1
|
Huang X, Liu G, Mei S, Cai J, Rao J, Tang M, Zhu T, Chen W, Peng S, Wang Y, Ye Y, Zhang T, Deng Z, Zhao J. Human leucocyte antigen alleles confer susceptibility and progression to Graves' ophthalmopathy in a Southern Chinese population. Br J Ophthalmol 2020; 105:1462-1468. [PMID: 33221730 PMCID: PMC8479741 DOI: 10.1136/bjophthalmol-2020-317091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/12/2020] [Accepted: 10/26/2020] [Indexed: 12/02/2022]
Abstract
Purpose To evaluate the contributions of human leucocyte antigen (HLA) class I and II genes in the development of Graves’ ophthalmopathy (GO) in a Southern Chinese population. Methods Eight HLA loci were genotyped and analysed in 272 unrelated patients with Graves’ disease (GD) or the proptosis and myogenic phenotypes of GO, and 411 ethnically matched control subjects. Results The allele frequencies of HLA-DRB1*16:02 and -DQB1*05:02 in the GD, proptosis and myogenic groups, HLA-B*38:02 and -DQA1*01:02 in the myogenic group were significantly higher than those in the control group, respectively (all corrected p values <0.05, OR >2.5). The haplotype frequencies of HLA-DRB1*16:02-DQA1*01:02-DQB1*05:02 and HLA-DRB1*16:02-DQA1*01:02-DQB1*05:02-DPA1*02:02-DPB1*05:01 in the proptosis and myogenic groups, and HLA-A*02:03-B*38:02-C*07:02 and HLA-A*02:03-B*38:02-C*07:02-DRB1*16:02-DQA1*01:02-DQB1*05:02-DPA1*02:02-DPB1*05:01 in the myogenic group were significantly higher than those in the control group respectively (all corrected p values <0.05, OR >2.5). The potential epitopes (‘FLGIFNTGL’ of TSHR, ‘IRHSHALVS’, ‘ILYIRTNAS’ and ‘FVFARTMPA’ of IGF-1R) were fitted exactly in the peptide-binding groove between HLA-DRA1-DRB1*16:02 heterodimer, and the epitopes (‘ILEITDNPY’ of THSR, ‘NYALVIFEM’ and ‘NYSFYVLDN’ of IGF-1R) were also fitted exactly in the peptide-binding groove between HLA-DQA1*01:02-DQB1*05:02 heterodimer. Conclusions The HLA-DRB1*16:02 and -DQB1*01:02 alleles might be risk factors for GD including the proptosis and myogenic phenotypes of GO. The alleles HLA-B*38:02, -DQA1*01:02, the HLA haplotypes consisting of HLA-B*38:02, -DRB1*16:02, -DQA1*01:02 and -DQB1*05:02 might be susceptibility risk factors for GO. Simultaneously, some epitopes of TSHR and IGF-1R tightly binding to groove of HLA-DRA1-DRB1*16:02 or HLA-DQA1*01:02-DQB1*05:02 heterodimers might provide some hints on presenting the pathological antigen in GO.
Collapse
Affiliation(s)
- Xiaosheng Huang
- Shenzhen Eye Institute, Shenzhen Eye Hospital Affiliated to Jinan University, Shenzhen, Guangdong, China.,School of Ophthalmology & Optometry, Shenzhen University, Shenzhen, Guangdong, China
| | - Guiqin Liu
- Shenzhen Eye Institute, Shenzhen Eye Hospital Affiliated to Jinan University, Shenzhen, Guangdong, China.,School of Ophthalmology & Optometry, Shenzhen University, Shenzhen, Guangdong, China
| | - Shaoyi Mei
- Shenzhen Eye Institute, Shenzhen Eye Hospital Affiliated to Jinan University, Shenzhen, Guangdong, China.,School of Ophthalmology & Optometry, Shenzhen University, Shenzhen, Guangdong, China
| | - Jiamin Cai
- School of Ophthalmology & Optometry, Shenzhen University, Shenzhen, Guangdong, China
| | - Jing Rao
- Shenzhen Eye Institute, Shenzhen Eye Hospital Affiliated to Jinan University, Shenzhen, Guangdong, China
| | - Minzhong Tang
- Cancer Center, Wuzhou Red Cross Hospital, Wuzhou, Guangxi, China
| | - Tianhui Zhu
- Shenzhen Eye Institute, Shenzhen Eye Hospital Affiliated to Jinan University, Shenzhen, Guangdong, China.,School of Ophthalmology & Optometry, Shenzhen University, Shenzhen, Guangdong, China
| | - Wenchiew Chen
- Shenzhen Eye Institute, Shenzhen Eye Hospital Affiliated to Jinan University, Shenzhen, Guangdong, China
| | - Shiming Peng
- Shenzhen Eye Institute, Shenzhen Eye Hospital Affiliated to Jinan University, Shenzhen, Guangdong, China.,School of Ophthalmology & Optometry, Shenzhen University, Shenzhen, Guangdong, China
| | - Yan Wang
- Shenzhen Eye Institute, Shenzhen Eye Hospital Affiliated to Jinan University, Shenzhen, Guangdong, China
| | - Ye Ye
- School of Ophthalmology & Optometry, Shenzhen University, Shenzhen, Guangdong, China
| | - Tong Zhang
- Shenzhen Eye Institute, Shenzhen Eye Hospital Affiliated to Jinan University, Shenzhen, Guangdong, China
| | - Zhihui Deng
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, Guangdong, China .,Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Jun Zhao
- Shenzhen Eye Institute, Shenzhen Eye Hospital Affiliated to Jinan University, Shenzhen, Guangdong, China .,School of Ophthalmology & Optometry, Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Cepharanthine blocks TSH receptor peptide presentation by HLA-DR3: Therapeutic implications to Graves' disease. J Autoimmun 2020; 108:102402. [PMID: 31980336 DOI: 10.1016/j.jaut.2020.102402] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/26/2019] [Accepted: 01/01/2020] [Indexed: 12/17/2022]
Abstract
We have previously identified a signature HLA-DR3 pocket variant, designated HLA-DRβ1-Arg74 that confers a high risk for Graves' Disease (GD). In view of the key role of HLA-DRβ1-Arg74 in triggering GD we hypothesized that thyroid-stimulating hormone receptor (TSHR) peptides that bind to the HLA-DRβ1-Arg74 pocket with high affinity represent key pathogenic TSHR peptides triggering GD, and that blocking their presentation to CD4+ T-cells can be used as a novel therapeutic approach in GD. There were several previous attempts to identify the major pathogenic TSHR peptide utilizing different methodologies, however the results were inconsistent and inconclusive. Therefore, the aim of our study was to use TSHR peptide binding affinity to HLA-DRβ1-Arg74 as a method to identify the key pathogenic TSHR peptides that trigger GD. Using virtual screening and ELISA and cellular binding assays we identified 2 TSHR peptides that bound with high affinity to HLA-DRβ1-Arg74 - TSHR.132 and TSHR.197. Peptide immunization studies in humanized DR3 mice showed that only TSHR.132, but not TSHR.197, induced autoreactive T-cell proliferation and cytokine responses. Next, we induced experimental autoimmune Graves' disease (EAGD) in a novel BALB/c-DR3 humanized mouse model we created and confirmed TSHR.132 as a major DRβ1-Arg74 binding peptide triggering GD in our mouse model. Furthermore, we demonstrated that Cepharanthine, a compound we have previously identified as DRβ1-Arg74 blocker, could block the presentation and T-cell responses to TSHR.132 in the EAGD model.
Collapse
|
3
|
Inaba H, Ariyasu H, Takeshima K, Iwakura H, Akamizu T. Comprehensive research on thyroid diseases associated with autoimmunity: autoimmune thyroid diseases, thyroid diseases during immune-checkpoint inhibitors therapy, and immunoglobulin-G4-associated thyroid diseases. Endocr J 2019; 66:843-852. [PMID: 31434818 DOI: 10.1507/endocrj.ej19-0234] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Various thyroid diseases are associated with autoimmunity. Major autoimmune thyroid diseases are Graves' disease (GD) and Hashimoto's thyroiditis (HT). Thyrotropin receptor is an autoantigen in GD, and its immunogenicity has been examined. Immune-checkpoint inhibitor (ICI) is recently widely used for treatment of malignant tumors, but cases of thyroid diseases during ICI treatment have been increasing. Thyroid diseases during ICI therapy have been investigated in immunological and clinical aspects, and their Japanese official diagnostic guidelines were established. In addition, serum and tissue immunoglobulin-G4 levels have been examined in association with clinicopathological characteristics in GD, HT, and Riedel's thyroiditis. We review these diseases associated with thyroid autoimmunity and comprehensively discuss their potential application in future research and therapeutic options.
Collapse
Affiliation(s)
- Hidefumi Inaba
- The First Department of Medicine, Wakayama Medical University, Wakayama, 641-8509, Japan
| | - Hiroyuki Ariyasu
- The First Department of Medicine, Wakayama Medical University, Wakayama, 641-8509, Japan
| | - Ken Takeshima
- The First Department of Medicine, Wakayama Medical University, Wakayama, 641-8509, Japan
| | - Hiroshi Iwakura
- The First Department of Medicine, Wakayama Medical University, Wakayama, 641-8509, Japan
| | - Takashi Akamizu
- The First Department of Medicine, Wakayama Medical University, Wakayama, 641-8509, Japan
| |
Collapse
|
4
|
Pearce SH, Dayan C, Wraith DC, Barrell K, Olive N, Jansson L, Walker-Smith T, Carnegie C, Martin KF, Boelaert K, Gilbert J, Higham CE, Muller I, Murray RD, Perros P, Razvi S, Vaidya B, Wernig F, Kahaly GJ. Antigen-Specific Immunotherapy with Thyrotropin Receptor Peptides in Graves' Hyperthyroidism: A Phase I Study. Thyroid 2019; 29:1003-1011. [PMID: 31194638 PMCID: PMC6648194 DOI: 10.1089/thy.2019.0036] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Graves' disease is one of the most common autoimmune conditions, but treatment remains imperfect. This study explores the first-in-human use of antigen-specific immunotherapy with a combination of two thyrotropin receptor (TSHR) peptides (termed ATX-GD-59) in Graves' hyperthyroidism. Methods: Twelve participants (11 female) with previously untreated mild to moderate Graves' hyperthyroidism were enrolled in a Phase I open label trial to receive 10 doses of ATX-GD-59 administered intradermally over an 18-week period. Adverse events, tolerability, changes in serum free thyroid hormones, and TSHR autoantibodies were measured. Results: Ten subjects received all 10 doses of ATX-GD-59, five (50%) of whom had free triiodothyronine within the reference interval by the 18-week visit. Two further subjects had improved free thyroid hormones by the end of the study (7/10 responders), whereas three subjects showed worsening thyrotoxicosis during the study. Serum TSHR autoantibody concentrations reduced during the study and correlated with changes in free thyroid hormones (r = 0.85, p = 0.002 for TSHR autoantibody vs. free triiodothyronine). Mild injection-site swelling and pain were the most common adverse events. Conclusions: These preliminary data suggest that ATX-GD-59 is a safe and well-tolerated treatment. The improvement in free thyroid hormones in 70% of subjects receiving the medication suggests potential efficacy as a novel treatment for Graves' hyperthyroidism.
Collapse
Affiliation(s)
- Simon H.S. Pearce
- Institute for Genetic Medicine, Newcastle University, and Newcastle Hospitals NHS Trust, Newcastle upon Tyne, United Kingdom
| | - Colin Dayan
- Thyroid Research Group, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - David C. Wraith
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham United Kingdom
- Apitope Technology (Bristol) Ltd., Chepstow, United Kingdom
- Apitope International NV, Diepenbeek, Belgium
| | - Kevin Barrell
- Apitope Technology (Bristol) Ltd., Chepstow, United Kingdom
| | - Natalie Olive
- Apitope Technology (Bristol) Ltd., Chepstow, United Kingdom
| | | | | | | | | | - Kristien Boelaert
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham United Kingdom
| | - Jackie Gilbert
- Department of Endocrinology, King's College Hospital, London, United Kingdom
| | - Claire E. Higham
- Department of Endocrinology, Christie Hospital NHS Foundation Trust, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Ilaria Muller
- Thyroid Research Group, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Robert D. Murray
- Department of Endocrinology, St. James's University Hospital, Leeds, United Kingdom
| | - Petros Perros
- Endocrine Unit, Newcastle Hospitals NHS Trust, Newcastle upon Tyne, United Kingdom
| | - Salman Razvi
- Institute for Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Bijay Vaidya
- Macleod Diabetes & Endocrine Centre, Royal Devon and Exeter Hospital, Exeter, United Kingdom
| | - Florian Wernig
- Department of Endocrinology, Imperial College, London, United Kingdom
| | - George J. Kahaly
- Department of Medicine I, Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|
5
|
Jansson L, Vrolix K, Jahraus A, Martin KF, Wraith DC. Immunotherapy With Apitopes Blocks the Immune Response to TSH Receptor in HLA-DR Transgenic Mice. Endocrinology 2018; 159:3446-3457. [PMID: 30099489 DOI: 10.1210/en.2018-00306] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/31/2018] [Indexed: 12/14/2022]
Abstract
We have combined major histocompatibility complex-binding assays with immunization and tolerance induction experiments in HLA-DR3 transgenic mice to design apitopes (antigen-processing independent epitopes) derived from thyrotropin receptor (TSHR) for treatment of patients with Graves' disease (GD). A challenge model was created by using an adenovirus-expressing part of the extracellular domain of the thyrotropin receptor (TSHR289). This model was used to test whether current drug treatments for GD would have an impact on effective antigen-specific immunotherapy using the apitope approach. Furthermore, selected peptides were assessed for their antigenicity using peripheral blood mononuclear cell samples from patients with GD. A mixture of two immunodominant apitopes was sufficient to suppress both the T-cell and antibody response to TSHR when administered in soluble form to HLA-DR transgenic mice. Tolerance induction was not disrupted by current drug treatments. These results demonstrate that antigen-specific immunotherapy with apitopes from TSHR is a suitable approach for treatment of GD.
Collapse
Affiliation(s)
| | | | | | - Keith F Martin
- Apitope Technology (Bristol) Ltd., Chepstow, United Kingdom
| | - David C Wraith
- Apitope International NV, Diepenbeek, Belgium
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
6
|
Inaba H, De Groot LJ, Akamizu T. Thyrotropin Receptor Epitope and Human Leukocyte Antigen in Graves' Disease. Front Endocrinol (Lausanne) 2016; 7:120. [PMID: 27602020 PMCID: PMC4994058 DOI: 10.3389/fendo.2016.00120] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/12/2016] [Indexed: 11/13/2022] Open
Abstract
Graves' disease (GD) is an organ-specific autoimmune disease, and thyrotropin (TSH) receptor (TSHR) is a major autoantigen in this condition. Since the extracellular domain of human TSHR (TSHR-ECD) is shed into the circulation, TSHR-ECD is a preferentially immunogenic portion of TSHR. Both genetic factors and environmental factors contribute to development of GD. Inheritance of human leukocyte antigen (HLA) genes, especially HLA-DR3, is associated with GD. TSHR-ECD protein is endocytosed into antigen-presenting cells (APCs), and processed to TSHR-ECD peptides. These peptide epitopes bind to HLA-class II molecules, and subsequently the complex of HLA-class II and TSHR-ECD epitope is presented to CD4+ T cells. The activated CD4+ T cells secrete cytokines/chemokines that stimulate B-cells to produce TSAb, and in turn hyperthyroidism occurs. Numerous studies have been done to identify T- and B-cell epitopes in TSHR-ECD, including (1) in silico, (2) in vitro, (3) in vivo, and (4) clinical experiments. Murine models of GD and HLA-transgenic mice have played a pivotal role in elucidating the immunological mechanisms. To date, linear or conformational epitopes of TSHR-ECD, as well as the molecular structure of the epitope-binding groove in HLA-DR, were reported to be related to the pathogenesis in GD. Dysfunction of central tolerance in the thymus, or in peripheral tolerance, such as regulatory T cells, could allow development of GD. Novel treatments using TSHR antagonists or mutated TSHR peptides have been reported to be effective. We review and update the role of immunogenic TSHR epitopes and HLA in GD, and offer perspectives on TSHR epitope specific treatments.
Collapse
Affiliation(s)
- Hidefumi Inaba
- The First Department of Medicine, Wakayama Medical University, Wakayama, Japan
- *Correspondence: Hidefumi Inaba,
| | - Leslie J. De Groot
- Department of Cellular and Molecular Biology, University of Rhode Island, Providence, RI, USA
| | - Takashi Akamizu
- The First Department of Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
7
|
B cell epitope spreading: mechanisms and contribution to autoimmune diseases. Immunol Lett 2014; 163:56-68. [PMID: 25445494 DOI: 10.1016/j.imlet.2014.11.001] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 11/03/2014] [Accepted: 11/05/2014] [Indexed: 01/03/2023]
Abstract
While a variety of factors act to trigger or initiate autoimmune diseases, the process of epitope spreading is an important contributor in their development. Epitope spreading is a diversification of the epitopes recognized by the immune system. This process happens to both T and B cells, with this review focusing on B cells. Such spreading can progress among multiple epitopes on a single antigen, or from one antigenic molecule to another. Systemic lupus erythematosus, multiple sclerosis, pemphigus, bullous pemphigoid and other autoimmune diseases, are all influenced by intermolecular and intramolecular B cell epitope spreading. Endocytic processing, antigen presentation, and somatic hypermutation act as molecular mechanisms that assist in driving epitope spreading and broadening the immune response in autoimmune diseases. The purpose of this review is to summarize our current understanding of B cell epitope spreading with regard to autoimmunity, how it contributes during the progression of various autoimmune diseases, and treatment options available.
Collapse
|
8
|
Bailey-Kellogg C, Gutiérrez AH, Moise L, Terry F, Martin WD, De Groot AS. CHOPPI: a web tool for the analysis of immunogenicity risk from host cell proteins in CHO-based protein production. Biotechnol Bioeng 2014; 111:2170-82. [PMID: 24888712 PMCID: PMC4282101 DOI: 10.1002/bit.25286] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/14/2014] [Accepted: 05/07/2014] [Indexed: 02/04/2023]
Abstract
Despite high quality standards and continual process improvements in manufacturing, host cell protein (HCP) process impurities remain a substantial risk for biological products. Even at low levels, residual HCPs can induce a detrimental immune response compromising the safety and efficacy of a biologic. Consequently, advanced-stage clinical trials have been cancelled due to the identification of antibodies against HCPs. To enable earlier and rapid assessment of the risks in Chinese Hamster Ovary (CHO)-based protein production of residual CHO protein impurities (CHOPs), we have developed a web tool called CHOPPI, for CHO Protein Predicted Immunogenicity. CHOPPI integrates information regarding the possible presence of CHOPs (expression and secretion) with characterizations of their immunogenicity (T cell epitope count and density, and relative conservation with human counterparts). CHOPPI can generate a report for a specified CHO protein (e.g., identified from proteomics or immunoassays) or characterize an entire specified subset of the CHO genome (e.g., filtered based on confidence in transcription and similarity to human proteins). The ability to analyze potential CHOPs at a genomic scale provides a baseline to evaluate relative risk. We show here that CHOPPI can identify clear differences in immunogenicity risk among previously validated CHOPs, as well as identify additional “risky” CHO proteins that may be expressed during production and induce a detrimental immune response upon delivery. We conclude that CHOPPI is a powerful tool that provides a valuable computational complement to existing experimental approaches for CHOP risk assessment and can focus experimental efforts in the most important directions. Biotechnol. Bioeng. 2014;111: 2170–2182.
Collapse
|
9
|
Perrotta C, Buldorini M, Assi E, Cazzato D, De Palma C, Clementi E, Cervia D. The thyroid hormone triiodothyronine controls macrophage maturation and functions: protective role during inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 184:230-47. [PMID: 24215914 DOI: 10.1016/j.ajpath.2013.10.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 09/17/2013] [Accepted: 10/04/2013] [Indexed: 12/17/2022]
Abstract
The endocrine system participates in regulating macrophage maturation, although little is known about the modulating role of the thyroid hormones. In vitro results demonstrate a negative role of one such hormone, triiodothyronine (T3), in triggering the differentiation of bone marrow-derived monocytes into unpolarized macrophages. T3-induced macrophages displayed a classically activated (M1) signature. A T3-induced M1-priming effect was also observed on polarized macrophages because T3 reverses alternatively activated (M2) activation, whereas it enhances that of M1 cells. In vivo, circulating T3 increased the content of the resident macrophages in the peritoneal cavity, whereas it reduced the content of the recruited monocyte-derived cells. Of interest, T3 significantly protected mice against endotoxemia induced by lipopolysaccharide i.p. injection; in these damaged animals, decreased T3 levels increased the recruited (potentially damaging) cells, whereas restoring T3 levels decreased recruited and increased resident (potentially beneficial) cells. These data suggest that the anti-inflammatory effect of T3 is coupled to the modulation of peritoneal macrophage content, in a context not fully explained by the M1/M2 framework. Thyroid hormone receptor expression analysis and the use of different thyroid hormone receptor antagonists suggest thyroid hormone receptor β1 as the major player mediating T3 effects on macrophages. The novel homeostatic link between thyroid hormones and the pathophysiological role of macrophages opens new perspectives on the interactions between the endocrine and immune systems.
Collapse
Affiliation(s)
- Cristiana Perrotta
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences, National Research Council Institute of Neuroscience, Luigi Sacco University Hospital, University of Milan, Milan, Italy
| | | | - Emma Assi
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences, National Research Council Institute of Neuroscience, Luigi Sacco University Hospital, University of Milan, Milan, Italy
| | | | - Clara De Palma
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences, National Research Council Institute of Neuroscience, Luigi Sacco University Hospital, University of Milan, Milan, Italy
| | - Emilio Clementi
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences, National Research Council Institute of Neuroscience, Luigi Sacco University Hospital, University of Milan, Milan, Italy; E. Medea Scientific Institute, Bosisio Parini, Italy.
| | - Davide Cervia
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences, National Research Council Institute of Neuroscience, Luigi Sacco University Hospital, University of Milan, Milan, Italy; Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, Viterbo, Italy.
| |
Collapse
|
10
|
Inaba H, Moise L, Martin W, De Groot AS, Desrosiers J, Tassone R, Buchman G, Akamizu T, De Groot LJ. Epitope recognition in HLA-DR3 transgenic mice immunized to TSH-R protein or peptides. Endocrinology 2013; 154:2234-43. [PMID: 23592747 PMCID: PMC5393327 DOI: 10.1210/en.2013-1033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Development of Graves' disease is related to HLA-DR3. The extracellular domain (ECD) of human TSH receptor (hTSH-R) is a crucial antigen in Graves' disease. hTSH-R peptide 37 (amino acids 78-94) is an important immunogenic peptide in DR3 transgenic mice immunized to hTSH-R. This study examined the epitope recognition in DR3 transgenic mice immunized to hTSH-R protein and evaluated the ability of a mutant hTSH-R peptide to attenuate the immunogenicity of hTSH-R peptide 37. DR3 transgenic mice were immunized to recombinant hTSH-R-ECD protein or peptides. A mutant hTSH-R 37 peptide (ISRIYVSIDATLSQLES: 37 m), in which DR3 binding motif position 5 was mutated V>A, and position 8 Q>S, was synthesized. 37 m should bind to HLA-DR3 but not bind T cell receptors. DR3 transgenic mice were immunized to hTSH-R 37 and 37 m. Mice immunized to hTSH-R-ECD protein developed strong anti-hTSH-R antibody, and antisera reacted strongly with hTSH-R peptides 1-5 (20-94), 21 (258-277), 41 (283-297), 36 (376-389), and 31 (399-418). Strikingly, antisera raised to hTSH-R peptide 37 bound to hTSH-R peptides 1-7 (20-112), 10 (132-50), 33 (137-150), 41, 23 (286-305), 24 (301-320), 36, and 31 as well as to hTSH-R-ECD protein. Both antibody titers to hTSH-R 37 and reaction of splenocytes to hTSH-R 37 were significantly reduced in mice immunized to hTSH-R 37 plus 37 m, compared with mice immunized to hTSH-R 37 alone. The ability of immunization to a single peptide to induce antibodies that bind hTSH-R-ECD protein, and multiple unrelated peptides, is a unique observation. Immunogenic reaction to hTSH-R peptide 37 was partially suppressed by 37 m, and this may contribute to immunotherapy of autoimmune thyroid disease.
Collapse
Affiliation(s)
- Hidefumi Inaba
- Department of Cellular and Molecular Biology, University of Rhode Island, Kingston, Rhode Island 02881, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Gutiérrez AH, Moise L, De Groot AS. Of [Hamsters] and men: a new perspective on host cell proteins. Hum Vaccin Immunother 2012; 8:1172-4. [PMID: 23124469 PMCID: PMC3579895 DOI: 10.4161/hv.22378] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Andres H. Gutiérrez
- Institute for Immunology and Informatics, University of Rhode Island; Providence, RI USA
| | - Leonard Moise
- Institute for Immunology and Informatics, University of Rhode Island; Providence, RI USA
- EpiVax Inc.; Providence, RI USA
| | - Annie S. De Groot
- Institute for Immunology and Informatics, University of Rhode Island; Providence, RI USA
- EpiVax Inc.; Providence, RI USA
| |
Collapse
|
12
|
Emerson CH. Awards of the thyroid societies and thyroid awards at the fourteenth international thyroid congress. Thyroid 2010; 20:1199-200. [PMID: 21062191 DOI: 10.1089/thy.2010.1664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
13
|
Inaba H, Martin W, Ardito M, De Groot AS, De Groot LJ. The role of glutamic or aspartic acid in position four of the epitope binding motif and thyrotropin receptor-extracellular domain epitope selection in Graves' disease. J Clin Endocrinol Metab 2010; 95:2909-16. [PMID: 20392871 PMCID: PMC2902065 DOI: 10.1210/jc.2009-2393] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Development of Graves' disease (GD) is related to HLA-DRB1*0301 (DR3),and more specifically to arginine at position 74 of the DRB1 molecule. The extracellular domain (ECD) of human TSH receptor (hTSH-R) contains the target antigen. OBJECTIVE AND DESIGN We analyzed the relation between hTSH-R-ECD peptides and DR molecules to determine whether aspartic acid (D) or glutamic acid (E) at position four in the binding motif influenced selection of functional epitopes. RESULTS Peptide epitopes from TSH-R-ECD with D or E in position four (D/E+) had higher affinity for binding to DR3 than peptides without D/E (D/E-) (IC(50) 29.3 vs. 61.4, P = 0.0024). HLA-DR7, negatively correlated with GD, and DRB1*0302 (HLA-DR18), not associated with GD, had different profiles of epitope binding. Toxic GD patients who are DR3+ had higher responses to D/E+ peptides than D/E- peptides (stimulation index 1.42 vs. 1.22, P = 0.028). All DR3+ GD patients (toxic + euthyroid) had higher responses, with borderline significance (Sl; 1.32 vs. 1.18, P = 0.051). Splenocytes of DR3 transgenic mice immunized to TSH-R-ECD responded to D/E+ peptides more than D/E- peptides (stimulation index 1.95 vs. 1.69, P = 0.036). Seven of nine hTSH-R-ECD peptide epitopes reported to be reactive with GD patients' peripheral blood mononuclear cells contain binding motifs with D/E at position four. CONCLUSIONS TSH-R-ECD epitopes with D/E in position four of the binding motif bind more strongly to DRB1*0301 than epitopes that are D/E- and are more stimulatory to GD patients' peripheral blood mononuclear cells and to splenocytes from mice immunized to hTSH-R. These epitopes appear important in immunogenicity to TSH-R due to their favored binding to HLA-DR3, thus increasing presentation to T cells.
Collapse
Affiliation(s)
- Hidefumi Inaba
- Department of Cellular and Molecular Biology, University of Rhode Island, 80 Washington Street, Providence, Rhode Island 02903, USA
| | | | | | | | | |
Collapse
|