1
|
Montenegro M, Cuervo C, Cardenas C, Duarte S, Díaz JR, Thomas MC, Lopez MC, Puerta CJ. Identification of a type I nitroreductase gene in non-virulent Trypanosoma rangeli. Mem Inst Oswaldo Cruz 2017; 112:504-509. [PMID: 28591312 PMCID: PMC5452488 DOI: 10.1590/0074-02760160532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/22/2017] [Indexed: 11/21/2022] Open
Abstract
Trypanosomatid type I nitroreductases (NTRs), i.e., mitochondrial enzymes that metabolise nitroaromatic pro-drugs, are essential for parasite growth, infection, and survival. Here, a type I NTR of non-virulent protozoan Trypanosoma rangeli is described and compared to those of other trypanosomatids. The NTR gene was isolated from KP1(+) and KP1(-) strains, and its corresponding transcript and 5’ untranslated region (5’UTR) were determined. Bioinformatics analyses and nitro-drug activation assays were also performed. The results indicated that the type I NTR gene is present in both KP1(-) and KP1(+) strains, with 98% identity. However, the predicted subcellular localisation of the protein differed among the strains (predicted as mitochondrial in the KP1(+) strain). Comparisons of the domains and 3D structures of the NTRs with those of orthologs demonstrated that the nitroreductase domain of T. rangeli NTR is conserved across all the strains, including the residues involved in the interaction with the FMN cofactor and in the tertiary structure characteristics of this oxidoreductase protein family. mRNA processing and expression were also observed. In addition, T. rangeli was shown to be sensitive to benznidazole and nifurtimox in a concentration-dependent manner. In summary, T. rangeli appears to have a newly discovered functional type I NTR.
Collapse
Affiliation(s)
- Marjorie Montenegro
- Pontificia Universidad Javeriana, Facultad de Ciencias, Departamento de Microbiología, Laboratorio de Parasitología Molecular, Bogotá, Colombia.,Consejo Superior de Investigaciones Científicas, Instituto de Parasitología y Biomedicina López Neyra, Granada, Spain
| | - Claudia Cuervo
- Pontificia Universidad Javeriana, Facultad de Ciencias, Departamento de Microbiología, Laboratorio de Parasitología Molecular, Bogotá, Colombia
| | - Constanza Cardenas
- Pontificia Universidad Católica de Valparaíso, Núcleo de Biotecnología Curauma, Valparaíso, Chile
| | - Silvia Duarte
- Pontificia Universidad Javeriana, Facultad de Ciencias, Departamento de Microbiología, Laboratorio de Parasitología Molecular, Bogotá, Colombia
| | - Jenny R Díaz
- Pontificia Universidad Javeriana, Facultad de Ciencias, Departamento de Microbiología, Laboratorio de Parasitología Molecular, Bogotá, Colombia
| | - M Carmen Thomas
- Consejo Superior de Investigaciones Científicas, Instituto de Parasitología y Biomedicina López Neyra, Granada, Spain
| | - Manuel C Lopez
- Consejo Superior de Investigaciones Científicas, Instituto de Parasitología y Biomedicina López Neyra, Granada, Spain
| | - Concepcion J Puerta
- Pontificia Universidad Javeriana, Facultad de Ciencias, Departamento de Microbiología, Laboratorio de Parasitología Molecular, Bogotá, Colombia
| |
Collapse
|
2
|
Sincero TCM, Stoco PH, Steindel M, Vallejo GA, Grisard EC. Trypanosoma rangeli displays a clonal population structure, revealing a subdivision of KP1(-) strains and the ancestry of the Amazonian group. Int J Parasitol 2015; 45:225-35. [PMID: 25592964 DOI: 10.1016/j.ijpara.2014.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 11/12/2014] [Accepted: 11/24/2014] [Indexed: 12/13/2022]
Abstract
Assessment of the genetic variability and population structure of Trypanosoma rangeli, a non-pathogenic American trypanosome, was carried out through microsatellite and single-nucleotide polymorphism analyses. Two approaches were used for microsatellite typing: data mining in expressed sequence tag /open reading frame expressed sequence tags libraries and PCR-based Isolation of Microsatellite Arrays from genomic libraries. All microsatellites found were evaluated for their abundance, frequency and usefulness as markers. Genotyping of T. rangeli strains and clones was performed for 18 loci amplified by PCR from expressed sequence tag/open reading frame expressed sequence tags libraries. The presence of single-nucleotide polymorphisms in the nuclear, multi-copy, spliced leader gene was assessed in 18 T. rangeli strains, and the results show that T. rangeli has a predominantly clonal population structure, allowing a robust phylogenetic analysis. Microsatellite typing revealed a subdivision of the KP1(-) genetic group, which may be influenced by geographical location and/or by the co-evolution of parasite and vectors occurring within the same geographical areas. The hypothesis of parasite-vector co-evolution was corroborated by single-nucleotide polymorphism analysis of the spliced leader gene. Taken together, the results suggest three T. rangeli groups: (i) the T. rangeli Amazonian group; (ii) the T. rangeli KP1(-) group; and (iii) the T. rangeli KP1(+) group. The latter two groups possibly evolved from the Amazonian group to produce KP1(+) and KP1(-) strains.
Collapse
Affiliation(s)
- Thaís Cristine Marques Sincero
- Universidade Federal de Santa Catarina (UFSC), Centro de Ciências da Saúde (CCS), Departamento de Análises Clínicas (ACL), Setor E, Bloco K, Florianópolis, SC 88.040-970, Brazil.
| | - Patricia Hermes Stoco
- Universidade Federal de Santa Catarina (UFSC), Centro de Ciências Biológicas (CCB), Departamento de Microbiologia, Imunologia e Parasitologia (MIP), Setor F, Bloco A, Florianópolis, SC 88.040-970, Brazil
| | - Mário Steindel
- Universidade Federal de Santa Catarina (UFSC), Centro de Ciências Biológicas (CCB), Departamento de Microbiologia, Imunologia e Parasitologia (MIP), Setor F, Bloco A, Florianópolis, SC 88.040-970, Brazil
| | - Gustavo Adolfo Vallejo
- Laboratorio de Investigaciones en Parasitología Tropical, Universidad del Tolima, Altos de Santa Helena, A.A. 546, Ibagué, Colombia
| | - Edmundo Carlos Grisard
- Universidade Federal de Santa Catarina (UFSC), Centro de Ciências Biológicas (CCB), Departamento de Microbiologia, Imunologia e Parasitologia (MIP), Setor F, Bloco A, Florianópolis, SC 88.040-970, Brazil.
| |
Collapse
|
3
|
de Sá ARN, Steindel M, Demeu LMK, Lückemeyer DD, Grisard EC, Neto QADL, de Araújo SM, Toledo MJDO, Gomes ML. Cytochrome oxidase subunit 2 gene allows simultaneous detection and typing of Trypanosoma rangeli and Trypanosoma cruzi. Parasit Vectors 2013; 6:363. [PMID: 24360167 PMCID: PMC3891993 DOI: 10.1186/1756-3305-6-363] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 12/18/2013] [Indexed: 11/18/2022] Open
Abstract
Background The parasites Trypanosoma rangeli and Trypanosoma cruzi share vectors and hosts over a wide geographical area in Latin America. In this study, we propose a single molecular approach for simultaneous detection and typing of T. rangeli and T. cruzi. Methods A restriction fragment length polymorphism analysis of the mitochondrial cytochrome oxidase II gene (COII-RFLP) using enzyme AluI and different amounts of DNA from the major genetic groups of T. rangeli and T. cruzi (KP1+/KP1- and DTU-I/DTU-II) was carried out. The same marker was tested on the other T. cruzi DTUs (DTU-III to DTU-VI) and on DNA extracted from gut contents of experimentally infected triatomines. Results The COII PCR generates a ~400 bp fragment, which after digestion with AluI (COII-RFLP) can be used to distinguish T. rangeli from T. cruzi and simultaneously differentiate the major genetic groups of T. rangeli (KP1+ and KP1-) and T. cruzi (DTU-I and DTU-II). The COII-RFLP generated bands of ~120 bp and ~280 bp for KP1+, whereas for KP1- no amplicon cleavage was observed. For T. cruzi, digestion of COII revealed a ~300 bp band for DTU-I and a ~250 bp band for DTU-II. For DTU-III to DTU-VI, COII-RFLP generated bands ranging from ~310 to ~330 bp, but the differentiation of these DTUs was not as clear as the separation between DTU-I and DTU-II. After AluI digestion, a species-specific fragment of ~80 bp was observed for all DTUs of T. cruzi. No cross-amplification was observed for Leishmania spp., T. vivax or T. evansi. Conclusions The COII-RFLP allowed simultaneous detection and typing of T. rangeli and T. cruzi strains according to their major genetic groups (KP1+/KP1- and DTU-I/DTU-II) in vitro and in vivo, providing a reliable and sensitive tool for epidemiological studies in areas where T. rangeli and T. cruzi coexist.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Mônica Lúcia Gomes
- Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá (UEM), Av, Colombo, 5790, Zona 7, CEP: 87020-900, Maringá, Paraná, Brazil.
| |
Collapse
|
4
|
Molecular characterization of calcineurin B from the non-virulent Trypanosoma rangeli kinetoplastid indicates high gene conservation. Mol Biol Rep 2013; 40:4901-12. [PMID: 23677712 DOI: 10.1007/s11033-013-2590-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 04/29/2013] [Indexed: 10/26/2022]
Abstract
Calcineurin B, the regulatory subunit of calcineurin, a serine/threonine protein phosphatase, is highly conserved throughout the evolutionary scale including trypanosomatids such as Trypanosoma cruzi, and Leishmania major. Thus, in these flagellates the protein is required for mammalian host cell invasion and virulence and stress responses. With the aim of determining the presence of calcineurin B in Trypanosoma rangeli, a non-virulent trypanosome for mammals, the respective gene was amplified by PCR, cloned and sequenced. Two sequences of 531 bp in length showing a nucleotide polymorphism (314A>C) were obtained in spite of a single-copy gene was revealed by Southern blot. These sequences, probably the alleles from the gene, showed a 79% of identity with those from T. cruzi and clustered as the sister group of this trypanosome species in a Maximum Parsimony analysis. Deduced amino acid sequence comparison with trypanosomatids and other organisms through the phylogenetic scale as well as the obtained protein structural homology model suggested the presence of the four potential EF-hand regions and the corresponding calcium binding sites of the last three of these domains. Having assessed the expression of this protein in T. rangeli epimastigotes, and taking into account the following facts: (i) calcineurin inhibitors have inhibitory effect on the in vitro replication of T. cruzi, (ii) L. major promastigote growth is inhibited by chelating agents, and (iii) T. rangeli does not seem to productively infect mammalian cells, it is hypothesized herein that the function of this protein in T. rangeli is required for epimastigote growth.
Collapse
|
5
|
Sequence polymorphism in the Trypanosoma rangeli HSP70 coding genes allows typing of the parasite KP1(+) and KP1(−) groups. Exp Parasitol 2013; 133:447-53. [DOI: 10.1016/j.exppara.2013.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 12/03/2012] [Accepted: 01/03/2013] [Indexed: 11/22/2022]
|
6
|
Grisard EC, Stoco PH, Wagner G, Sincero TCM, Rotava G, Rodrigues JB, Snoeijer CQ, Koerich LB, Sperandio MM, Bayer-Santos E, Fragoso SP, Goldenberg S, Triana O, Vallejo GA, Tyler KM, Dávila AMR, Steindel M. Transcriptomic analyses of the avirulent protozoan parasite Trypanosoma rangeli. Mol Biochem Parasitol 2010; 174:18-25. [PMID: 20600354 DOI: 10.1016/j.molbiopara.2010.06.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 05/24/2010] [Accepted: 06/11/2010] [Indexed: 11/25/2022]
Abstract
Two species of the genus Trypanosoma infective to humans have been extensively studied at a cell and molecular level, but study of the third, Trypanosoma rangeli, remains in relative infancy. T. rangeli is non-pathogenic, but is frequently mistaken for the related Chagas disease agent Trypanosoma cruzi with which it shares vectors, hosts, significant antigenicity and a sympatric distribution over a wide geographical area. In this study, we present the T. rangeli gene expression profile as determined by the generation of ESTs (Expressed Sequence Tags) and ORESTES (Open Reading Frame ESTs). A total of 4208 unique high quality sequences were analyzed, composed from epimastigote and trypomastigote forms of SC-58 and Choachí strains, representing the two major phylogenetic lineages of this species. Comparative analyses with T. cruzi and other parasitic kinetoplastid species allowed the assignment of putative biological functions to most of the sequences generated and the establishment of an annotated T. rangeli gene expression database. Even though T. rangeli is apathogenic to mammals, genes associated with virulence in other pathogenic kinetoplastids were found. Transposable elements and genes associated mitochondrial gene expression, specifically RNA editing components, are also described for the first time. Our studies confirm the close phylogenetic relationship between T. cruzi and T. rangeli and enable us to make an estimate for the size of the T. rangeli genome repertoire ( approximately 8500 genes).
Collapse
Affiliation(s)
- Edmundo C Grisard
- Universidade Federal de Santa Catarina, Florianópolis 88040-970, SC, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Ortiz P, Maia da Silva F, Cortez A, Lima L, Campaner M, Pral E, Alfieri S, Teixeira M. Genes of cathepsin L-like proteases in Trypanosoma rangeli isolates: markers for diagnosis, genotyping and phylogenetic relationships. Acta Trop 2009; 112:249-59. [PMID: 19683503 DOI: 10.1016/j.actatropica.2009.07.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 07/27/2009] [Accepted: 07/28/2009] [Indexed: 10/20/2022]
Abstract
We have sequenced genes encoding cathepsin L-like (CatL-like) cysteine proteases from isolates of Trypanosoma rangeli from humans, wild mammals and Rhodnius species of Central and South America. Phylogenetic trees of sequences encoding mature CatL-like enzymes of T. rangeli and homologous genes from other trypanosomes, Leishmania spp. and bodonids positioned sequences of T. rangeli (rangelipain) closest to T. cruzi (cruzipain). Phylogenetic tree of kinetoplastids based on sequences of CatL-like was totally congruent with those derived from SSU rRNA and gGAPDH genes. Analysis of sequences from the CatL-like catalytic domains of 17 isolates representative of the overall phylogenetic diversity and geographical range of T. rangeli supported all the lineages (A-D) previously defined using ribosomal and spliced leader genes. Comparison of the proteolytic activities of T. rangeli isolates revealed heterogeneous banding profiles of cysteine proteases in gelatin gels, with differences even among isolates of the same lineage. CatL-like sequences proved to be excellent targets for diagnosis and genotyping of T. rangeli by PCR. Data from CatL-like encoding genes agreed with results from previous studies of kDNA markers, and ribosomal and spliced leader genes, thereby corroborating clonal evolution, independent transmission cycles and the divergence of T. rangeli lineages associated with sympatric species of Rhodnius.
Collapse
|
8
|
Salazar-Antón F, Urrea DA, Guhl F, Arévalo C, Azofeifa G, Urbina A, Blandón-Naranjo M, Sousa OE, Zeledón R, Vallejo GA. Trypanosoma rangeli genotypes association with Rhodnius prolixus and R. pallescens allopatric distribution in Central America. INFECTION GENETICS AND EVOLUTION 2009; 9:1306-10. [DOI: 10.1016/j.meegid.2009.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2009] [Revised: 09/07/2009] [Accepted: 09/14/2009] [Indexed: 12/01/2022]
|