suggested that the gene expression of hBMSCs was sensitive to NF scaffolds and FFF scaffolds, and the osteogenic differentiation of hBMSCs could be enhanced by NF scaffolds.
Collapse
Affiliation(s)
- Zhenghai Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Lulu Gong
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Min Li
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Guoshuai Wei
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yan Liu
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
12
|
Hu X, Ricci S, Naranjo S, Hill Z, Gawason P. Protein and Polysaccharide-Based Electroactive and Conductive Materials for Biomedical Applications. Molecules 2021; 26:4499. [PMID: 34361653 PMCID: PMC8348981 DOI: 10.3390/molecules26154499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 11/16/2022] Open
Abstract
Electrically responsive biomaterials are an important and emerging technology in the fields of biomedical and material sciences. A great deal of research explores the integral role of electrical conduction in normal and diseased cell biology, and material scientists are focusing an even greater amount of attention on natural and hybrid materials as sources of biomaterials which can mimic the properties of cells. This review establishes a summary of those efforts for the latter group, detailing the current materials, theories, methods, and applications of electrically conductive biomaterials fabricated from protein polymers and polysaccharides. These materials can be used to improve human life through novel drug delivery, tissue regeneration, and biosensing technologies. The immediate goal of this review is to establish fabrication methods for protein and polysaccharide-based materials that are biocompatible and feature modular electrical properties. Ideally, these materials will be inexpensive to make with salable production strategies, in addition to being both renewable and biocompatible.
Collapse
Affiliation(s)
- Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (S.R.); (Z.H.)
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; (S.N.); (P.G.)
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA
| | - Samuel Ricci
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (S.R.); (Z.H.)
| | - Sebastian Naranjo
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; (S.N.); (P.G.)
| | - Zachary Hill
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (S.R.); (Z.H.)
| | - Peter Gawason
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; (S.N.); (P.G.)
| |
Collapse
|
13
|
Impact of glycation on physical properties of composite gluten/zein nanofibrous films fabricated by blending electrospinning. Food Chem 2021; 366:130586. [PMID: 34311229 DOI: 10.1016/j.foodchem.2021.130586] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/29/2021] [Accepted: 07/09/2021] [Indexed: 11/27/2022]
Abstract
In this study, the gluten/zein nanofibrous films were fabricated by blending electrospinning and then glycated with xylose via Maillard reaction. The average fiber diameter of the gluten film decreased from 551 to 343 nm with the increasing ratio of zein, but increased significantly to a range of 717-521 nm after glycation, which induced a higher thermal stability of the nanofibers with an order to disorder transition. The glycated composite films showed the reduced water vapor permeability and improved water stability with a stiffer and more elastic network structure, due to the enhanced intermolecular entanglements and interactions between polymer chains. The results from this work suggested that the composite gluten/zein electrospun films may be glycated via Maillard reaction to obtain desirable physical properties for active food-packaging applications.
Collapse
|