1
|
Li Z. Novel perspectives on the pharmacological treatment of thyroid-associated ophthalmopathy. Front Endocrinol (Lausanne) 2025; 15:1469268. [PMID: 39872310 PMCID: PMC11769798 DOI: 10.3389/fendo.2024.1469268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/23/2024] [Indexed: 01/30/2025] Open
Abstract
Thyroid-associated ophthalmopathy (TAO), an autoimmune disease closely related to thyroid dysfunction, remains a challenging ophthalmic condition among adults. Its clinical manifestations are complex and diverse, and disease progression can lead to exophthalmos, diplopia, exposure keratitis, corneal ulceration, and compressive optic neuropathy, resulting in irreversible vision damage or even blindness. Traditional treatment methods for TAO, including glucocorticoids, immunosuppressants, and radiation therapy, often have limitations and side effects, making this disease problematic in ophthalmology. As a result, the development of novel targeted drugs has become a research hotspot for addressing the pathogenesis of TAO. A range of novel targeted drugs, such as teprotumumab and tocilizumab, have been successfully developed and demonstrated remarkable efficacy in relieving inflammation and managing this disease. In addition, some drug candidates and molecular targets identified in the TAO in vitro model have shown promising prospects. This article briefly reviews the potential new strategies for future clinical treatment and the progress of new drug therapies for TAO.
Collapse
Affiliation(s)
- Zilin Li
- No. 1 Teaching Hospital, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin, China
| |
Collapse
|
2
|
Moledina M, Damato EM, Lee V. The changing landscape of thyroid eye disease: current clinical advances and future outlook. Eye (Lond) 2024; 38:1425-1437. [PMID: 38374366 PMCID: PMC11126416 DOI: 10.1038/s41433-024-02967-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/07/2024] [Accepted: 01/26/2024] [Indexed: 02/21/2024] Open
Abstract
AIMS This review aims to provide an overview of the current understanding of TED and its pathophysiology. To describe the evidence base for current consensus treatment recommendations and newer biological therapies available as well as to present future therapeutic research. METHODS We reviewed and assessed the peer-reviewed literature placing particular emphasis on recent studies evaluating the pathophysiology of TED, landmark trials forming the basis of current management and recent clinical trials informing future therapeutics. Searched were made in MEDLINE Ovid, Embase Ovid, US National Institutes of Health Ongoing Trials Register and EU Clinical Trials Register. Keywords included: "Thyroid Eye Disease", "Graves Orbitopathy", "Thyroid Orbitopathy" and "Graves' Ophthalmopathy". RESULTS AND CONCLUSIONS The pathophysiology of TED involves a complex array of cellular and humoral based autoimmune dysfunction. Previous therapies have been broad-based acting as a blunt instrument on this mechanism with varying efficacy but often accompanied with a significant side effect profile. The recent development of targeted therapy, spearheaded by Teprotumumab has led to an array of treatments focusing on specific components of the molecular pathway optimising their impact whilst possibly minimising their side effect profile. Future challenges involve identifying the most effective target for each patient rather than any single agent being a panacea. Long-term safety profiles will require clarification as unintended immunological consequence downstream may become manifest as seen in other diseases. Finally, future novel therapeutics will entail significant expenditure and may lead to a divergence of available treatment modalities between healthcare systems due to funding disparities.
Collapse
Affiliation(s)
- Malik Moledina
- Oculoplastics Service, Western Eye Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Erika M Damato
- Department of Ophthalmology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Vickie Lee
- Oculoplastics Service, Western Eye Hospital, Imperial College Healthcare NHS Trust, London, UK.
| |
Collapse
|
3
|
Wang L, Zhang M, Wang Y, Shi B. Graves' Orbitopathy Models: Valuable Tools for Exploring Pathogenesis and Treatment. Horm Metab Res 2023; 55:745-751. [PMID: 37903495 DOI: 10.1055/a-2161-5417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Graves' orbitopathy (GO) is the most common extrathyroidal complication of Graves' disease (GD) and severely affects quality of life. However, its pathogenesis is still poorly understood, and therapeutic options are limited. Animal models are important tools for preclinical research. The animals in some previous models only exhibited symptoms of hyperthyroidism without ocular lesions. With the improvements achieved in modeling methods, some progressive animal models have been established. Immunization of mice with A subunit of the human thyroid stimulating hormone receptor (TSHR) by either adenovirus or plasmid (with electroporation) is widely used and convincing. These models are successful to identify that the gut microbiota influences the occurrence and severity of GD and GO, and sex-related risk factors may be key contributors to the female bias in the occurrence of GO rather than sex itself. Some data provide insight that macrophages and CD8+ T cells may play an important pathogenic role in the early stage of GO. Our team also replicated the time window from GD onset to GO onset and identified a group of CD4+ cytotoxic T cells. In therapeutic exploration, TSHR derived peptides, fingolimod, and rapamycin offer new potential options. Further clinical trials are needed to investigate these drugs. With the increasing use of these animal models and more in-depth studies of the new findings, scientists will gain a clearer understanding of the pathogenesis of GO and identify more treatments for patients.
Collapse
Affiliation(s)
- Ling Wang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Meng Zhang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yue Wang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bingyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
4
|
Gulbins A, Horstmann M, Keitsch S, Soddemann M, Wilker B, Wilson GC, Zeidan R, Hammer GD, Daser A, Bechrakis NE, Görtz GE, Eckstein A. Potential involvement of the bone marrow in experimental Graves' disease and thyroid eye disease. Front Endocrinol (Lausanne) 2023; 14:1252727. [PMID: 37810891 PMCID: PMC10558005 DOI: 10.3389/fendo.2023.1252727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/28/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Graves' disease is an autoimmune disorder caused by auto-antibodies against the thyroid stimulating hormone receptor (TSHR). Overstimulation of the TSHR induces hyperthyroidism and thyroid eye disease (TED) as the most common extra thyroidal manifestation of Graves' disease. In TED, the TSHR cross talks with the insulin-like growth factor 1 receptor (IGF-1R) in orbital fibroblasts leading to inflammation, deposition of hyaluronan and adipogenesis. The bone marrow may play an important role in autoimmune diseases, but its role in Graves' disease and TED is unknown. Here, we investigated whether induction of experimental Graves' disease and accompanying TED involves bone marrow activation and whether interference with IGF-1R signaling prevents this activation. Results Immunization of mice with TSHR resulted in an increase the numbers of CD4-positive T-lymphocytes (p ≤0.0001), which was normalized by linsitinib (p = 0.0029), an increase of CD19-positive B-lymphocytes (p= 0.0018), which was unaffected by linsitinib and a decrease of GR1-positive cells (p= 0.0038), which was prevented by linsitinib (p= 0.0027). In addition, we observed an increase of Sca-1 positive hematopietic stem cells (p= 0.0007) and of stromal cell-derived factor 1 (SDF-1) (p ≤0.0001) after immunization with TSHR which was prevented by linsitinib (Sca-1: p= 0.0008, SDF-1: p ≤0.0001). TSHR-immunization also resulted in upregulation of CCL-5, IL-6 and osteopontin (all p ≤0.0001) and a concomitant decrease of the immune-inhibitory cytokines IL-10 (p= 0.0064) and PGE2 (p ≤0.0001) in the bone marrow (all p≤ 0.0001). Treatment with the IGF-1R antagonist linsitinib blocked these events (all p ≤0.0001). We further demonstrate a down-regulation of arginase-1 expression (p= 0.0005) in the bone marrow in TSHR immunized mice, with a concomitant increase of local arginine (p ≤0.0001). Linsitinib induces an upregulation of arginase-1 resulting in low arginase levels in the bone marrow. Reconstitution of arginine in bone marrow cells in vitro prevented immune-inhibition by linsitinib. Conclusion Collectively, these data indicate that the bone marrow is activated in experimental Graves' disease and TED, which is prevented by linsitinib. Linsitinib-mediated immune-inhibition is mediated, at least in part, by arginase-1 up-regulation, consumption of arginine and thereby immune inhibition.
Collapse
Affiliation(s)
- Anne Gulbins
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Mareike Horstmann
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Simone Keitsch
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Matthias Soddemann
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Barbara Wilker
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Gregory C. Wilson
- Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Ryan Zeidan
- Sling Therapeutics Inc., Ann Arbor, MI, United States
| | - Gary D. Hammer
- Endocrine Oncology Program, University of Michigan, Ann Arbor, MI, United States
| | - Anke Daser
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Nikolaos E. Bechrakis
- Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Gina-Eva Görtz
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Anja Eckstein
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
5
|
Gulbins A, Horstmann M, Daser A, Flögel U, Oeverhaus M, Bechrakis NE, Banga JP, Keitsch S, Wilker B, Krause G, Hammer GD, Spencer AG, Zeidan R, Eckstein A, Philipp S, Görtz GE. Linsitinib, an IGF-1R inhibitor, attenuates disease development and progression in a model of thyroid eye disease. Front Endocrinol (Lausanne) 2023; 14:1211473. [PMID: 37435490 PMCID: PMC10331459 DOI: 10.3389/fendo.2023.1211473] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/06/2023] [Indexed: 07/13/2023] Open
Abstract
Introduction Graves' disease (GD) is an autoimmune disorder caused by autoantibodies against the thyroid stimulating hormone receptor (TSHR) leading to overstimulation of the thyroid gland. Thyroid eye disease (TED) is the most common extra thyroidal manifestation of GD. Therapeutic options to treat TED are very limited and novel treatments need to be developed. In the present study we investigated the effect of linsitinib, a dual small-molecule kinase inhibitor of the insulin-like growth factor 1 receptor (IGF-1R) and the Insulin receptor (IR) on the disease outcome of GD and TED. Methods Linsitinib was administered orally for four weeks with therapy initiating in either the early ("active") or the late ("chronic") phases of the disease. In the thyroid and the orbit, autoimmune hyperthyroidism and orbitopathy were analyzed serologically (total anti-TSHR binding antibodies, stimulating anti TSHR antibodies, total T4 levels), immunohistochemically (H&E-, CD3-, TNFa- and Sirius red staining) and with immunofluorescence (F4/80 staining). An MRI was performed to quantify in vivo tissue remodeling inside the orbit. Results Linsitinib prevented autoimmune hyperthyroidism in the early state of the disease, by reducing morphological changes indicative for hyperthyroidism and blocking T-cell infiltration, visualized by CD3 staining. In the late state of the disease linsitinib had its main effect in the orbit. Linsitinib reduced immune infiltration of T-cells (CD3 staining) and macrophages (F4/80 and TNFa staining) in the orbita in experimental GD suggesting an additional, direct effect of linsitinib on the autoimmune response. In addition, treatment with linsitinib normalized the amount of brown adipose tissue in both the early and late group. An in vivo MRI of the late group was performed and revealed a marked decrease of inflammation, visualized by 19F MR imaging, significant reduction of existing muscle edema and formation of brown adipose tissue. Conclusion Here, we demonstrate that linsitinib effectively prevents development and progression of thyroid eye disease in an experimental murine model for Graves' disease. Linsitinib improved the total disease outcome, indicating the clinical significance of the findings and providing a path to therapeutic intervention of Graves' Disease. Our data support the use of linsitinib as a novel treatment for thyroid eye disease.
Collapse
Affiliation(s)
- Anne Gulbins
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Mareike Horstmann
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Anke Daser
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging, Department of Molecular Cardiology, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Michael Oeverhaus
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Nikolaos E. Bechrakis
- Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - J. Paul Banga
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Simone Keitsch
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Barbara Wilker
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Gerd Krause
- Department of Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Gary D. Hammer
- Endocrine Oncology Program, University of Michigan, Ann Arbor, MI, United States
| | | | - Ryan Zeidan
- Sling Therapeutics Inc., Ann Arbor, MI, United States
| | - Anja Eckstein
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Svenja Philipp
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Gina-Eva Görtz
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
6
|
Shen F, Liu J, Fang L, Fang Y, Zhou H. Development and application of animal models to study thyroid-associated ophthalmopathy. Exp Eye Res 2023; 230:109436. [PMID: 36914000 DOI: 10.1016/j.exer.2023.109436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/08/2023] [Accepted: 03/08/2023] [Indexed: 03/13/2023]
Abstract
Thyroid-associated ophthalmopathy (TAO), also known as Graves' ophthalmopathy, is an autoimmune disease that is usually accompanied by hyperthyroidism. Its pathogenesis involves the activation of autoimmune T lymphocytes by a cross-antigen reaction of thyroid and orbital tissues. The thyroid-stimulating hormone receptor (TSHR) is known to play an important role in the development of TAO. Because of the difficulty of orbital tissue biopsy, the establishment of an ideal animal model is important for developing novel clinical therapies of TAO. To date, TAO animal modeling methods are mainly based on inducing experimental animals to produce anti-thyroid-stimulating hormone receptor antibodies (TRAbs) and then recruit autoimmune T lymphocytes. Currently, the most common methods are hTSHR-A subunit plasmid electroporation and hTSHR-A subunit adenovirus transfection. These animal models provide a powerful tool for exploring the internal relationship between local and systemic immune microenvironment disorders of the TAO orbit, facilitating the development of new drugs. However, existing TAO modeling methods still have some defects, such as low modeling rate, long modeling cycles, low repetition rate, and considerable differences from human histology. Hence, the modeling methods require further innovation, improvement, and in-depth exploration.
Collapse
Affiliation(s)
- Feiyang Shen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China.
| | - Jin Liu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
| | - Lianfei Fang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China.
| | - Yan Fang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China.
| | - Huifang Zhou
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China.
| |
Collapse
|
7
|
Fallahi P, Ragusa F, Paparo SR, Elia G, Balestri E, Mazzi V, Patrizio A, Botrini C, Benvenga S, Ferrari SM, Antonelli A. Teprotumumab for the treatment of thyroid eye disease. Expert Opin Biol Ther 2023; 23:123-131. [PMID: 36695097 DOI: 10.1080/14712598.2023.2172328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Thyroid eye disease (TED) is an autoimmune disease characterized by inflammation of orbital and extraocular muscles. It induces proptosis and diplopia, leading to a worsening of quality of life (QoL) because of its impact on physical appearance, and visual function. The natural history involves an 'active TED,' which is an autoimmune inflammatory response targeting orbital soft tissues, and 'inactive TED,' where there is tissue expansion remodeling. To date, glucocorticoids represent the main medical therapy, even if often ineffective and associated with side effects. AREAS COVERED In TED, the autoimmune process leads to production of TSH-R and IGF-1 R autoantibodies. This induces inflammatory changes in the orbital tissue, and activation of fibroblasts with accumulation of glycosaminoglycans, leading to consequent proptosis, and diplopia. In two previous randomized, double-masked, placebo-controlled, parallel-group, multicenter trials, teprotumumab has been shown to be effective in improving proptosis, inflammation, diplopia, and QoL. More recently, it has been shown that teprotumumab is also effective in chronic-inactive TED. Teprotumumab was approved by the FDA on 21 January 2020 for the treatment of TED. EXPERT OPINION For the above-mentioned reasons teprotumumab represents a potential first line therapy for TED that could replace the use of steroids in the next future.
Collapse
Affiliation(s)
- Poupak Fallahi
- Department of Translational Research of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Francesca Ragusa
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Sabrina Rosaria Paparo
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Giusy Elia
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Eugenia Balestri
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Valeria Mazzi
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Armando Patrizio
- Department of Emergency Medicine, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Chiara Botrini
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Salvatore Benvenga
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.,Master Program on Childhood, Adolescent and Women's Endocrine Health, University of Messina, Messina, Italy.,Interdepartmental Program of Molecular & Clinical Endocrinology, and Women's Endocrine Health, University Hospital, Policlinico Universitario G. Martino, Messina, Italy
| | | | - Alessandro Antonelli
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| |
Collapse
|
8
|
He X, Chen S, Wang X, Kong M, Shi F, Qi X, Xu Y. TSG6 Plays a Role in Improving Orbital Inflammatory Infiltration and Extracellular Matrix Accumulation in TAO Model Mice. J Inflamm Res 2023; 16:1937-1948. [PMID: 37168288 PMCID: PMC10166143 DOI: 10.2147/jir.s409286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/21/2023] [Indexed: 05/13/2023] Open
Abstract
Introduction TSG-6 plays a wide anti-inflammatory and therapeutic role in a variety of autoimmune diseases as the key mediator of mesenchymal stem cells (MSCs). Purpose We aimed to test whether TSG-6 could exert similar effects as MSCS in TAO via establishing TAO animal model immunized by hTSHR-A subunit plasmid. Material and Methods We tested the expression level of TSG-6 on intraconal orbital fat from controls and patients with TAO. We established a stable thyroid-associated ophthalmopathy animal model by immunizing 6-week-old female Balb/c mice with recombination hTSHR-A subunit plasmid. After four immunizations, TSG-6 or dexamethasone was injected through the tail vein. The effects of the drugs on body weight, thyroid function, orbital inflammation, fibrosis and lipogenesis were observed. Results The expression of TSG-6 in the orbital tissues of TAO patient is lower than that of normal people. In our animal model, mice showed weight loss, higher TT4 and TSHR antibody levels, and ocular symptoms such as inflammation and proptosis. TSG-6 can reduce ocular fibrosis and lipogenesis by inhibiting the infiltration of CD3+ T lymphocytes and macrophages in the mouse model of thyroid associated ophthalmopathy. Compared with dexamethasone, TSG-6 showed comparable anti-inflammatory effect, moreover, it has given a better performance in inhibiting adipogenesis. Conclusion It was demonstrated that TSG-6 has a considerable positive impact on improving eye symptoms of TAO mice, which could be a novel candidate for the early treatment of TAO.
Collapse
Affiliation(s)
- Xiuhui He
- Department of Ophthalmology, Second Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Siya Chen
- Department of Ophthalmology, Second Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Xiaohui Wang
- Department of Ophthalmology, Second Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Min Kong
- Department of Ophthalmology, Second Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Fangzheng Shi
- Department of Ophthalmology, Second Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Xiaoxuan Qi
- Department of Ophthalmology, Second Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Yuxin Xu
- Department of Ophthalmology, Second Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- Correspondence: Yuxin Xu, Department of Ophthalmology, Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Economic and Technological Development Zone, Hefei, People’s Republic of China, Tel +86-13866752297, Email
| |
Collapse
|
9
|
Philipp S, Horstmann M, Hose M, Daser A, Görtz GE, Jesenek C, Flögel U, Hansen W, Bechrakis N, Banga JPS, Eckstein A, Berchner-Pfannschmidt U. An Early Wave of Macrophage Infiltration Intertwined with Antigen-Specific Proinflammatory T Cells and Browning of Adipose Tissue Characterizes the Onset of Orbital Inflammation in a Mouse Model of Graves' Orbitopathy. Thyroid 2022; 32:283-293. [PMID: 34779257 DOI: 10.1089/thy.2021.0464] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background: Graves' orbitopathy (GO) is an autoimmune-driven manifestation of Graves' disease (GD) where pathogenic autoantibodies to the thyrotropin receptor (TSHR) activate orbital fibroblasts/preadipocytes in the orbital tissue to induce inflammation and extracellular matrix deposition. Since there are significant limitations to study immunological and proinflammatory mediator expression in early and during disease progression in GO patients, we used our experimental mouse model to elucidate early pathogenic processes. Methods: We have developed a robust mouse model of GD/GO induced by electroporation immunization of plasmid encoding human TSHR A-subunit, comprising multiple injections over a course of 15 weeks to fully recapitulate the orbital pathology. In this study, we investigated kinetics of GO development in the model by serial analyses of immunological and cellular parameters during course of orbital inflammation. Results: Pathogenic anti-TSHR antibodies with thyroid-stimulating properties developed early after the second immunization step with concomitant induction of hyperthyroidism. Examination of orbital tissue showed an early wave of macrophage infiltration followed subsequently by CD3+ T cells into the orbital tissue. Examination of antigen-specific T cell activity using recombinant human A-subunit protein showed high CD8+ T cell proliferation during this early phase of disease onset, whereas effector CD4+ T cells and CD25+FOXP3+ regulatory T cells (Tregs) were downregulated. The early phase of disease was also characterized by abundant presence of proinflammatory cytokines interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α). Moreover, as the disease progressed, there was significant increase in browning of orbital fat tissue, which may be dependent on the proinflammatory milieu and/or the increased thyroid hormone levels during the established hyperthyroid status. Conclusions: This work revealed early infiltration of macrophages in the orbital region and induction of pathogenic anti-TSHR antibodies during disease onset in the model. This was followed subsequently by influx of CD8+ T cells specific for TSHR coupled with reduction in Tregs and substantial increase in brown adipose tissue. These new insights into the development of orbital inflammation in the model have implications for testing new therapeutic regimens by targeting macrophage function during early phases of orbital inflammation in the model.
Collapse
Affiliation(s)
- Svenja Philipp
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Mareike Horstmann
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Matthias Hose
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Anke Daser
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Gina-Eva Görtz
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Christoph Jesenek
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging, Department of Molecular Cardiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Wiebke Hansen
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Nikolaos Bechrakis
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Jasvinder Paul S Banga
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Anja Eckstein
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Utta Berchner-Pfannschmidt
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
10
|
Degen H, Gavvovidis I, Blankenstein T, Uhland K, Ungerer M. Thyrotropin Receptor-Specific Lymphocytes in Adenovirus-TSHR-Immunized Native and Human Leukocyte Antigen-DR3-Transgenic Mice and in Graves' Disease Patient Blood. Thyroid 2021; 31:950-963. [PMID: 33208049 DOI: 10.1089/thy.2020.0338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background: Antigen-specific lymphocytes are increasingly investigated in autoimmune diseases and immune therapies. We sought to identify thyrotropin receptor (TSHR)-specific lymphocytes in mouse models of Graves' disease, including Graves' patient-specific immunotype human leukocyte antigen (HLA)-DR3, and in frozen and thawed Graves' patient blood samples. Methods and Results: Splenic lymphocytes of adenovirus (Ad)-TSHR-immunized BALB/c mice were stimulated with TSHR-specific peptides C, D, or J. Furthermore, CD154-expressing cells were enriched, expanded in vitro, and analyzed for binding of peptide-major histocompatibility complex (MHC) II multimers ("tetramers," immunotype H2-IAd). Only peptides C and J were able to elicit increased expression/secretion of CD154 and interferon-γ, and tetramers which were loaded with peptide C resulted in antigen-specific signals in splenic lymphocytes from Ad-TSHR-immunized mice. Accordingly, TSHR-specific HLA-DR3-MHC class II tetramers loaded with peptide p10 specifically bound to human HLA-DR3-(allele B1*03:01)-transgenic Bl/6 mouse splenic T lymphocytes. In addition, we fine-tuned a protocol to reliably measure thawed human peripheral blood mononuclear cells (PBMCs), which resulted in reliable recovery after freezing and thawing with regard to vitality and B and T cell subpopulation markers including regulatory T cells (CD3, CD4, CD25, FoxP3, CD25high, CD127low). TSHR-specific HLA-DR3-MHC class II tetramers loaded with peptide p10 identified antigen-specific T cells in HLA-DR3-positive Graves' patients' thawed PBMCs. Moreover, stimulation-dependent release of interleukin (IL)-1beta, IL-6, tumor necrosis factor-alpha from thawed PBMCs occurred at the expected levels. Conclusions: Novel MHC II tetramers identified TSHR-specific T lymphocytes in Ad-TSHR-immunized hyperthyroid BALB/c or HLA-DR3-transgenic mice and in thawed human PBMCs from patients with Graves' disease. These assays may contribute to measure both disease severity and effects of novel immune therapies in future animal studies and clinical investigations of Graves' disease.
Collapse
Affiliation(s)
| | - Ioannis Gavvovidis
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch, Germany
- Department of Immunology, Charite - Universitätsmedizin, Berlin, Germany
| | - Thomas Blankenstein
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch, Germany
- Department of Immunology, Charite - Universitätsmedizin, Berlin, Germany
| | | | | |
Collapse
|
11
|
Stöhr M, Oeverhaus M, Lytton SD, Horstmann M, Zwanziger D, Möller L, Stark A, Führer-Sakel D, Bechrakis N, Berchner-Pfannschmidt U, Banga JP, Philipp S, Eckstein A. Predicting the Relapse of Hyperthyroidism in Treated Graves' Disease with Orbitopathy by Serial Measurements of TSH-Receptor Autoantibodies. Horm Metab Res 2021; 53:235-244. [PMID: 33618407 DOI: 10.1055/a-1373-5523] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The aim of this study was to investigate the potential of the new TSH-receptor antibody (TRAb) assays to predict remission or relapse of hyperthyroidism in patients with Graves' disease (GD) and Graves' orbitopathy (GO). TRAbs were measured retrospectively in sera from a cohort of GD patients with GO (n=117; remission n=38 and relapse n=79-Essen GO biobank) with automated binding immunoassays: TRAb Elecsys (Cobas Roche) and TRAb bridge assay (IMMULITE, Siemens), and the TSAb (thyroid stimulating Ab) cell-based bioassay (Thyretain, Quidel Corp.). To identify relapse risk/remission of hyperthyroidism patients were followed up at least 10 months after the end of antithyroid drug therapy (ATD) therapy. ROC plot analysis was performed to calculate cut-off levels of TRAb and TSAb for prediction of relapse and remission of hyperthyroidism. Cut-off serum levels are provided for timepoints around 3, 6, 10, and 15 months after the beginning of ATD. Repeated measurements of TRAb increase the rate of relapses predictions to 60% (Elecsys), 70% (IMMULITE), and 55% (Thyretain). Patients with remission have consistently TRAb levels below the cut off for relapse in repeated measurements. The cell-based bioassay was the most sensitive - and continued to be positive during follow up [at 15 months: 90% vs. 70% (IMMULITE) and 65% (Elecsys)]. Identification of relapsing hyperthyroidism is possible with automated immunoassays and cell-based bioassay especially with serial TRAb measurements during the course of ATD therapy. Patient who need eye surgery may profit from an early decision towards definitive treatment.
Collapse
Affiliation(s)
- Mareile Stöhr
- Department of Ophthalmology, University Hospital Essen, Essen, Germany
| | - Michael Oeverhaus
- Department of Ophthalmology, University Hospital Essen, Essen, Germany
| | | | - Mareike Horstmann
- Department of Ophthalmology, University Hospital Essen, Essen, Germany
| | - Denise Zwanziger
- Department of Endocrinology, Diabetes and Metabolism, University of Duisburg-Essen, Essen, Germany
| | - Lars Möller
- Department of Endocrinology, Diabetes and Metabolism, University of Duisburg-Essen, Essen, Germany
| | - Achim Stark
- Practice for General Medicine, Essen, Germany
| | - Dagmar Führer-Sakel
- Department of Endocrinology, Diabetes and Metabolism, University of Duisburg-Essen, Essen, Germany
| | | | | | | | - Svenja Philipp
- Department of Endocrinology, Diabetes and Metabolism, University of Duisburg-Essen, Essen, Germany
| | - Anja Eckstein
- Department of Ophthalmology, University Hospital Essen, Essen, Germany
| |
Collapse
|
12
|
Abstract
Thyroid eye disease (TED) is a complex inflammatory disease that can have a long clinical course with sight-threatening and debilitating ocular sequelae. Until recently, there were limited therapeutic options available. In the last decade we have gained a deeper understanding of the underlying pathophysiology, which has led to the development of novel effective targeted therapies. This article discusses the challenges encountered in the clinical evaluation and treatment of TED patients, with the goal to empower endocrinologists and ophthalmologists to work together to provide effective multidisciplinary care. We will review recommendations of past clinical guidelines around evaluation and management of TED patients, discuss the randomized controlled trials of new biologic therapies, and explore how to navigate the emerging therapeutic landscape.
Collapse
Affiliation(s)
- Chrysoula Dosiou
- Division of Endocrinology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Andrea Lora Kossler
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
13
|
Moshkelgosha S, Verhasselt HL, Masetti G, Covelli D, Biscarini F, Horstmann M, Daser A, Westendorf AM, Jesenek C, Philipp S, Diaz-Cano S, Banga JP, Michael D, Plummer S, Marchesi JR, Eckstein A, Ludgate M, Berchner-Pfannschmidt U. Modulating gut microbiota in a mouse model of Graves' orbitopathy and its impact on induced disease. MICROBIOME 2021; 9:45. [PMID: 33593429 PMCID: PMC7888139 DOI: 10.1186/s40168-020-00952-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/06/2020] [Indexed: 05/15/2023]
Abstract
BACKGROUND Graves' disease (GD) is an autoimmune condition in which autoantibodies to the thyrotropin receptor (TSHR) cause hyperthyroidism. About 50% of GD patients also have Graves' orbitopathy (GO), an intractable disease in which expansion of the orbital contents causes diplopia, proptosis and even blindness. Murine models of GD/GO, developed in different centres, demonstrated significant variation in gut microbiota composition which correlated with TSHR-induced disease heterogeneity. To investigate whether correlation indicates causation, we modified the gut microbiota to determine whether it has a role in thyroid autoimmunity. Female BALB/c mice were treated with either vancomycin, probiotic bacteria, human fecal material transfer (hFMT) from patients with severe GO or ddH2O from birth to immunization with TSHR-A subunit or beta-galactosidase (βgal; age ~ 6 weeks). Incidence and severity of GD (TSHR autoantibodies, thyroid histology, thyroxine level) and GO (orbital fat and muscle histology), lymphocyte phenotype, cytokine profile and gut microbiota were analysed at sacrifice (~ 22 weeks). RESULTS In ddH2O-TSHR mice, 84% had pathological autoantibodies, 67% elevated thyroxine, 77% hyperplastic thyroids and 70% orbital pathology. Firmicutes were increased, and Bacteroidetes reduced relative to ddH2O-βgal; CCL5 was increased. The random forest algorithm at the genus level predicted vancomycin treatment with 100% accuracy but 74% and 70% for hFMT and probiotic, respectively. Vancomycin significantly reduced gut microbiota richness and diversity compared with all other groups; the incidence and severity of both GD and GO also decreased; reduced orbital pathology correlated positively with Akkermansia spp. whilst IL-4 levels increased. Mice receiving hFMT initially inherited their GO donors' microbiota, and the severity of induced GD increased, as did the orbital brown adipose tissue volume in TSHR mice. Furthermore, genus Bacteroides, which is reduced in GD patients, was significantly increased by vancomycin but reduced in hFMT-treated mice. Probiotic treatment significantly increased CD25+ Treg cells in orbital draining lymph nodes but exacerbated induced autoimmune hyperthyroidism and GO. CONCLUSIONS These results strongly support a role for the gut microbiota in TSHR-induced disease. Whilst changes to the gut microbiota have a profound effect on quantifiable GD endocrine and immune factors, the impact on GO cellular changes is more nuanced. The findings have translational potential for novel, improved treatments. Video abstract.
Collapse
Affiliation(s)
- Sajad Moshkelgosha
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
- Current address: Latner Thoracic Surgery Laboratories, Toronto General Research Institute, University Health Network and University of Toronto, Toronto, Canada
| | - Hedda Luise Verhasselt
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Cultech Ltd., Baglan, Port Talbot, UK
| | - Giulia Masetti
- Division of Infection & Immunity, School of Medicine, Cardiff University, UHW main building, Heath Park, Cardiff, CF14 4XW, UK
- Department of Bioinformatics, PTP Science Park Srl, Lodi, Italy
- Current address: Computational metagenomics, Department CIBIO, University of Trento, Trento, Italy
| | - Danila Covelli
- Cultech Ltd., Baglan, Port Talbot, UK
- Graves' Orbitopathy Center, Endocrinology, Department of Clinical Sciences and Community Health, Fondazione Ca'Granda IRCCS, University of Milan, Milan, Italy
| | - Filippo Biscarini
- Department of Bioinformatics, PTP Science Park Srl, Lodi, Italy
- Italian National Research Council (CNR), Milano, Italy
| | - Mareike Horstmann
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Anke Daser
- Department of Ophthalmology, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Astrid M Westendorf
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Christoph Jesenek
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Svenja Philipp
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Salvador Diaz-Cano
- Department of Histopathology, King's College Hospital, King's College, London, UK
| | - J Paul Banga
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | | | | | - Julian R Marchesi
- School of Biosciences, Cardiff University, Cardiff, UK
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Anja Eckstein
- Department of Ophthalmology, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany.
| | - Marian Ludgate
- Division of Infection & Immunity, School of Medicine, Cardiff University, UHW main building, Heath Park, Cardiff, CF14 4XW, UK.
| | - Utta Berchner-Pfannschmidt
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany.
| |
Collapse
|
14
|
Fang S, Lu Y, Huang Y, Zhou H, Fan X. Mechanisms That Underly T Cell Immunity in Graves' Orbitopathy. Front Endocrinol (Lausanne) 2021; 12:648732. [PMID: 33868176 PMCID: PMC8049604 DOI: 10.3389/fendo.2021.648732] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 03/08/2021] [Indexed: 12/23/2022] Open
Abstract
Graves' orbitopathy (GO), also known as thyroid-associated ophthalmopathy, is the most common ocular abnormality of Graves' disease. It is a disfiguring, invalidating, and potentially blinding orbital disease mediated by an interlocking and complicated immune network. Self-reactive T cells directly against thyroid-stimulating hormone receptor-bearing orbital fibroblasts contribute to autoimmune inflammation and tissue remodeling in GO orbital connective tissues. To date, T helper (Th) 1 (cytotoxic leaning) and Th2 (antibody leaning) cell subsets and an emerging role of Th17 (fibrotic leaning) cells have been implicated in GO pathogenesis. The potential feedback loops between orbital native residential CD34- fibroblasts, CD34+ infiltrating fibrocytes, and effector T cells may affect the T cell subset bias and the skewed pattern of cytokine production in the orbit, thereby determining the outcomes of GO autoimmune reactions. Characterization of the T cell subsets that drive GO and the cytokines they express may significantly advance our understanding of orbital autoimmunity and the development of promising therapeutic strategies against pathological T cells.
Collapse
Affiliation(s)
- Sijie Fang
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yi Lu
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yazhuo Huang
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Huifang Zhou
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- *Correspondence: Xianqun Fan, ; Huifang Zhou,
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- *Correspondence: Xianqun Fan, ; Huifang Zhou,
| |
Collapse
|
15
|
Eckstein A, Philipp S, Goertz G, Banga JP, Berchner-Pfannschmidt U. Lessons from mouse models of Graves' disease. Endocrine 2020; 68:265-270. [PMID: 32399893 PMCID: PMC7266836 DOI: 10.1007/s12020-020-02311-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/07/2020] [Indexed: 11/27/2022]
Abstract
Graves' disease (GD) is an autoimmune condition with the appearance of anti-TSH receptor (TSHR) autoantibodies in the serum. The consequence is the development of hyperthyroidism in most of the patients. In addition, in the most severe cases, patients can develop orbitopathy (GO), achropachy and dermopathy. The central role of the TSHR for the disease pathology has been well accepted. Therefore immunization against the TSHR is pivotal for the creation of in vivo models for the disease. However, TSHR is well preserved among the species and therefore the immune system is highly tolerant. Many differing attempts have been performed to break tolerance and to create a proper animal model in the last decades. The most successful have been achieved by introducing the human TSHR extracellular domain into the body, either by injection of plasmid or adenoviruses. Currently available models develop the whole spectrum of Graves' disease-autoimmune thyroid disease and orbitopathy and are suitable to study disease pathogenesis and to perform treatment studies. In recent publications new immunomodulatory therapies have been assessed and also diseaseprevention by inducing tolerance using small cyclic peptides from the antigenic region of the extracellular subunit of the TSHR.
Collapse
Affiliation(s)
- A Eckstein
- Department of Ophthalmology, Medical Faculty, University Duisburg-Essen, Essen, Germany.
| | - S Philipp
- Laboratory of Molecular Ophthalmology, Medical Faculty, University Duisburg-Essen, Essen, Germany
| | - G Goertz
- Laboratory of Molecular Ophthalmology, Medical Faculty, University Duisburg-Essen, Essen, Germany
| | - J P Banga
- Laboratory of Molecular Ophthalmology, Medical Faculty, University Duisburg-Essen, Essen, Germany
- Emeritus Professor, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - U Berchner-Pfannschmidt
- Laboratory of Molecular Ophthalmology, Medical Faculty, University Duisburg-Essen, Essen, Germany
| |
Collapse
|