1
|
Pastor FM, de Melo Ocarino N, Silva JF, Reis AMS, Serakides R. Bone development in fetuses with intrauterine growth restriction caused by maternal endocrine-metabolic dysfunctions. Bone 2024; 186:117169. [PMID: 38880170 DOI: 10.1016/j.bone.2024.117169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/21/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Intrauterine growth restriction (IUGR) affects a large proportion of infants, particularly in underdeveloped countries. Among the main causes of IUGR, maternal endocrine-metabolic dysfunction is highlighted, either due to its high incidence or due to the severity of the immediate and mediated changes that these dysfunctions cause in the fetus and the mother. Although the effects of endocrine and metabolic disorders have been widely researched, there are still no reviews that bring together and summarize the effects of these conditions on bone development in cases of IUGR. Therefore, the present literature review was conducted with the aim of discussing bone changes observed in fetuses with IUGR caused by maternal endocrine-metabolic dysfunction. The main endocrine dysfunctions that occur with IUGR include maternal hyperthyroidism, hypothyroidism, and hypoparathyroidism. Diabetes mellitus, hypertensive disorders, and obesity are the most important maternal metabolic dysfunctions that compromise fetal growth. The bone changes reported in the fetus are, for the most part, due to damage to cell proliferation and differentiation, as well as failures in the synthesis and mineralization of the extracellular matrix, which results in shortening and fragility of the bones. Some maternal dysfunctions, such as hyperthyroidism, have been widely studied, whereas conditions such as hypoparathyroidism and gestational hypertensive disorders require further study regarding the mechanisms underlying the development of bone changes. Similarly, there is a gap in the literature regarding changes related to intramembranous ossification, as most published articles only describe changes in endochondral bone formation associated with IUGR. Furthermore, there is a need for more research aimed at elucidating the late postnatal changes that occur in the skeletons of individuals affected by IUGR and their possible relationships with adult diseases, such as osteoarthritis and osteoporosis.
Collapse
Affiliation(s)
- Felipe Martins Pastor
- Departamento de Cínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Natália de Melo Ocarino
- Departamento de Cínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Juneo Freitas Silva
- Centro de Microscopia Eletrônica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, Km 16, 45662-900 Ilhéus, Bahia, Brazil
| | - Amanda Maria Sena Reis
- Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Rogéria Serakides
- Departamento de Cínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
2
|
Fallahian F, Meyer A, Tadisina KK, Lin AY. Surgical Management in Isolated Squamosal Craniosynostosis: A Systematic Review. Ann Plast Surg 2023; 91:493-496. [PMID: 37553899 DOI: 10.1097/sap.0000000000003642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
BACKGROUND Although craniosynostoses involving the major sutures have been well described, the frequency of isolated minor suture craniosynostoses is much lower. Squamosal craniosynostosis (SQS) is a rare form of cranial synostosis, and the paucity of literature has made the creation of a standardized treatment plan difficult. We present a systematic review of the literature on isolated SQS to identify disease characteristics that lead to a need for operative intervention and to delineate patterns in surgical management. METHODS A systematic literature review was performed using the electronic databases of PubMed, Scopus, and MEDLINE and the key words "squamosal AND craniosynostosis," "squamous AND craniosynostosis," "squamosal craniosynostosis, "squamosal suture craniosynostosis," and "isolated squamosal craniosynostosis." Only human studies that described presentation and management of SQS were included. A blinded, 2-reviewer analysis of the articles was performed. Data collected included patient and disease characteristics, imaging workup, and treatment specifics, which were analyzed by descriptive statistics. RESULTS A total of 19 studies examining 119 patients with SQS were reviewed, with 97 (82%) multisutural cases and 22 isolated cases (18%). Of the isolated cases, 6 (27%) required surgical craniosynostosis repair, of which 1 (17%) had unilateral sutural involvement and 5 (83%) had bilateral involvement. Of the patients with isolated SQS, 7 (32%) had a congenital syndrome and comprised 33% of patients who required surgical intervention. The nonsyndromic patients with isolated SQS who required surgery presented with a wide array of phenotypic findings; 3 patients underwent some form of cranial vault remodeling, whereas 1 patient underwent ventriculoperitoneal shunt only. Of the 4 nonsyndromic patients with isolated SQS who underwent surgical repair, half required operative intervention because of elevated intracranial pressure and the other half because of dysmorphic head shape. CONCLUSION The findings of this updated systematic review suggest a trend toward surgical management in bilateral SQS versus unilateral SQS, and that patients with isolated SQS, previously considered to be a nonsurgical finding, should be carefully monitored, as there remains risk of increased intracranial pressure. Pooled systematic review data suggest isolated SQS has a 27% operative intervention rate, with the presence of coexisting syndromic diagnoses increasing that risk.
Collapse
Affiliation(s)
- Fedra Fallahian
- From the Department of Surgery, Saint Louis University School of Medicine, St Louis, MO
| | - Anne Meyer
- Department of Plastic Surgery, University of Kansas School of Medicine, Kansas City, KS
| | | | - Alexander Y Lin
- Division of Plastic Surgery, University of California San Francisco School of Medicine, San Francisco, CA
| |
Collapse
|
3
|
Fusion of Lateral Calvarial Sutures on Volume-Rendered Computed Tomography Reconstructions in Patients With Known Craniosynostosis. J Craniofac Surg 2023; 34:969-975. [PMID: 36939862 DOI: 10.1097/scs.0000000000009278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/04/2022] [Indexed: 03/21/2023] Open
Abstract
INTRODUCTION After treating a child with familial sagittal craniosynostosis, clinocephaly, and bilateral parietomastoid/posterior squamosal suture fusion, the authors wondered if major-suture synostosis and clinocephaly were associated with abnormal fusion of minor lateral calvarial sutures. METHODS The authors reviewed all preoperative volume-rendered head computed tomography reconstructions performed for craniosynostosis at their institution from 2010 through 2014 and determined whether the sphenoparietal, squamosal, and parietomastoid sutures were open, partially fused, or fused. The authors determined whether any sutures were abnormally fused based upon a previous study from their center, in which abnormal fusion was defined as either 1 of 3 abnormal fusion patterns or abnormally-early fusion. The authors then determined the rate of abnormal fusion of these sutures and whether abnormal fusion was associated with (1) major-suture craniosynostosis, (2) type of craniosynostosis (sutures involved; single-suture versus multisuture; syndromic versus nonsyndromic), and (3) clinocephaly. RESULTS In 97 included children, minor lateral sutures were abnormally fused in 8, or 8.2%, which was significantly higher than in children without craniosynostosis from our earlier study. Abnormal minor lateral suture fusion was not associated with the type of single-suture synostosis or with multisuture synostosis but was associated with syndromic synostosis. Four of 8 children with abnormal minor lateral suture fusion had multisuture synostosis and 6 had syndromic synostosis. Lateral sutures were abnormally fused in 1 of 4 subjects with clinocephaly, which was not significant. CONCLUSION Abnormal minor lateral calvarial suture fusion is significantly associated with major-suture craniosynostosis, especially syndromic synostosis.
Collapse
|
4
|
Durham EL, Grey ZJ, Black L, Howie RN, Barth JL, Lee BS, Cray JJ. Sfrp4 expression in thyroxine treated calvarial cells. Life Sci 2022; 311:121158. [PMID: 36370870 PMCID: PMC9719041 DOI: 10.1016/j.lfs.2022.121158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/24/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
AIMS Evidence suggests alterations of thyroid hormone levels can disrupt normal bone development. Most data suggest the major targets of thyroid hormones to be the Htra1/Igf1 pathway. Recent discovery by our group suggests involvement of targets WNT pathway, specifically overexpression of antagonist Sfrp4 in the presence of exogenous thyroid hormone. MAIN METHODS Here we aimed to model these interactions in vitro using primary and isotype cell lines to determine if thyroid hormone drives increased Sfrp4 expression in cells relevant to craniofacial development. Transcriptional profiling, bioinformatics interrogation, protein and function analyses were used. KEY FINDINGS Affymetrix transcriptional profiling found Sfrp4 overexpression in primary cranial suture derived cells stimulated with thyroxine in vitro. Interrogation of the SFRP4 promoter identified multiple putative binding sites for thyroid hormone receptors. Experimentation with several cell lines demonstrated that thyroxine treatment induced Sfrp4 expression, demonstrating that Sfrp4 mRNA and protein levels are not tightly coupled. Transcriptional and protein analyses demonstrate thyroid hormone receptor binding to the proximal promoter of the target gene Sfrp4 in murine calvarial pre-osteoblasts. Functional analysis after thyroxine hormone stimulation for alkaline phosphatase activity shows that pre-osteoblasts increase alkaline phosphatase activity compared to other cell types, suggesting cell type susceptibility. Finally, we added recombinant SFRP4 to pre-osteoblasts in combination with thyroxine treatment and observed a significant decrease in alkaline phosphatase positivity. SIGNIFICANCE Taken together, these results suggest SFRP4 may be a key regulatory molecule that prevents thyroxine driven osteogenesis. These data corroborate clinical findings indicating a potential for SFRP4 as a diagnostic or therapeutic target for hyperostotic craniofacial disorders.
Collapse
Affiliation(s)
- Emily L Durham
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA; Department of Pediatrics, Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Zachary J Grey
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Laurel Black
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA; Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - R Nicole Howie
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Jeremy L Barth
- Department of Regenerative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Beth S Lee
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - James J Cray
- Department of Biomedical Education and Anatomy, College of Medicine, The Ohio State University, Columbus, OH, USA; Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
5
|
Girard AO, Yang R. Management of Minor Suture Craniosynostosis. Oral Maxillofac Surg Clin North Am 2022; 34:435-442. [PMID: 35786531 DOI: 10.1016/j.coms.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although most reported cases of minor suture involvement include multiple sutures, isolated suture involvement has been reported. Morphologic differences such as scaphocephaly and anterior plagiocephaly have been reported. Management should involve proper identification and multidisciplinary treatment. Surgical treatment should involve the expansion of the cranial vault as well as the correction of the deformity.
Collapse
Affiliation(s)
- Alisa O Girard
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University, Baltimore, MD, USA
| | - Robin Yang
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University, Baltimore, MD, USA; Department of Plastic and Reconstructive Surgery, Johns Hopkins Hospital, 601 North Caroline Street, Baltimore, MD 21231, USA.
| |
Collapse
|
6
|
Wang W, Yang Y, Chen A, Song X, Chai L. Inhibition of Metamorphosis, Thyroid Gland, and Skeletal Ossification Induced by Hexavalent Chromium in Bufo gargarizans Larvae. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:2474-2483. [PMID: 34003524 DOI: 10.1002/etc.5114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/19/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
Hexavalent chromium (Cr [VI]) is one of the major detrimental heavy metal pollutants. In the present study, Bufo gargarizans were exposed to 0, 52, 104, 208, and 416 μg/L Cr (VI) from Gosner stage 2 until metamorphosis; and growth, development, and histological characteristics of the thyroid gland and skeletal ossification were examined. The results demonstrated that the survival rate of larvae exposed to Cr (VI) was not different from that measured in animals from the control group. However, high levels of Cr (VI) (104, 208, and 416 μg/L) were associated with significantly delayed growth and development. The suppression of skeletal ossification was observed at high Cr (VI) levels. Besides, histological alterations of the thyroid gland, such as follicular cell hyperplasia, colloid depletion, and peripheral colloid vacuolation, were found in 52 to 416 μg/L Cr (VI) treatments. The results of the present study highlight reductions in growth and development as well as percent metamorphosis and skeletal ossification due to histological alteration of the thyroid gland during exposure to Cr (VI) in B. gargarizans larvae. The present investigation could provide a basis for understanding the detrimental effects of Cr (VI) in amphibian larvae. Environ Toxicol Chem 2021;40:2474-2483. © 2021 SETAC.
Collapse
Affiliation(s)
- Wenxiang Wang
- School of Water and Environment, Chang'an University, Xi'an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, China
| | - Yijie Yang
- School of Water and Environment, Chang'an University, Xi'an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, China
| | - Aixia Chen
- School of Water and Environment, Chang'an University, Xi'an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, China
| | - Xiuling Song
- School of Water and Environment, Chang'an University, Xi'an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, China
| | - Lihong Chai
- School of Water and Environment, Chang'an University, Xi'an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, China
| |
Collapse
|
7
|
Sheleme M, Nigatu TA, Gebremariam T, Etefa T, Birhanu A. Determining Anterior Fontanel Size and Associated Factors Among Term Neonates on the First Day of Life Born at Jimma University Medical Center (JUMC), Southwest Ethiopia: A Linear Regression Model. Pediatric Health Med Ther 2021; 12:269-278. [PMID: 34104041 PMCID: PMC8179810 DOI: 10.2147/phmt.s300399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/07/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Knowledge of the normal variation in AF size may be helpful to cue early diagnosis of congenital hypothyroidism, hyperthyroidism, cardiac disease, meningitis, degree of dehydration or provide a clue to disorders of neural and skeletal development. However, the data is scarce. Therefore, this study was aimed to determine AF size and associated factors among term neonates on the first day of life born in Jimma University Medical Center (JUMC), Southwest Ethiopia. METHODOLOGY An institution-based cross-sectional study design was used to consecutively sample term and health newborns. Descriptive statistics, one-way ANOVA, independent samples t-test and correlation were implemented. Finally, multiple Linear regressions were used to see the association of the dependent and independent variables at 95% confidence interval. The significance level was declared at <0.05 p-value. RESULTS The mean AF size of the study population was 3.018 cm with standard deviation (±SD) of 0.909 cm (range 0.4-5.50cm). A multiple linear regression analysis revealed that neonatal birth weight (B=0.001, 95% CI: 0.000-0.001, p=0.000), crown heel length (B=0.048, 95% CI, 0.018-0.078, p=0.002), labor duration (B= -0.028, p=0.001, 95% CI: -0.45; -0.012), and gender of the neonates (B=-0.275, 95% CI: -.441; -.109, p=0.001) were statistically significantly associated with AF size. In a multiple linear regression analysis AF size was explained by independent variables by 54.3%. CONCLUSIONS AF size of the study population was 3.018 cm with a standard deviation (±SD) of 0.909 cm. Birth weight, crown heel length, duration of labor, and gender of the neonate were significantly associated with AF size.
Collapse
Affiliation(s)
- Merga Sheleme
- School of Medicine, College of Health and Medical Science, Haramaya University, Harar, Ethiopia
| | - Tilahun Alemayehu Nigatu
- Department of Biomedical Sciences, College of Medical Sciences, Institute of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Teka Gebremariam
- Department of Biomedical Sciences, College of Medical Sciences, Institute of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Tesema Etefa
- Department of Biomedical Sciences, College of Medical Sciences, Institute of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Abdi Birhanu
- School of Medicine, College of Health and Medical Science, Haramaya University, Harar, Ethiopia
| |
Collapse
|
8
|
Bin Alamer O, Jimenez AE, Azad TD. Single-suture craniosynostosis and the epigenome: current evidence and a review of epigenetic principles. Neurosurg Focus 2021; 50:E10. [PMID: 33794485 DOI: 10.3171/2021.1.focus201008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/05/2021] [Indexed: 11/06/2022]
Abstract
Craniosynostosis (CS) is a congenital disease that arises due to premature ossification of single or multiple sutures, which results in skull deformities. The surgical management of single-suture CS continues to evolve and is driven by a robust body of clinical research; however, the molecular underpinnings of CS remain poorly understood. Despite long-standing hypotheses regarding the interaction of genetic predisposition and environmental factors, formal investigation of the epigenetic underpinnings of CS has been limited. In an effort to catalyze further investigation into the epigenetic basis of CS, the authors review the fundamentals of epigenetics, discuss recent studies that shed light on this emerging field, and offer hypotheses regarding the role of epigenetic mechanisms in the development of single-suture CS.
Collapse
Affiliation(s)
- Othman Bin Alamer
- 1School of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; and
| | - Adrian E Jimenez
- 2Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, Maryland
| | - Tej D Azad
- 2Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, Maryland
| |
Collapse
|
9
|
Leitch VD, Bassett JHD, Williams GR. Role of thyroid hormones in craniofacial development. Nat Rev Endocrinol 2020; 16:147-164. [PMID: 31974498 DOI: 10.1038/s41574-019-0304-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2019] [Indexed: 02/07/2023]
Abstract
The development of the craniofacial skeleton relies on complex temporospatial organization of diverse cell types by key signalling molecules. Even minor disruptions to these processes can result in deleterious consequences for the structure and function of the skull. Thyroid hormone deficiency causes delayed craniofacial and tooth development, dysplastic facial features and delayed development of the ossicles in the middle ear. Thyroid hormone excess, by contrast, accelerates development of the skull and, in severe cases, might lead to craniosynostosis with neurological sequelae and facial hypoplasia. The pathogenesis of these important abnormalities remains poorly understood and underinvestigated. The orchestration of craniofacial development and regulation of suture and synchondrosis growth is dependent on several critical signalling pathways. The underlying mechanisms by which these key pathways regulate craniofacial growth and maturation are largely unclear, but studies of single-gene disorders resulting in craniofacial malformations have identified a number of critical signalling molecules and receptors. The craniofacial consequences resulting from gain-of-function and loss-of-function mutations affecting insulin-like growth factor 1, fibroblast growth factor receptor and WNT signalling are similar to the effects of altered thyroid status and mutations affecting thyroid hormone action, suggesting that these critical pathways interact in the regulation of craniofacial development.
Collapse
Affiliation(s)
- Victoria D Leitch
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Royal Melbourne Institute of Technology (RMIT) Centre for Additive Manufacturing, RMIT University, Melbourne, VIC, Australia
| | - J H Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| | - Graham R Williams
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| |
Collapse
|
10
|
Wu X, Gu Y. Signaling Mechanisms Underlying Genetic Pathophysiology of Craniosynostosis. Int J Biol Sci 2019; 15:298-311. [PMID: 30745822 PMCID: PMC6367540 DOI: 10.7150/ijbs.29183] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/30/2018] [Indexed: 12/14/2022] Open
Abstract
Craniosynostosis, is the premature fusion of one or more cranial sutures which is the second most common cranial facial anomalies. The premature cranial sutures leads to deformity of skull shape and restricts the growth of brain, which might elicit severe neurologic damage. Craniosynostosis exhibit close correlations with a varieties of syndromes. During the past two decades, as the appliance of high throughput DNA sequencing techniques, steady progresses has been made in identifying gene mutations in both syndromic and nonsyndromic cases, which allow researchers to better understanding the genetic roles in the development of cranial vault. As the enrichment of known mutations involved in the pathogenic of premature sutures fusion, multiple signaling pathways have been investigated to dissect the underlying mechanisms beneath the disease. In addition to genetic etiology, environment factors, especially mechanics, have also been proposed to have vital roles during the pathophysiological of craniosynostosis. However, the influence of mechanics factors in the cranial development remains largely unknown. In this review, we present a brief overview of the updated genetic mutations and environmental factors identified in both syndromic and nonsyndromic craniosynostosis. Furthermore, potential molecular signaling pathways and its relations have been described.
Collapse
Affiliation(s)
- Xiaowei Wu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, No. 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, PR. China
- National Engineering Laboratory for Digital and Material Technology of Stomatology,Beijing Key Laboratory of Digital Stomatology, No. 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, PR. China
| | - Yan Gu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, No. 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, PR. China
- National Engineering Laboratory for Digital and Material Technology of Stomatology,Beijing Key Laboratory of Digital Stomatology, No. 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, PR. China
| |
Collapse
|
11
|
Abstract
The squamosal suture is one of the lateral minor skull sutures, separating the parietal and squamous temporal bones. While the phenotypic appearances and sequelae of synostosis of the major cranial vault sutures are well documented, little is reported concerning synostosis of the squamosal suture (SQS). The aim of this study was to determine the frequency of squamosal suture synostosis, and to document the significance of this entity.A retrospective review of the diagnostic imaging for all new pediatric patients (aged ≤16 years) referred to the Oxford Craniofacial Unit between January 2008 and February 2013 was completed to identify patients with SQS. Computed tomography (CT) imaging was available in 422 patients and the axial and three-dimensional reconstructed images reviewed.Squamosal suture synostosis was confirmed in 38 patients (9%). It was present in conjunction with major suture synostosis in 33 patients and in isolation in 5. The incidence increased with age. It was more common in patients with syndromic craniosynostosis (18%) and associated syndromic conditions (36%) than in those with isolated major suture synostosis (6%). It was found to occur with coronal, lambdoid, and sagittal synostosis, but was most frequent with multisuture fusion patterns. Squamosal suture synostosis was not associated with a consistent calvarial deformity either in isolation or when associated with a major suture fusion. No patient underwent surgery specifically to correct SQS.In conclusion, contrary to previous reports, squamosal suture synostosis is a relatively frequent finding in the general case mix of a typical craniofacial unit, but is of limited clinical significance.
Collapse
|
12
|
Craniosynostosis as a clinical and diagnostic problem: molecular pathology and genetic counseling. J Appl Genet 2018; 59:133-147. [PMID: 29392564 DOI: 10.1007/s13353-017-0423-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 12/11/2017] [Accepted: 12/20/2017] [Indexed: 12/16/2022]
Abstract
Craniosynostosis (occurrence: 1/2500 live births) is a result of premature fusion of cranial sutures, leading to alterations of the pattern of cranial growth, resulting in abnormal shape of the head and dysmorphic facial features. In approximately 85% of cases, the disease is isolated and nonsyndromic and mainly involves only one suture. Syndromic craniosynostoses such as Crouzon, Apert, Pfeiffer, Muenke, and Saethre-Chotzen syndromes not only affect multiple sutures, but are also associated with the presence of additional clinical symptoms, including hand and feet malformations, skeletal and cardiac defects, developmental delay, and others. The etiology of craniosynostoses may involve genetic (also somatic mosaicism and regulatory mutations) and epigenetic factors, as well as environmental factors. According to the published data, chromosomal aberrations, mostly submicroscopic ones, account for about 6.7-40% of cases of syndromic craniosynostoses presenting with premature fusion of metopic or sagittal sutures. The best characterized is the deletion or translocation of the 7p21 region containing the TWIST1 gene. The deletions of 9p22 or 11q23-qter (Jacobsen syndrome) are both associated with trigonocephaly. The genes related to the pathogenesis of the craniosynostoses itself are those encoding transcription factors, e.g., TWIST1, MSX2, EN1, and ZIC1, and proteins involved in osteogenic proliferation, differentiation, and homeostasis, such as FGFR1, FGFR2, RUNX2, POR, and many others. In this review, we present the clinical and molecular features of selected craniosynostosis syndromes, genotype-phenotype correlation, family genetic counseling, and propose the most appropriate diagnostic algorithm.
Collapse
|
13
|
Abstract
Thyroid hormones are essential for skeletal development and are important regulators of bone maintenance in adults. Childhood hypothyroidism causes delayed skeletal development, retarded linear growth and impaired bone mineral accrual. Epiphyseal dysgenesis is evidenced by classic features of stippled epiphyses on X-ray. In severe cases, post-natal growth arrest results in a complex skeletal dysplasia. Thyroid hormone replacement stimulates catch-up growth and bone maturation, but recovery may be incomplete dependent on the duration and severity of hypothyroidism prior to treatment. A severe phenotype characteristic of hypothyroidism occurs in children with resistance to thyroid hormone due to mutations affecting THRA encoding thyroid hormone receptor α (TRα). Discovery of this rare condition recapitulated animal studies demonstrating that TRα mediates thyroid hormone action in the skeleton. In adults, thyrotoxicosis is well known to cause severe osteoporosis and fracture, but cases are rare because of prompt diagnosis and treatment. Recent data, however, indicate that subclinical hyperthyroidism is associated with low bone mineral density (BMD) and an increased risk of fracture. Population studies have also shown that variation in thyroid status within the reference range in post-menopausal women is associated with altered BMD and fracture risk. Thus, thyroid status at the upper end of the euthyroid reference range is associated with low BMD and increased risk of osteoporotic fragility fracture. Overall, extensive data demonstrate that euthyroid status is required for normal post-natal growth and bone mineral accrual, and is fundamental for maintenance of adult bone structure and strength.
Collapse
Affiliation(s)
- G. R. Williams
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, 10N5 Commonwealth Building, London, W12 0NN UK
| | - J. H. D. Bassett
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, 10N6 Commonwealth Building, London, W12 0NN UK
| |
Collapse
|
14
|
Durham EL, Howie RN, Black L, Bennfors G, Parsons TE, Elsalanty M, Yu JC, Weinberg SM, Cray JJ. Effects of thyroxine exposure on the Twist 1 +/- phenotype: A test of gene-environment interaction modeling for craniosynostosis. ACTA ACUST UNITED AC 2016; 106:803-813. [PMID: 27435288 DOI: 10.1002/bdra.23543] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/06/2016] [Accepted: 06/08/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Craniosynostosis, the premature fusion of one or more of the cranial sutures, is estimated to occur in 1:1800 to 2500 births. Genetic murine models of craniosynostosis exist, but often imperfectly model human patients. Case, cohort, and surveillance studies have identified excess thyroid hormone as an agent that can either cause or exacerbate human cases of craniosynostosis. METHODS Here we investigate the influence of in utero and in vitro exogenous thyroid hormone exposure on a murine model of craniosynostosis, Twist 1 +/-. RESULTS By 15 days post-natal, there was evidence of coronal suture fusion in the Twist 1 +/- model, regardless of exposure. With the exception of craniofacial width, there were no significant effects of exposure; however, the Twist 1 +/- phenotype was significantly different from the wild-type control. Twist 1 +/- cranial suture cells did not respond to thyroxine treatment as measured by proliferation, osteogenic differentiation, and gene expression of osteogenic markers. However, treatment of these cells did result in modulation of thyroid associated gene expression. CONCLUSION Our findings suggest the phenotypic effects of the genetic mutation largely outweighed the effects of thyroxine exposure in the Twist 1 +/- model. These results highlight difficultly in experimentally modeling gene-environment interactions for craniosynostotic phenotypes. Birth Defects Research (Part A) 106:803-813, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Emily L Durham
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - R Nicole Howie
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Laurel Black
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Grace Bennfors
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Trish E Parsons
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mohammed Elsalanty
- Departments of Oral Biology, Cellular Biology and Anatomy, Orthopaedic Surgery and Oral and Maxillofacial Surgery, Augusta University, Augusta, Georgia.,Institute for Regenerative and Reparative Medicine, Augusta University, Augusta, Georgia
| | - Jack C Yu
- Institute for Regenerative and Reparative Medicine, Augusta University, Augusta, Georgia.,Department of Surgery, Division of Plastic Surgery, Augusta University, Augusta, Georgia
| | - Seth M Weinberg
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - James J Cray
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
15
|
Abstract
The skeleton is an exquisitely sensitive and archetypal T3-target tissue that demonstrates the critical role for thyroid hormones during development, linear growth, and adult bone turnover and maintenance. Thyrotoxicosis is an established cause of secondary osteoporosis, and abnormal thyroid hormone signaling has recently been identified as a novel risk factor for osteoarthritis. Skeletal phenotypes in genetically modified mice have faithfully reproduced genetic disorders in humans, revealing the complex physiological relationship between centrally regulated thyroid status and the peripheral actions of thyroid hormones. Studies in mutant mice also established the paradigm that T3 exerts anabolic actions during growth and catabolic effects on adult bone. Thus, the skeleton represents an ideal physiological system in which to characterize thyroid hormone transport, metabolism, and action during development and adulthood and in response to injury. Future analysis of T3 action in individual skeletal cell lineages will provide new insights into cell-specific molecular mechanisms and may ultimately identify novel therapeutic targets for chronic degenerative diseases such as osteoporosis and osteoarthritis. This review provides a comprehensive analysis of the current state of the art.
Collapse
Affiliation(s)
- J H Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, Hammersmith Campus, London W12 0NN, United Kingdom
| | - Graham R Williams
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, Hammersmith Campus, London W12 0NN, United Kingdom
| |
Collapse
|