1
|
Guo X, Zhang W, Lu J, Zhu Y, Sun H, Xu D, Xian S, Yao Y, Qian W, Lu B, Shi J, Ding X, Li Y, Tong X, Xiao S, Huang R, Ji S. Amniotic miracle: Investigating the unique development and applications of amniotic membrane in wound healing. Skin Res Technol 2024; 30:e13860. [PMID: 39073182 DOI: 10.1111/srt.13860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 06/22/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND The perfect repair of damaged skin has always been a constant goal for scientists; however, the repair and reconstruction of skin is still a major problem and challenge in injury and burns medicine. Human amniotic membrane (hAM), with its good mechanical properties and anti-inflammatory, antioxidant and antimicrobial benefits, containing growth factors that promote wound healing, has evolved over the last few decades from simple skin sheets to high-tech dressings, such as being made into nanocomposites, hydrogels, powders, and electrostatically spun scaffolds. This paper aims to explore the historical development, applications, trends, and research hotspots of hAM in wound healing. METHODS We examined 2660 publications indexed in the Web of Science Core Collection (WoSCC) from January 1, 1975 to July 12, 2023. Utilizing bibliometric methods, we employed VOSviewer, CiteSpace, and R-bibliometrix to characterize general information, identify development trends, and highlight research hotspots. Subsequently, we identified a collection of high-quality English articles focusing on the roles of human amniotic epithelial stem cells (hAESCs), human amniotic mesenchymal stem cells (hAMSCs), and amniotic membrane (AM) scaffolds in regenerative medicine and tissue engineering. RESULTS Bibliometric analysis identified Udice-French Research Universities as the most productive affiliation and Tseng S.C.G. as the most prolific author. Keyword analysis, historical direct quotations network, and thematic analysis helped us review the historical and major themes in this field. Our examination included the knowledge structure, global status, trends, and research hotspots regarding the application of hAM in wound healing. Our findings indicate that contemporary research emphasizes the preparation and application of products derived from hAM. Notably, both hAM and the cells isolated from it - hADSCs and hAESCs are prominent and promising areas of research in regenerative medicine and tissue engineering. CONCLUSION This research delivers a comprehensive understanding of the knowledge frameworks, global dynamics, emerging patterns, and primary research foci in the realm of hAM applications for wound healing. The field is rapidly evolving, and our findings offer valuable insights for researchers. Future research outcomes are anticipated to be applied in clinical practice, enhancing methods for disease prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Xinya Guo
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Department of Burn Surgery, Research Unit of key techniques for treatment of burns and combined burns and trauma injury, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Chinese Academy of Medical Sciences, Shanghai, China
| | - Wei Zhang
- Department of Burn Surgery, Research Unit of key techniques for treatment of burns and combined burns and trauma injury, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Chinese Academy of Medical Sciences, Shanghai, China
| | - Jianyu Lu
- Department of Burn Surgery, Research Unit of key techniques for treatment of burns and combined burns and trauma injury, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yushu Zhu
- Department of Burn Surgery, Research Unit of key techniques for treatment of burns and combined burns and trauma injury, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Chinese Academy of Medical Sciences, Shanghai, China
| | - Hanlin Sun
- Department of Burn Surgery, Research Unit of key techniques for treatment of burns and combined burns and trauma injury, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Chinese Academy of Medical Sciences, Shanghai, China
| | - Dayuan Xu
- Department of Burn Surgery, Research Unit of key techniques for treatment of burns and combined burns and trauma injury, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Chinese Academy of Medical Sciences, Shanghai, China
| | - Shuyuan Xian
- Department of Burn Surgery, Research Unit of key techniques for treatment of burns and combined burns and trauma injury, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yuntao Yao
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weijin Qian
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bingnan Lu
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaying Shi
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyi Ding
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixu Li
- Department of Burn Surgery, Research Unit of key techniques for treatment of burns and combined burns and trauma injury, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xirui Tong
- Department of Burn Surgery, Research Unit of key techniques for treatment of burns and combined burns and trauma injury, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Chinese Academy of Medical Sciences, Shanghai, China
| | - Shichu Xiao
- Department of Burn Surgery, Research Unit of key techniques for treatment of burns and combined burns and trauma injury, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Chinese Academy of Medical Sciences, Shanghai, China
| | - Runzhi Huang
- Department of Burn Surgery, Research Unit of key techniques for treatment of burns and combined burns and trauma injury, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Chinese Academy of Medical Sciences, Shanghai, China
| | - Shizhao Ji
- Department of Burn Surgery, Research Unit of key techniques for treatment of burns and combined burns and trauma injury, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
2
|
Atalay E, Altuğ B, Çalışkan ME, Ceylan S, Özler ZS, Figueiredo G, Lako M, Figueiredo F. Animal Models for Limbal Stem Cell Deficiency: A Critical Narrative Literature Review. Ophthalmol Ther 2024; 13:671-696. [PMID: 38280103 PMCID: PMC10853161 DOI: 10.1007/s40123-023-00880-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/19/2023] [Indexed: 01/29/2024] Open
Abstract
This literature review will provide a critical narrative overview of the highlights and potential pitfalls of the reported animal models for limbal stem cell deficiency (LSCD) and will identify the neglected aspects of this research area. There exists significant heterogeneity in the literature regarding the methodology used to create the model and the predefined duration after the insult when the model is supposedly fully fit for evaluations and/or for testing various therapeutic interventions. The literature is also replete with examples wherein the implementation of a specific model varies significantly across different studies. For example, the concentration of the chemical, as well as its duration and technique of exposure in a chemically induced LSCD model, has a great impact not only on the validity of the model but also on the severity of the complications. Furthermore, while some models induce a full-blown clinical picture of total LSCD, some are hindered by their ability to yield only partial LSCD. Another aspect to consider is the nature of the damage induced by a specific method. As thermal methods cause more stromal scarring, they may be better suited for assessing the anti-fibrotic properties of a particular treatment. On the other hand, since chemical burns cause more neovascularisation, they provide the opportunity to tap into the potential treatments for anti-neovascularisation. The animal species (i.e., rats, mice, rabbits, etc.) is also a crucial factor in the validity of the model and its potential for clinical translation, with each animal having its unique set of advantages and disadvantages. This review will also elaborate on other overlooked aspects, such as the anaesthetic(s) used during experiments, the gender of the animals, care after LSCD induction, and model validation. The review will conclude by providing future perspectives and suggestions for further developments in this rather important area of research.
Collapse
Affiliation(s)
- Eray Atalay
- Department of Ophthalmology, Eskişehir Osmangazi University Medical School, Eskişehir, Turkey
| | - Burcugül Altuğ
- Cellular Therapy and Stem Cell Production Application, Research Centre (ESTEM), Eskişehir Osmangazi University, Eskişehir, Turkey
| | | | - Semih Ceylan
- Eskişehir Osmangazi University Medical School, Eskişehir, Turkey
| | | | | | - Majlinda Lako
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Francisco Figueiredo
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
- Department of Ophthalmology, Royal Victoria Infirmary, Newcastle University, Newcastle upon Tyne, NE1 4LP, UK.
| |
Collapse
|
3
|
Corneal Epithelial Stem Cells-Physiology, Pathophysiology and Therapeutic Options. Cells 2021; 10:cells10092302. [PMID: 34571952 PMCID: PMC8465583 DOI: 10.3390/cells10092302] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 12/12/2022] Open
Abstract
In the human cornea, regeneration of the epithelium is regulated by the stem cell reservoir of the limbus, which is the marginal region of the cornea representing the anatomical and functional border between the corneal and conjunctival epithelium. In support of this concept, extensive limbal damage, e.g., by chemical or thermal injury, inflammation, or surgery, may induce limbal stem cell deficiency (LSCD) leading to vascularization and opacification of the cornea and eventually vision loss. These acquired forms of limbal stem cell deficiency may occur uni- or bilaterally, which is important for the choice of treatment. Moreover, a variety of inherited diseases, such as congenital aniridia or dyskeratosis congenita, are characterized by LSCD typically occurring bilaterally. Several techniques of autologous and allogenic stem cell transplantation have been established. The limbus can be restored by transplantation of whole limbal grafts, small limbal biopsies or by ex vivo-expanded limbal cells. In this review, the physiology of the corneal epithelium, the pathophysiology of LSCD, and the therapeutic options will be presented.
Collapse
|