1
|
Kagami H, Li X. Spheroids and organoids: Their implications for oral and craniofacial tissue/organ regeneration. J Oral Biol Craniofac Res 2024; 14:540-546. [PMID: 39092136 PMCID: PMC11292544 DOI: 10.1016/j.jobcr.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 06/09/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Spheroids are spherical aggregates of cells. Normally, most of adherent cells cannot survive in suspension; however, if they adhere to each other and grow to a certain size, they can survive without attaching to the dish surface. Studies have shown that spheroid formation induces dedifferentiation and improves plasticity, proliferative capability, and differentiation capability. In particular, spontaneous spheroids represent a selective and efficient cultivation technique for somatic stem cells. Organoids are considered mini-organs composed of multiple types of cells with extracellular matrices that are maintained in three-dimensional culture. Although their culture environment is similar to that of spheroids, organoids consist of differentiated cells with fundamental tissue/organ structures similar to those of native organs. Organoids have been used for drug development, disease models, and basic biological studies. Spheroid culture has been reported for various cell types in the oral and craniofacial regions, including salivary gland epithelial cells, periodontal ligament cells, dental pulp stem cells, and oral mucosa-derived cells. For broader clinical application, it is crucial to identify treatment targets that can leverage the superior stemness of spheroids. Organoids have been developed from various organs, including taste buds, oral mucosa, teeth, and salivary glands, for basic biological studies and also with the goal to replace damaged or defective organs. The development of novel immune-tolerant cell sources is the key to the widespread clinical application of organoids in regenerative medicine. Further efforts to understand the underlying basic mechanisms of spheroids and organoids will lead to the development of safe and efficient next-generation regenerative therapies.
Collapse
Affiliation(s)
- Hideaki Kagami
- Department of Dentistry and Oral Surgery, Aichi Medical University, Aichi, Japan
| | - Xianqi Li
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Matsumoto Dental University, Shiojiri, 399-0781, Japan
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, 399-0781, Japan
| |
Collapse
|
2
|
Gordiyenko OI, Kovalenko IF, Rogulska OY, Trufanova NA, Gurina TM, Trufanov OV, Petrenko OY. Theory-based cryopreservation mode of mesenchymal stromal cell spheroids. Cryobiology 2024; 115:104906. [PMID: 38762155 DOI: 10.1016/j.cryobiol.2024.104906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/24/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Cryopreservation of spheroids requires development of new improved methods. The plasma membranes permeability coefficients for water and cryoprotectants determine time characteristics of mass transfer through the cell membranes, and therefore the optimal modes of cells cryopreservation. Here we proposed an approach to cryopreservation of multicellular spheroids which considers their generalized characteristics as analogues of the membranes' permeability coefficients of the individual cells. We have determined such integral characteristics of spheroids from mesenchymal stromal cells (MSCs) as osmotically inactive volume; permeability coefficients for water and Me2SO molecules and the activation energy of their penetration. Based on these characteristics, we calculated the osmotic behavior of multicellular spheroids under cooling conditions to select the optimal cooling rate. We also determined the optimal cooling rate of spheroids using the probabilistic model developed based on the two-factor theory of cryodamage. From the calculation it follows that the optimal cooling rate of the MSC-based spheroids is 0.75°С/min. To verify the obtained theoretical estimates, we conducted experiments on freezing MSC-based spheroids under different modes. The obtained results of primary viability screening indicate that freezing at a constant linear cooling rate of 0.75-1.0°С/min gives a good result. Theoretical prediction of the spheroid osmotic behavior during cooling provided the basis for experimental verification of varying the temperature to which slow cooling should be carried out before immersion in liquid nitrogen. Slow freezing of spheroids to -40 °C followed by immersion in liquid nitrogen was shown to preserve cells better than slow freezing to -80 °C. Obtained data allow more effective use of MSC-based spheroids in drug screening and regenerative medicine.
Collapse
Affiliation(s)
- O I Gordiyenko
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Kharkiv, Ukraine.
| | - I F Kovalenko
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Kharkiv, Ukraine.
| | - O Y Rogulska
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Kharkiv, Ukraine; Institute of Physiology, Czech Academy of Science, Prague, Czech Republic; Institute of Experimental Medicine, Czech Academy of Science, Prague, Czech Republic.
| | - N A Trufanova
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Kharkiv, Ukraine.
| | - T M Gurina
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Kharkiv, Ukraine.
| | - O V Trufanov
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Kharkiv, Ukraine.
| | - O Y Petrenko
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Kharkiv, Ukraine.
| |
Collapse
|
3
|
Mutsenko V, Anastassopoulos E, Zaragotas D, Simaioforidou A, Tarusin D, Lauterboeck L, Sydykov B, Brunotte R, Brunotte K, Rozanski C, Petrenko AY, Braslavsky I, Glasmacher B, Gryshkov O. Monitoring of freezing patterns within 3D collagen-hydroxyapatite scaffolds using infrared thermography. Cryobiology 2023:S0011-2240(23)00007-X. [PMID: 37062517 DOI: 10.1016/j.cryobiol.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 04/18/2023]
Abstract
The importance of cryopreservation in tissue engineering is unceasingly increasing. Preparation, cryopreservation, and storage of tissue-engineered constructs (TECs) at an on-site location offer a convenient way for their clinical application and commercialization. Partial freezing initiated at high sub-zero temperatures using ice-nucleating agents (INAs) has recently been applied in organ cryopreservation. It is anticipated that this freezing technique may be efficient for the preservation of both scaffold mechanical properties and cell viability of TECs. Infrared thermography is an instrumental method to monitor INAs-mediated freezing of various biological entities. In this paper, porous collagen-hydroxyapatite (HAP) scaffolds were fabricated and characterized as model TECs, whereas infrared thermography was proposed as a method for monitoring the crystallization-related events on their partial freezing down to -25 °C. Intra- and interscaffold latent heat transmission were descriptively evaluated. Nucleation, freezing points as well as the degree of supercooling and duration of crystallization were calculated based on inspection of respective thermographic curves. Special consideration was given to the cryoprotective agent (CPA) composition (Snomax®, crude leaf extract from Hippophae rhamnoides, dimethyl sulfoxide (Me2SO) and recombinant type-III antifreeze protein (AFP)) and freezing conditions ('in air' or 'in bulk CPA'). For CPAs without ice nucleation activity, thermographic measurements demonstrated that the supercooling was significantly milder in the case of scaffolds present in a CPA solution compared to that without them. This parameter (ΔT, °C) altered with the following tendency: 10 Me2SO (2.90 ± 0.54 ('in air') vs. 7.71 ± 0.43 ('in bulk CPA', P < 0.0001)) and recombinant type-III AFP, 0.5 mg/ml (2.65 ± 0.59 ('in air') vs. 7.68 ± 0.34 ('in bulk CPA', P < 0.0001)). At the same time, in CPA solutions with ice nucleation activity the least degree of supercooling and the longest crystallization duration (Δt, min) for scaffolds frozen 'in air' were documented for crude leaf homogenate (CLH) from Hippophae rhamnoides (1.57 ± 0.37 °C and 21.86 ± 2.93 min compared to Snomax, 5 μg/ml (2.14 ± 0.33 °C and 23.09 ± 0.05), respectively). The paper offers evidence that infrared thermography provides insightful information for monitoring partial freezing events in TECs when using different freezing containers, CPAs and conditions. This may further TEC-specific cryopreservation and optimization of CPA compositions with slow-nucleating properties.
Collapse
Affiliation(s)
- Vitalii Mutsenko
- Institute for Multiphase Processes, Leibniz University Hannover, Garbsen, Germany; Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany.
| | | | - Dimitris Zaragotas
- Department of Agricultural Engineering Technologists, TEI Thessaly, Larissa, Greece
| | | | - Dmytro Tarusin
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Lothar Lauterboeck
- Institute for Multiphase Processes, Leibniz University Hannover, Garbsen, Germany; Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany
| | - Bulat Sydykov
- Institute for Multiphase Processes, Leibniz University Hannover, Garbsen, Germany
| | - Ricarda Brunotte
- Institute for Multiphase Processes, Leibniz University Hannover, Garbsen, Germany
| | - Kai Brunotte
- Institute of Forming Technology and Forming Machines, Leibniz University Hannover, Garbsen, Germany
| | - Corinna Rozanski
- Institute of Building Materials Science, Leibniz University Hannover, Hannover, Germany
| | - Alexander Y Petrenko
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Ido Braslavsky
- The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Birgit Glasmacher
- Institute for Multiphase Processes, Leibniz University Hannover, Garbsen, Germany; Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany
| | - Oleksandr Gryshkov
- Institute for Multiphase Processes, Leibniz University Hannover, Garbsen, Germany; Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany
| |
Collapse
|
4
|
Thummarati P, Laiwattanapaisal W, Nitta R, Fukuda M, Hassametto A, Kino-oka M. Recent Advances in Cell Sheet Engineering: From Fabrication to Clinical Translation. Bioengineering (Basel) 2023; 10:211. [PMID: 36829705 PMCID: PMC9952256 DOI: 10.3390/bioengineering10020211] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Cell sheet engineering, a scaffold-free tissue fabrication technique, has proven to be an important breakthrough technology in regenerative medicine. Over the past two decades, the field has developed rapidly in terms of investigating fabrication techniques and multipurpose applications in regenerative medicine and biological research. This review highlights the most important achievements in cell sheet engineering to date. We first discuss cell sheet harvesting systems, which have been introduced in temperature-responsive surfaces and other systems to overcome the limitations of conventional cell harvesting methods. In addition, we describe several techniques of cell sheet transfer for preclinical (in vitro and in vivo) and clinical trials. This review also covers cell sheet cryopreservation, which allows short- and long-term storage of cells. Subsequently, we discuss the cell sheet properties of angiogenic cytokines and vasculogenesis. Finally, we discuss updates to various applications, from biological research to clinical translation. We believe that the present review, which shows and compares fundamental technologies and recent advances in cell engineering, can potentially be helpful for new and experienced researchers to promote the further development of tissue engineering in different applications.
Collapse
Affiliation(s)
- Parichut Thummarati
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
- Biosensors and Bioanalytical Technology for Cells and Innovative Testing Device Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wanida Laiwattanapaisal
- Biosensors and Bioanalytical Technology for Cells and Innovative Testing Device Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Rikiya Nitta
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Megumi Fukuda
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Artchaya Hassametto
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Masahiro Kino-oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
5
|
Cryopreservable three-dimensional spheroid culture for ready-to-use systems. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1279-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
6
|
Shajib MS, Futrega K, Franco RAG, McKenna E, Guillesser B, Klein TJ, Crawford RW, Doran MR. Method for manufacture and cryopreservation of cartilage microtissues. J Tissue Eng 2023; 14:20417314231176901. [PMID: 37529249 PMCID: PMC10387698 DOI: 10.1177/20417314231176901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/04/2023] [Indexed: 08/03/2023] Open
Abstract
The financial viability of a cell and tissue-engineered therapy may depend on the compatibility of the therapy with mass production and cryopreservation. Herein, we developed a method for the mass production and cryopreservation of 3D cartilage microtissues. Cartilage microtissues were assembled from either 5000 human bone marrow-derived stromal cells (BMSC) or 5000 human articular chondrocytes (ACh) each using a customized microwell platform (the Microwell-mesh). Microtissues rapidly accumulate homogenous cartilage-like extracellular matrix (ECM), making them potentially useful building blocks for cartilage defect repair. Cartilage microtissues were cultured for 5 or 10 days and then cryopreserved in 90% serum plus 10% dimethylsulfoxide (DMSO) or commercial serum-free cryopreservation media. Cell viability was maximized during thawing by incremental dilution of serum to reduce oncotic shock, followed by washing and further culture in serum-free medium. When assessed with live/dead viability dyes, thawed microtissues demonstrated high viability but reduced immediate metabolic activity relative to unfrozen control microtissues. To further assess the functionality of the freeze-thawed microtissues, their capacity to amalgamate into a continuous tissue was assess over a 14 day culture. The amalgamation of microtissues cultured for 5 days was superior to those that had been cultured for 10 days. Critically, the capacity of cryopreserved microtissues to amalgamate into a continuous tissue in a subsequent 14-day culture was not compromised, suggesting that cryopreserved microtissues could amalgamate within a cartilage defect site. The quality ECM was superior when amalgamation was performed in a 2% O2 atmosphere than a 20% O2 atmosphere, suggesting that this process may benefit from the limited oxygen microenvironment within a joint. In summary, cryopreservation of cartilage microtissues is a viable option, and this manipulation can be performed without compromising tissue function.
Collapse
Affiliation(s)
- Md. Shafiullah Shajib
- School of Biomedical Science, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- Translational Research Institute, Brisbane, QLD, Australia
| | - Kathryn Futrega
- Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- Translational Research Institute, Brisbane, QLD, Australia
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Rose Ann G Franco
- Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- Translational Research Institute, Brisbane, QLD, Australia
| | - Eamonn McKenna
- Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- Translational Research Institute, Brisbane, QLD, Australia
| | - Bianca Guillesser
- School of Biomedical Science, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- Translational Research Institute, Brisbane, QLD, Australia
| | - Travis J Klein
- Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Ross W Crawford
- Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Michael R Doran
- School of Biomedical Science, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- Translational Research Institute, Brisbane, QLD, Australia
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
- Mater Research Institute – University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
7
|
Matsumura N, Li X, Uchikawa-Kitaya E, Li N, Dong H, Chen K, Yoshizawa M, Kagami H. Tissue Engineering with Compact Bone-Derived Cell Spheroids Enables Bone Formation around Transplanted Tooth. Tissue Eng Regen Med 2022; 19:377-387. [PMID: 35119647 PMCID: PMC8971212 DOI: 10.1007/s13770-021-00423-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Although tooth transplantation is a desirable treatment option for congenital defects of permanent teeth in children, transplantation to a narrow alveolar ridge is not feasible. In this study, we investigated the possibility of bone tissue engineering simultaneously with tooth transplantation to enhance the width of the alveolar bone. METHODS Bone marrow mononuclear cells or cortical bone-derived mesenchymal stromal cell spheroids were seeded onto atelocollagen sponge and transplanted with freshly extracted molars from mice of the same strain. New bone formation around the tooth root was evaluated using micro-computed tomography and histological analysis. Tooth alone, or tooth with scaffold but without cells, was also transplanted and served as controls. RESULTS Micro-computed tomography showed new bone formation in the furcation area in all four groups. Remarkable bone formation outside the root was also observed in the cortical bone-derived mesenchymal stromal cell group, but was scarce in the other three groups. Histological analysis revealed that the space between the new bone and the root was filled with collagen fibers in all four groups, indicating that the periodontal ligament was maintained. CONCLUSION This study demonstrates the potential of simultaneous alveolar bone expansion employing bone tissue engineering approach using cortical bone-derived mesenchymal stromal cell spheroids for tooth transplantation. The use of an orthotopic transplantation model may further clarify the feasibility and functional recovery of the transplanted tooth over a longer period.
Collapse
Affiliation(s)
- Nahomi Matsumura
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, 399-0781, Japan
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Matsumoto Dental University, Shiojiri, 399-0781, Japan
| | - Xianqi Li
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, 399-0781, Japan
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Matsumoto Dental University, Shiojiri, 399-0781, Japan
- Division of Hard Tissue Research, Institute of Oral Science, Matsumoto Dental University, 1780 Hirooka Gobara, Shiojiri, 399-0781, Japan
| | - Eri Uchikawa-Kitaya
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, 399-0781, Japan
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Matsumoto Dental University, Shiojiri, 399-0781, Japan
| | - Ni Li
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, 399-0781, Japan
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, 200031, China
| | - Hongwei Dong
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, 399-0781, Japan
| | - Kai Chen
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, 399-0781, Japan
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Michiko Yoshizawa
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, 399-0781, Japan
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Matsumoto Dental University, Shiojiri, 399-0781, Japan
| | - Hideaki Kagami
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, 399-0781, Japan.
- Division of Hard Tissue Research, Institute of Oral Science, Matsumoto Dental University, 1780 Hirooka Gobara, Shiojiri, 399-0781, Japan.
- Department of General Medicine, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-9639, Japan.
| |
Collapse
|