1
|
Abstract
The clinical availability of tissue-specific biomarkers of thyroid hormone (TH) action constitutes a "holy grail" for the field. Scientists have investigated several TH-dependent markers, including the tissue content of triiodothyronine (T3)-the active form of TH. The study of animal models and humans indicates that the T3 content varies among different tissues, mostly due to the presence of low-affinity, high-capacity cytoplasmic T3 binding proteins. Nonetheless, given that T3 levels in the plasma and tissues are in equilibrium, T3 signaling is defined by the intracellular free T3 levels. The available techniques to assess tissue T3 are invasive and not clinically applicable. However, the tracer kinetic studies revealed that serum T3 levels can accurately predict tissue T3 content and T3 signaling in most tissues, except for the brain and pituitary gland. This is true not only for normal individuals but also for patients with hypo or hyperthyroidism-but not for patients with non-thyroidal illness syndrome. Given this direct relationship between serum and tissue T3 contents and T3 signaling in most tissues, clinicians managing patients with hypothyroidism could refocus attention on monitoring serum T3 levels. Future clinical trials should aim at correlating clinical outcomes with serum T3 levels.
Collapse
Affiliation(s)
- Federico Salas-Lucia
- Section of Adult and Pediatric Endocrinology and Metabolism, The University of Chicago, Chicago, IL, United States
| | | |
Collapse
|
2
|
Kerp H, Hönes GS, Tolstik E, Hönes-Wendland J, Gassen J, Moeller LC, Lorenz K, Führer D. Protective Effects of Thyroid Hormone Deprivation on Progression of Maladaptive Cardiac Hypertrophy and Heart Failure. Front Cardiovasc Med 2021; 8:683522. [PMID: 34395557 PMCID: PMC8363198 DOI: 10.3389/fcvm.2021.683522] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/07/2021] [Indexed: 01/07/2023] Open
Abstract
Purpose: Thyroid hormones (TH) play a central role for cardiac function. TH influence heart rate and cardiac contractility, and altered thyroid function is associated with increased cardiovascular morbidity and mortality. The precise role of TH in onset and progression of heart failure still requires clarification. Methods: Chronic left ventricular pressure overload was induced in mouse hearts by transverse aortic constriction (TAC). One week after TAC, alteration of TH status was induced and the impact on cardiac disease progression was studied longitudinally over 4 weeks in mice with hypo- or hyperthyroidism and was compared to euthyroid TAC controls. Serial assessment was performed for heart function (2D M-mode echocardiography), heart morphology (weight, fibrosis, and cardiomyocyte cross-sectional area), and molecular changes in heart tissues (TH target gene expression, apoptosis, and mTOR activation) at 2 and 4 weeks. Results: In diseased heart, subsequent TH restriction stopped progression of maladaptive cardiac hypertrophy and improved cardiac function. In contrast and compared to euthyroid TAC controls, increased TH availability after TAC propelled maladaptive cardiac growth and development of heart failure. This was accompanied by a rise in cardiomyocyte apoptosis and mTOR pathway activation. Conclusion: This study shows, for the first time, a protective effect of TH deprivation against progression of pathological cardiac hypertrophy and development of congestive heart failure in mice with left ventricular pressure overload. Whether this also applies to the human situation needs to be determined in clinical studies and would infer a critical re-thinking of management of TH status in patients with hypertensive heart disease.
Collapse
Affiliation(s)
- Helena Kerp
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Georg Sebastian Hönes
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Elen Tolstik
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Judith Hönes-Wendland
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Janina Gassen
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lars Christian Moeller
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kristina Lorenz
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Dagmar Führer
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
3
|
Ettleson MD, Bianco AC. Individualized Therapy for Hypothyroidism: Is T4 Enough for Everyone? J Clin Endocrinol Metab 2020; 105:dgaa430. [PMID: 32614450 PMCID: PMC7382053 DOI: 10.1210/clinem/dgaa430] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023]
Abstract
CONTEXT It is well recognized that some hypothyroid patients on levothyroxine (LT4) remain symptomatic, but why patients are susceptible to this condition, why symptoms persist, and what is the role of combination therapy with LT4 and liothyronine (LT3), are questions that remain unclear. Here we explore evidence of abnormal thyroid hormone (TH) metabolism in LT4-treated patients, and offer a rationale for why some patients perceive LT4 therapy as a failure. EVIDENCE ACQUISITION This review is based on a collection of primary and review literature gathered from a PubMed search of "hypothyroidism," "levothyroxine," "liothyronine," and "desiccated thyroid extract," among other keywords. PubMed searches were supplemented by Google Scholar and the authors' prior knowledge of the subject. EVIDENCE SYNTHESIS In most LT4-treated patients, normalization of serum thyrotropin levels results in decreased serum T3/T4 ratio, with relatively lower serum T3 levels; in at least 15% of the cases, serum T3 levels are below normal. These changes can lead to a reduction in TH action, which would explain the slower rate of metabolism and elevated serum cholesterol levels. A small percentage of patients might also experience persistent symptoms of hypothyroidism, with impaired cognition and tiredness. We propose that such patients carry a key clinical factor, for example, specific genetic and/or immunologic makeup, that is well compensated while the thyroid function is normal but might become apparent when compounded with relatively lower serum T3 levels. CONCLUSIONS After excluding other explanations, physicians should openly discuss and consider therapy with LT4 and LT3 with those hypothyroid patients who have persistent symptoms or metabolic abnormalities despite normalization of serum thyrotropin level. New clinical trials focused on symptomatic patients, genetic makeup, and comorbidities, with the statistical power to identify differences between monotherapy and combination therapy, are needed.
Collapse
Affiliation(s)
- Matthew D Ettleson
- Section of Adult and Pediatric Endocrinology and Metabolism, University of Chicago, Chicago, Illinois, USA
| | - Antonio C Bianco
- Section of Adult and Pediatric Endocrinology and Metabolism, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
4
|
Stone G, Choi A, Meritxell O, Gorham J, Heydarpour M, Seidman CE, Seidman JG, Aranki SF, Body SC, Carey VJ, Raby BA, Stranger BE, Muehlschlegel JD. Sex differences in gene expression in response to ischemia in the human left ventricular myocardium. Hum Mol Genet 2020; 28:1682-1693. [PMID: 30649309 DOI: 10.1093/hmg/ddz014] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/20/2018] [Accepted: 01/09/2019] [Indexed: 01/28/2023] Open
Abstract
Sex differences exist in the prevalence, presentation and outcomes of ischemic heart disease (IHD). Females have higher risk of heart failure post-myocardial infarction relative to males and are two to three times more likely to die after coronary artery bypass grafting surgery. We examined sex differences in human myocardial gene expression in response to ischemia. Left ventricular biopsies from 68 male/46 female patients undergoing aortic valve replacement surgery were obtained at baseline and after a median 74 min of cold cardioplegic arrest/ischemia. Transcriptomes were quantified by RNA-sequencing. Cell-type enrichment analysis was used to estimate the identity and relative proportions of different cell types in each sample. A sex-specific response to ischemia was observed for 271 genes. Notably, the expression FAM5C, PLA2G4E and CYP1A1 showed an increased expression in females compared to males due to ischemia and DIO3, MT1G and CMA1 showed a decreased expression in females compared to males due to ischemia. Functional annotation analysis revealed sex-specific modulation of the oxytocin signaling pathway and common pathway of fibrin clot formation. Expression quantitative trait locus (eQTL) analysis identified variant-by-sex interaction eQTLs, indicative of sex differences in the genotypic effects on gene expression. Cell-type enrichment analysis showed sex-bias in proportion of specific cell types. Common lymphoid progenitor cells and M2 macrophages were found to increase in female samples from pre- to post-ischemia, but no change was observed in male samples. These differences in response to myocardial ischemia provide insight into the sexual dimorphism of IHD and may aid in the development of sex-specific therapies that reduce myocardial injury.
Collapse
Affiliation(s)
- Gregory Stone
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ashley Choi
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Oliva Meritxell
- Institute for Genomics and Systems Biology, Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Joshua Gorham
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Mahyar Heydarpour
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Jon G Seidman
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Sary F Aranki
- Division of Cardiac Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Simon C Body
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Vincent J Carey
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin A Raby
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Barbara E Stranger
- Institute for Genomics and Systems Biology, Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Jochen D Muehlschlegel
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Bianco AC, Dumitrescu A, Gereben B, Ribeiro MO, Fonseca TL, Fernandes GW, Bocco BMLC. Paradigms of Dynamic Control of Thyroid Hormone Signaling. Endocr Rev 2019; 40:1000-1047. [PMID: 31033998 PMCID: PMC6596318 DOI: 10.1210/er.2018-00275] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/15/2019] [Indexed: 12/17/2022]
Abstract
Thyroid hormone (TH) molecules enter cells via membrane transporters and, depending on the cell type, can be activated (i.e., T4 to T3 conversion) or inactivated (i.e., T3 to 3,3'-diiodo-l-thyronine or T4 to reverse T3 conversion). These reactions are catalyzed by the deiodinases. The biologically active hormone, T3, eventually binds to intracellular TH receptors (TRs), TRα and TRβ, and initiate TH signaling, that is, regulation of target genes and other metabolic pathways. At least three families of transmembrane transporters, MCT, OATP, and LAT, facilitate the entry of TH into cells, which follow the gradient of free hormone between the extracellular fluid and the cytoplasm. Inactivation or marked downregulation of TH transporters can dampen TH signaling. At the same time, dynamic modifications in the expression or activity of TRs and transcriptional coregulators can affect positively or negatively the intensity of TH signaling. However, the deiodinases are the element that provides greatest amplitude in dynamic control of TH signaling. Cells that express the activating deiodinase DIO2 can rapidly enhance TH signaling due to intracellular buildup of T3. In contrast, TH signaling is dampened in cells that express the inactivating deiodinase DIO3. This explains how THs can regulate pathways in development, metabolism, and growth, despite rather stable levels in the circulation. As a consequence, TH signaling is unique for each cell (tissue or organ), depending on circulating TH levels and on the exclusive blend of transporters, deiodinases, and TRs present in each cell. In this review we explore the key mechanisms underlying customization of TH signaling during development, in health and in disease states.
Collapse
Affiliation(s)
- Antonio C Bianco
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Alexandra Dumitrescu
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Balázs Gereben
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Miriam O Ribeiro
- Developmental Disorders Program, Center of Biologic Sciences and Health, Mackenzie Presbyterian University, São Paulo, São Paulo, Brazil
| | - Tatiana L Fonseca
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Gustavo W Fernandes
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Barbara M L C Bocco
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| |
Collapse
|
6
|
Nishimura K, Takeda M, Yamashita JK, Shiojima I, Toyoda N. Type 3 iodothyronine deiodinase is expressed in human induced pluripotent stem cell derived cardiomyocytes. Life Sci 2018; 203:276-281. [DOI: 10.1016/j.lfs.2018.04.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 04/07/2018] [Accepted: 04/19/2018] [Indexed: 12/29/2022]
|
7
|
Abstract
Thyroid hormone signaling is customized in a time and cell-specific manner by the deiodinases, homodimeric thioredoxin fold containing selenoproteins. This ensures adequate T3 action in developing tissues, healthy adults and many disease states. D2 activates thyroid hormone by converting the pro-hormone T4 to T3, the biologically active thyroid hormone. D2 expression is tightly regulated by transcriptional mechanisms triggered by endogenous as well as environmental cues. There is also an on/off switch mechanism that controls D2 activity that is triggered by catalysis and functions via D2 ubiquitination/deubiquitination. D3 terminates thyroid hormone action by inactivation of both T4 and T3 molecules. Deiodinases play a role in thyroid hormone homeostasis, development, growth and metabolic control by affecting the intracellular levels of T3 and thus gene expression on a cell-specific basis. In many cases, tight control of these pathways by T3 is achieved with coordinated reciprocal changes in D2-mediated thyroid hormone activation D3-mediated thyroid hormone inactivation.
Collapse
|