1
|
Hsieh YK, Wang MT, Wang CY, Chen CF, Ko YL, Huang WC. Recent advances in the diagnosis and management of acute myocardial infarction. J Chin Med Assoc 2023; 86:950-959. [PMID: 37801590 DOI: 10.1097/jcma.0000000000001001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/08/2023] Open
Abstract
With the discovery of new biomarkers for the early detection of acute myocardial infarction (AMI), advancements in valid medication, and percutaneous coronary intervention (PCI), the overall prognosis of AMI has improved remarkably. Nevertheless, challenges remain which require more difficult work to overcome. Novel diagnostic and therapeutic techniques include new AMI biomarkers, hypothermia therapy, supersaturated oxygen (SSO 2 ) therapy, targeted anti-inflammatory therapy, targeted angiogenesis therapy, and stem cell therapy. With these novel methods, we believe that the infarction size after AMI will decrease, and myocardial injury-associated ventricular remodeling may be avoided. This review focuses on novel advances in the diagnosis and management of AMI.
Collapse
Affiliation(s)
- Yi-Keng Hsieh
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, ROC
- Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC
- School of Medicine, National Yang Ming Chao Tung University, Taipei, Taiwan, ROC
| | - Mei-Tzu Wang
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, ROC
- School of Medicine, National Yang Ming Chao Tung University, Taipei, Taiwan, ROC
| | - Chien-Ying Wang
- School of Medicine, National Yang Ming Chao Tung University, Taipei, Taiwan, ROC
- Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Division of Trauma, Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Exercise and Health Sciences, University of Taipei, Taipei, Taiwan, ROC
| | - Cheng-Fong Chen
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Exercise and Health Sciences, University of Taipei, Taipei, Taiwan, ROC
| | - Yu-Ling Ko
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Wei-Chun Huang
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, ROC
- Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC
- Department of Physical Therapy, Fooyin University, Kaohsiung, Taiwan, ROC
| |
Collapse
|
2
|
Abella BS, Otterspoor L, Nichol G, Martin JL. ST-Elevation Myocardial Infarction Track. Ther Hypothermia Temp Manag 2021; 11:65-70. [PMID: 33819429 DOI: 10.1089/ther.2021.29091.bab] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Benjamin S Abella
- Center for Resuscitation Science and Department of Emergency Medicine, University of Pennsylvania, Pennsylvania, USA
| | - Luuk Otterspoor
- Heart Centre Eindhoven, Catharina Hospital, Eindhoven, Netherlands
| | - Graham Nichol
- University of Washington-Harborview Center for Prehospital Emergency Care, Seattle, Washington, USA
| | - Jack L Martin
- ICON plc., North Wales, Pennsylvania, USA.,Sharpe-Strumia Research Foundation, Bryn Mawr, Pennsylvania, USA
| |
Collapse
|
3
|
Bashtawi Y, Almuwaqqat Z. Therapeutic Hypothermia in STEMI. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2020; 29:77-84. [PMID: 32807668 DOI: 10.1016/j.carrev.2020.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/16/2020] [Accepted: 08/04/2020] [Indexed: 11/26/2022]
Abstract
In this review article we tried to find an answer to the question, should local coronary hypothermia be a part of the early reperfusion strategy in patients with STEMI to prevent reperfusion injury, no-reflow phenomenon, and to reduce the infarct size and mortality. Hypothermia can save cardiomyocytes if achieved in a timely fashion before reperfusion. Intracoronary hypothermia can be adjunct to PCI by lessening ischemia/reperfusion injury on cardiomyocytes and reduction in infarct size. Reperfusion induced Calcium overload, generation of ROS and subsequent activation of Mitochondrial permeability transition pore (MPT) are major contributors to reperfusion injury. Hypothermia reduces calcium loading of the cell and maintains cellular energy and tissue level glucose which can scavenger ROS. Hypothermia reduces MPT activation and thus reduces infarct size. Systemic cooling trials failed to reduce infarct size, perhaps because the target temperature was not reached fast enough, and it was associated with systemic side effects. The need for rapid induction of hypothermia to <35 °C with the ethical concern of delaying reperfusion while cooling the patient and the inconsistency of endovascular cooling results lead to a belief that endovascular cooling may exceed the acceptable level of invasiveness in the context of other novels cardioprotective, regenerative and reperfusion therapies. Clinical trials showed the safety and feasibility of novel intracoronary hypothermia with rapid induction and maintenance of hypothermia using routine PCI equipment ahead of reperfusion. Two phases of cooling were applied without significant delay in the door to balloon time. Cooling of the coronary artery leads to cooling of its dependant myocardium without affecting adjacent myocardium. Heat transfer occurred by heat conduction during the occlusion phase and heat convention during the reperfusion phase. Fine-tuning of saline temperature and infusion rate helped to improve the protocol. The best duration of hypothermia before and after reperfusion is not known and needs further investigation. A balance between the undoubted cardioprotective effects of hypothermia with iatrogenic prolongation of ischemia time needs to be established. A reduction in infarct size was observed but needs to be validated with large randomized trials. Furthermore, it might be possible to augment the cardioprotective effects of intracoronary hypothermia by combination with other cardioprotective approaches such as antioxidant drugs and afterload reducing agents.
Collapse
Affiliation(s)
- Yazan Bashtawi
- Department of Medicine, King Hussein Cancer Center, Amman, Jordan.
| | - Zakaria Almuwaqqat
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, United States of America
| |
Collapse
|
4
|
Alushi B, Ndrepepa G, Lauten A, Lahmann AL, Bongiovanni D, Kufner S, Xhepa E, Laugwitz KL, Joner M, Landmesser U, Thiele H, Kastrati A, Cassese S. Hypothermia in patients with acute myocardial infarction: a meta-analysis of randomized trials. Clin Res Cardiol 2020; 110:84-92. [PMID: 32303830 DOI: 10.1007/s00392-020-01652-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/14/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND In patients with acute myocardial infarction (MI) receiving percutaneous coronary intervention (PCI), the role of systemic therapeutic hypothermia remains controversial. We sought to investigate the role of systemic therapeutic hypothermia versus standard of care in patients with acute MI treated with PCI. METHODS This is a study-level meta-analysis of randomized trials. The primary outcome was all-cause death. The main secondary outcome was infarct size. Other secondary outcomes were recurrent MI, ischemia-driven target vessel revascularization (TVR), major adverse cardiovascular events, and bleeding. RESULTS A total of 1012 patients with acute MI receiving a PCI in nine trials (503 randomly assigned to hypothermia and 509 to control) were available for the quantitative synthesis. The weighted median follow-up was 30 days. As compared to controls, patients assigned to hypothermia had similar risk of all-cause death (risk ratio, [95% confidence intervals], 1.25 [0.80; 1.95], p = 0.32), with a trend toward higher risk of ischemia-driven TVR (3.55 [0.80; 15.87], p = 0.09) mostly due to acute or subacute stent thrombosis. Although in the overall cohort, infarct size was comparable between groups (standardized mean difference [95% Confidence intervals], 0.06 [- 0.92; 1.04], p = 0.92), patients effectively achieving the protocol-defined target temperature in the hypothermia group had smaller infarct size as compared to controls (p for interaction = 0.016). Treatment strategies did not differ with respect to the other outcomes. CONCLUSIONS As compared to standard of care, systemic therapeutic hypothermia in acute MI patients treated with PCI provided similar mortality with a signal toward more frequent repeat revascularization. Among patients assigned to hypothermia, those effectively achieving the protocol-defined target temperature displayed smaller infarct size. TRIAL REGISTRATION PROSPERO, CRD42019138754.
Collapse
Affiliation(s)
- Brunilda Alushi
- Department of Cardiology, University Heart Center Berlin and Charité University Medicine Berlin, Berlin, Germany
| | - Gjin Ndrepepa
- Deutsches Herzzentrum München, Technische Universität München, Lazarettstrasse, 36, Munich, Germany
| | - Alexander Lauten
- Department of Cardiology, University Heart Center Berlin and Charité University Medicine Berlin, Berlin, Germany.,German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Anna Lena Lahmann
- Deutsches Herzzentrum München, Technische Universität München, Lazarettstrasse, 36, Munich, Germany
| | - Dario Bongiovanni
- 1. Medizinische Klinik, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany
| | - Sebastian Kufner
- Deutsches Herzzentrum München, Technische Universität München, Lazarettstrasse, 36, Munich, Germany
| | - Erion Xhepa
- Deutsches Herzzentrum München, Technische Universität München, Lazarettstrasse, 36, Munich, Germany
| | - Karl-Ludwig Laugwitz
- 1. Medizinische Klinik, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Michael Joner
- Deutsches Herzzentrum München, Technische Universität München, Lazarettstrasse, 36, Munich, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Ulf Landmesser
- Department of Cardiology, University Heart Center Berlin and Charité University Medicine Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Holger Thiele
- Department of Internal Medicine and Cardiology, Heart Centre Leipzig At University of Leipzig, Leipzig, Germany
| | - Adnan Kastrati
- Deutsches Herzzentrum München, Technische Universität München, Lazarettstrasse, 36, Munich, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Salvatore Cassese
- Deutsches Herzzentrum München, Technische Universität München, Lazarettstrasse, 36, Munich, Germany.
| |
Collapse
|
5
|
Merrill TL, Mitchell JE, Merrill DR, Gorman JH, Gorman RC, Gillespie MJ. Myocardial tissue salvage is correlated with ischemic border region temperature at reperfusion. Catheter Cardiovasc Interv 2019; 96:E593-E601. [PMID: 31478608 DOI: 10.1002/ccd.28480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 08/20/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Our pilot study investigated the association between region-specific myocardial tissue temperature and tissue salvage using a novel tri-lumen cooling catheter to provide rapid localized cooling directly to the heart in an open-chest porcine model of ischemia-reperfusion. BACKGROUND Therapeutic hypothermia remains a promising strategy to limit reperfusion injury following myocardial ischemia. METHODS Large swine underwent 60 min of coronary occlusion followed by 3 hr of reperfusion. Prior to inducing ischemia, six temperature probes were placed directly on the heart, monitoring myocardial temperatures in different locations. Hemodynamic parameters and core temperature were also collected. Approximately 15 min prior to reperfusion, the cooling catheter was inserted via femoral artery and the distal tip advanced proximal to the occluded coronary vessel under fluoroscopic guidance. Autologous blood was pulled from the animal via femoral sheath and delivered through the central lumen of the cooling catheter, delivering at 50 ml/min, 27°C at the distal tip. Cooling was continued for an additional 25 min after reperfusion followed by a 5-min controlled rewarming. Hearts were excised and assessed for infarct size per area at risk. RESULTS Although cooling catheter performance was consistent throughout the study (38 W), the resulting tissue cooling was not. Our results show a correlation between myocardial tissue salvage and ischemic border region (IBR) temperature at the time of reperfusion (R2 = 0.59, p = 0.027). IBR tissue is the tissue located at the boundary between healthy and ischemic tissues. CONCLUSIONS Our findings suggest that localized, rapid, short-term myocardial tissue cooling has the potential to limit reperfusion injury in humans.
Collapse
Affiliation(s)
- Thomas L Merrill
- Department of Mechanical Engineering and Biomedical Engineering, Rowan University, Glassboro, New Jersey.,Catheter Development, Focal Cool, LLC, Mullica Hill, New Jersey
| | | | | | - Joseph H Gorman
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert C Gorman
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Matthew J Gillespie
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
6
|
A predictive computational model to estimate myocardial temperature during intracoronary hypothermia in acute myocardial infarction. Med Eng Phys 2019; 68:65-75. [DOI: 10.1016/j.medengphy.2019.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 03/15/2019] [Accepted: 03/31/2019] [Indexed: 11/20/2022]
|