1
|
Yang Y, Sanders AJ, Dou QP, Jiang DG, Li AX, Jiang WG. The Clinical and Theranostic Values of Activated Leukocyte Cell Adhesion Molecule (ALCAM)/CD166 in Human Solid Cancers. Cancers (Basel) 2021; 13:cancers13205187. [PMID: 34680335 PMCID: PMC8533996 DOI: 10.3390/cancers13205187] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 02/08/2023] Open
Abstract
Simple Summary ALCAM (activated leukocyte cell adhesion molecule) is an important regulator in human cancers, particularly solid tumours. Its expression in cancer tissues has prognostic values depending on cancer types and is also linked to distant metastases. A truncated form, soluble form of ALCAM (sALCAM) in circulation has been suggested to be a prognostic indicator and a potential therapeutic tool. This article summarises recent findings and progress in ALCAM and its involvement in cancer, with a primary focus on its clinical connections and therapeutic values. Abstract Activated leukocyte cell adhesion molecule (ALCAM), also known as CD166, is a cell adhesion protein that is found in multiple cell types. ALCAM has multiple and diverse roles in various physiological and pathological conditions, including inflammation and cancer. There has been compelling evidence of ALCAM’s prognostic value in solid cancers, indicating that it is a potential therapeutic target. The present article overviews the recent findings and progress in ALCAM and its involvement in cancer, with a primary focus on its clinical connections in cancer and therapeutic values.
Collapse
Affiliation(s)
- Yiming Yang
- School of Medicine, Cardiff University, Henry Wellcome Building, Cardiff CF14 4XN, UK; (Y.Y.); (Q.P.D.); (D.G.J.); (A.X.L.)
| | - Andrew J. Sanders
- School of Medicine, Cardiff University, Henry Wellcome Building, Cardiff CF14 4XN, UK; (Y.Y.); (Q.P.D.); (D.G.J.); (A.X.L.)
- Correspondence: (A.J.S.); (W.G.J.)
| | - Q. Ping Dou
- School of Medicine, Cardiff University, Henry Wellcome Building, Cardiff CF14 4XN, UK; (Y.Y.); (Q.P.D.); (D.G.J.); (A.X.L.)
- Departments of Oncology, Pharmacology and Pathology School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201-2013, USA
| | - David G. Jiang
- School of Medicine, Cardiff University, Henry Wellcome Building, Cardiff CF14 4XN, UK; (Y.Y.); (Q.P.D.); (D.G.J.); (A.X.L.)
- Stoke Mandeville Hospital, Buckinghamshire Healthcare NHS Trust, Aylesbury HP21 8AL, UK
| | - Amber Xinyu Li
- School of Medicine, Cardiff University, Henry Wellcome Building, Cardiff CF14 4XN, UK; (Y.Y.); (Q.P.D.); (D.G.J.); (A.X.L.)
| | - Wen G. Jiang
- School of Medicine, Cardiff University, Henry Wellcome Building, Cardiff CF14 4XN, UK; (Y.Y.); (Q.P.D.); (D.G.J.); (A.X.L.)
- Correspondence: (A.J.S.); (W.G.J.)
| |
Collapse
|
2
|
Fattahi Z, Khosroushahi AY, Hasanzadeh M. Recent progress on developing of plasmon biosensing of tumor biomarkers: Efficient method towards early stage recognition of cancer. Biomed Pharmacother 2020; 132:110850. [PMID: 33068930 DOI: 10.1016/j.biopha.2020.110850] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/21/2020] [Accepted: 10/04/2020] [Indexed: 12/18/2022] Open
Abstract
Cancer is the second most extended disease with an improved death rate over the past several time. Due to the restrictions of cancer analysis methods, the patient's real survival rate is unknown. Therefore, early stage diagnosis of cancer is crucial for its strong detection. Bio-analysis based on biomarkers may help to overcome the problem Biosensors with high sensitivity and specificity, low-cost, high analysis speed and minimum limit of detection are practical alternatives for laboratory tests. Surface plasmon resonance (SPR) is reaching a maturity level sufficient for their application in detection and determination cancer biomarkers in clinical samples. This review discusses main concepts and performance characteristics of SPR biosensor. Mainly, it focuses on newly emerged enhanced SPR biosensors towards high-throughput and ultrasensitive screening of cancer biomarkers such as PSA, α-fetoprotein, CEA, CA125, CA 15-3, HER2, ctDNA, ALCAM, hCG, VEGF, TNF, Interleukin, IFN-γ, CD24, CD44, Ferritin, COLIV using labeling processes with focusing on the future application in biomedical research and clinical diagnosis. This article reviews current status of the field, showcasing a series of early successes in the application of SPR for clinical bioanalysis of cancer related biomolecules and detailing a series of considerations regarding sensing schemes, exposing issues with analysis in biofluids, while providing an outlook of the challenges currently associated with plasmonic materials, bioreceptor selection, microfluidics, and validation of a clinical bioassay for applying SPR biosensors to clinical samples. Research opportunities are proposed to further advance the field and transition SPR biosensors from research proof-of-concept stage to actual clinical usage.
Collapse
Affiliation(s)
- Zahra Fattahi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Yari Khosroushahi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Hsieh AMY, Polyakova O, Fu G, Chazen RS, MacMillan C, Witterick IJ, Ralhan R, Walfish PG. Programmed death-ligand 1 expression by digital image analysis advances thyroid cancer diagnosis among encapsulated follicular lesions. Oncotarget 2018; 9:19767-19782. [PMID: 29731981 PMCID: PMC5929424 DOI: 10.18632/oncotarget.24833] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/24/2018] [Indexed: 01/09/2023] Open
Abstract
Recognition of noninvasive follicular thyroid neoplasms with papillary-like nuclear features (NIFTP) that distinguishes them from invasive malignant encapsulated follicular variant of papillary thyroid carcinoma (EFVPTC) can prevent overtreatment of NIFTP patients. We and others have previously reported that programmed death-ligand 1 (PD-L1) is a useful biomarker in thyroid tumors; however, all reports to date have relied on manual scoring that is time consuming as well as subject to individual bias. Consequently, we developed a digital image analysis (DIA) protocol for cytoplasmic and membranous stain quantitation (ThyApp) and evaluated three tumor sampling methods [Systemic Uniform Random Sampling, hotspot nucleus, and hotspot nucleus/3,3'-Diaminobenzidine (DAB)]. A patient cohort of 153 cases consisting of 48 NIFTP, 44 EFVPTC, 26 benign nodules and 35 encapsulated follicular lesions/neoplasms with lymphocytic thyroiditis (LT) was studied. ThyApp quantitation of PD-L1 expression revealed a significant difference between invasive EFVPTC and NIFTP; but none between NIFTP and benign nodules. ThyApp integrated with hotspot nucleus tumor sampling method demonstrated to be most clinically relevant, consumed least processing time, and eliminated interobserver variance. In conclusion, the fully automatic DIA algorithm developed using a histomorphological approach objectively quantitated PD-L1 expression in encapsulated thyroid neoplasms and outperformed manual scoring in reproducibility and higher efficiency.
Collapse
Affiliation(s)
- Anne M-Y Hsieh
- Alex and Simona Shnaider Research Laboratory in Molecular Oncology, Sinai Health System, Toronto, ON, Canada
| | - Olena Polyakova
- Alex and Simona Shnaider Research Laboratory in Molecular Oncology, Sinai Health System, Toronto, ON, Canada
| | - Guodong Fu
- Alex and Simona Shnaider Research Laboratory in Molecular Oncology, Sinai Health System, Toronto, ON, Canada
| | - Ronald S Chazen
- Alex and Simona Shnaider Research Laboratory in Molecular Oncology, Sinai Health System, Toronto, ON, Canada
| | - Christina MacMillan
- Department of Pathology and Laboratory Medicine, Sinai Health System, Toronto, Ontario, Canada.,Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Ian J Witterick
- Alex and Simona Shnaider Research Laboratory in Molecular Oncology, Sinai Health System, Toronto, ON, Canada.,Joseph and Mildred Sonshine Family Centre for Head and Neck Diseases, Sinai Health System, Toronto, Ontario, Canada.,Department of Otolaryngology-Head and Neck Surgery, Sinai Health System, Toronto, Ontario, Canada
| | - Ranju Ralhan
- Alex and Simona Shnaider Research Laboratory in Molecular Oncology, Sinai Health System, Toronto, ON, Canada.,Department of Pathology and Laboratory Medicine, Sinai Health System, Toronto, Ontario, Canada.,Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Department of Otolaryngology-Head and Neck Surgery, Sinai Health System, Toronto, Ontario, Canada
| | - Paul G Walfish
- Alex and Simona Shnaider Research Laboratory in Molecular Oncology, Sinai Health System, Toronto, ON, Canada.,Joseph and Mildred Sonshine Family Centre for Head and Neck Diseases, Sinai Health System, Toronto, Ontario, Canada.,Department of Pathology and Laboratory Medicine, Sinai Health System, Toronto, Ontario, Canada.,Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Department of Otolaryngology-Head and Neck Surgery, Sinai Health System, Toronto, Ontario, Canada.,Department of Medicine, Endocrine Division, Sinai Health System and University of Toronto Medical School, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Arnold Egloff SA, Du L, Loomans HA, Starchenko A, Su PF, Ketova T, Knoll PB, Wang J, Haddad AQ, Fadare O, Cates JM, Lotan Y, Shyr Y, Clark PE, Zijlstra A. Shed urinary ALCAM is an independent prognostic biomarker of three-year overall survival after cystectomy in patients with bladder cancer. Oncotarget 2018; 8:722-741. [PMID: 27894096 PMCID: PMC5352192 DOI: 10.18632/oncotarget.13546] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 10/19/2016] [Indexed: 01/08/2023] Open
Abstract
Proteins involved in tumor cell migration can potentially serve as markers of invasive disease. Activated Leukocyte Cell Adhesion Molecule (ALCAM) promotes adhesion, while shedding of its extracellular domain is associated with migration. We hypothesized that shed ALCAM in biofluids could be predictive of progressive disease. ALCAM expression in tumor (n = 198) and shedding in biofluids (n = 120) were measured in two separate VUMC bladder cancer cystectomy cohorts by immunofluorescence and enzyme-linked immunosorbent assay, respectively. The primary outcome measure was accuracy of predicting 3-year overall survival (OS) with shed ALCAM compared to standard clinical indicators alone, assessed by multivariable Cox regression and concordance-indices. Validation was performed by internal bootstrap, a cohort from a second institution (n = 64), and treatment of missing data with multiple-imputation. While ALCAM mRNA expression was unchanged, histological detection of ALCAM decreased with increasing stage (P = 0.004). Importantly, urine ALCAM was elevated 17.0-fold (P < 0.0001) above non-cancer controls, correlated positively with tumor stage (P = 0.018), was an independent predictor of OS after adjusting for age, tumor stage, lymph-node status, and hematuria (HR, 1.46; 95% CI, 1.03–2.06; P = 0.002), and improved prediction of OS by 3.3% (concordance-index, 78.5% vs. 75.2%). Urine ALCAM remained an independent predictor of OS after accounting for treatment with Bacillus Calmette-Guerin, carcinoma in situ, lymph-node dissection, lymphovascular invasion, urine creatinine, and adjuvant chemotherapy (HR, 1.10; 95% CI, 1.02–1.19; P = 0.011). In conclusion, shed ALCAM may be a novel prognostic biomarker in bladder cancer, although prospective validation studies are warranted. These findings demonstrate that markers reporting on cell motility can act as prognostic indicators.
Collapse
Affiliation(s)
- Shanna A Arnold Egloff
- Department of Veterans Affairs, Nashville, TN, USA.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Liping Du
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Holli A Loomans
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alina Starchenko
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Pei-Fang Su
- Department of Statistics, National Cheng Kung University, Taiwan
| | - Tatiana Ketova
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Jifeng Wang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Urology, The Fifth People's Hospital of Shanghai, Shanghai, China
| | - Ahmed Q Haddad
- Department of Urology, The University of Louisville, Louisville, KY, USA.,Department of Urology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Oluwole Fadare
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.,University of California San Diego, La Jolla, CA, USA
| | - Justin M Cates
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yair Lotan
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yu Shyr
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Ingram-Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Peter E Clark
- Vanderbilt Ingram-Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Urology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andries Zijlstra
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Ingram-Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
5
|
Xiao M, Wang X, Yan M, Chen W. A systematic evaluation for the potential translation of CD166-related expression as a cancer biomarker. Expert Rev Mol Diagn 2016; 16:925-32. [PMID: 27398729 DOI: 10.1080/14737159.2016.1211932] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Meng Xiao
- Department of Oral and Maxillofacial-Head & Neck Oncology and Faculty of Oral and Maxillofacial Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Xu Wang
- Department of Oral and Maxillofacial-Head & Neck Oncology and Faculty of Oral and Maxillofacial Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Ming Yan
- Department of Oral and Maxillofacial-Head & Neck Oncology and Faculty of Oral and Maxillofacial Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Wantao Chen
- Department of Oral and Maxillofacial-Head & Neck Oncology and Faculty of Oral and Maxillofacial Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai, China
| |
Collapse
|
6
|
Abstract
High Throughput Biological Data (HTBD) requires detailed analysis methods and from a life science perspective, these analysis results make most sense when interpreted within the context of biological pathways. Bayesian Networks (BNs) capture both linear and nonlinear interactions and handle stochastic events in a probabilistic framework accounting for noise making them viable candidates for HTBD analysis. We have recently proposed an approach, called Bayesian Pathway Analysis (BPA), for analyzing HTBD using BNs in which known biological pathways are modeled as BNs and pathways that best explain the given HTBD are found. BPA uses the fold change information to obtain an input matrix to score each pathway modeled as a BN. Scoring is achieved using the Bayesian-Dirichlet Equivalent method and significance is assessed by randomization via bootstrapping of the columns of the input matrix. In this study, we improve on the BPA system by optimizing the steps involved in "Data Preprocessing and Discretization", "Scoring", "Significance Assessment", and "Software and Web Application". We tested the improved system on synthetic data sets and achieved over 98% accuracy in identifying the active pathways. The overall approach was applied on real cancer microarray data sets in order to investigate the pathways that are commonly active in different cancer types. We compared our findings on the real data sets with a relevant approach called the Signaling Pathway Impact Analysis (SPIA).
Collapse
|
7
|
Bao ZS, Zhang CB, Wang HJ, Yan W, Liu YW, Li MY, Zhang W. Whole-genome mRNA expression profiling identifies functional and prognostic signatures in patients with mesenchymal glioblastoma multiforme. CNS Neurosci Ther 2013; 19:714-20. [PMID: 23663361 DOI: 10.1111/cns.12118] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/01/2013] [Accepted: 04/01/2013] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The Cancer Genome Atlas (TCGA) has divided patients with glioblastoma multiforme (GBM) into four subtypes based on mRNA expression microarray. The mesenchymal subtype, with a larger proportion, is considered a more lethal one. Clinical outcome prediction is required to better guide more personalized treatment for these patients. AIMS The objective of this study was to identify a mRNA expression signature to improve outcome prediction for patients with mesenchymal GBM. RESULTS For signature identification and validation, we downloaded mRNA expression microarray data from TCGA as training set and data from Rembrandt and GSE16011 as validation set. Cox regression and risk-score analysis were used to develop the 4 signatures, which were function and prognosis associated as revealed by Gene Ontology (GO) analysis and Gene Set Variation Analysis (GSVA). Patients who had high-risk scores according to the signatures had poor overall survival compared with patients who had low-risk scores. CONCLUSIONS The signatures were identified as risk predictors that patients who had a high-risk score tended to have unfavorable outcome, demonstrating their potential for personalizing cancer management.
Collapse
Affiliation(s)
- Zhao-Shi Bao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|