1
|
Liu H, Han T, Liu W, Xu G, Zheng K, Xiao F. Epidemiological characteristics and genetic diversity of Bartonella species in rodents from southeastern China. Zoonoses Public Health 2022; 69:224-234. [PMID: 35040279 DOI: 10.1111/zph.12912] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/09/2021] [Accepted: 01/01/2022] [Indexed: 12/15/2022]
Abstract
Rodents are the primary hosts of Bartonella species and carry more than 22 Bartonella species. However, the information on epidemiological characteristics and genetic diversity of Bartonella species in rodents in southeastern China is limited. From 2015 to 2020, 1,137 rodents were captured. Bartonella-positive DNA was detected in 14.9% (169/1,137) of rodents by PCR for both the ssrA and gltA genes. A highest Bartonella prevalence was detected in Apodemus agrarius (33.5%) and lowest in B. indica (1.8%). The probability of Bartonella infection in summer (20.1%) was higher than in spring (14.6%; p = .011, OR = 1.756). Sequencing and phylogenetic analysis revealed that nine known Bartonella species were identified in rodents, including B. tribocorum, B. grahamii, B. rattimassiliensis, B. queenslandensis, B. elizabethae, B. phoceensis, B. coopersplainsensis, B. japonica and B. rochalimae. In our study, Bartonella species exhibited a strong association with their hosts. Zoonotic B. tribocorum, B. grahamii, B. elizabethae and B. rochalimae were found in synanthropic rodent species in southeastern China, which pose a potential threat to the public health. To prevent the spread of zoonotic Bartonella species to humans, preventive and control measures should be implemented, and more research is needed to confirm the pathogen's association with human disease.
Collapse
Affiliation(s)
- Haixin Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Zoonosis Research, Fujian Center for Disease Control and Prevention, Fuzhou, Fujian, China
| | - Tengwei Han
- Fujian Provincial Key Laboratory of Zoonosis Research, Fujian Center for Disease Control and Prevention, Fuzhou, Fujian, China
| | - Weijun Liu
- Fujian Provincial Key Laboratory of Zoonosis Research, Fujian Center for Disease Control and Prevention, Fuzhou, Fujian, China
| | - Guoying Xu
- Fujian Provincial Key Laboratory of Zoonosis Research, Fujian Center for Disease Control and Prevention, Fuzhou, Fujian, China
| | - Kuicheng Zheng
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Zoonosis Research, Fujian Center for Disease Control and Prevention, Fuzhou, Fujian, China
| | - Fangzhen Xiao
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Zoonosis Research, Fujian Center for Disease Control and Prevention, Fuzhou, Fujian, China
| |
Collapse
|
2
|
Divari S, Danelli M, Pregel P, Ghielmetti G, Borel N, Bollo E. Biomolecular Investigation of Bartonella spp. in Wild Rodents of Two Swiss Regions. Pathogens 2021; 10:pathogens10101331. [PMID: 34684280 PMCID: PMC8539893 DOI: 10.3390/pathogens10101331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022] Open
Abstract
Rodents represent a natural reservoir of several Bartonella species, including zoonotic ones. In this study, small wild rodents, collected from two sites in rural areas of Switzerland, were screened for Bartonella spp. using molecular detection methods. In brief, 346 rodents were trapped in two rural sites in the Gantrisch Nature Park of Switzerland (Plasselb, canton of Fribourg, and Riggisberg, canton of Bern). Pools of DNA originating from three animals were tested through a qPCR screening and an end-point PCR, amplifying the 16S-23S rRNA gene intergenic transcribed spacer region and citrate synthase (gltA) loci, respectively. Subsequently, DNA was extracted from spleen samples belonging to single animals of gltA positive pools, and gltA and RNA polymerase subunit beta (rpoB) were detected by end-point PCR. Based on PCR results and sequencing, the prevalence of infection with Bartonella spp. in captured rodents, was 21.10% (73/346): 31.78% in Apodemus sp. (41/129), 10.47% in Arvicola scherman (9/86), 17.05% in Myodes glareolus (22/129), and 50% in Microtus agrestis (1/2). A significant association was observed between Bartonella spp. infection and rodent species (p < 0.01) and between trapping regions and positivity to Bartonella spp. infection (p < 0.001). Similarly, prevalence of Bartonella DNA was higher (p < 0.001) in rodents trapped in woodland areas (66/257, 25.68%) compared to those captured in open fields (9/89, 10.11%). Sequencing and phylogenetic analysis demonstrated that the extracted Bartonella DNA belonged mainly to B. taylorii and also to Candidatus “Bartonella rudakovii”, B. grahamii, B. doshiae, and B. birtlesii. In conclusion, the present study could rise public health issues regarding Bartonella infection in rodents in Switzerland.
Collapse
Affiliation(s)
- Sara Divari
- Department of Veterinary Science, University of Turin, Largo Braccini 2, 10095 Turin, Italy; (M.D.); (P.P.); (E.B.)
- Correspondence:
| | - Marta Danelli
- Department of Veterinary Science, University of Turin, Largo Braccini 2, 10095 Turin, Italy; (M.D.); (P.P.); (E.B.)
| | - Paola Pregel
- Department of Veterinary Science, University of Turin, Largo Braccini 2, 10095 Turin, Italy; (M.D.); (P.P.); (E.B.)
| | - Giovanni Ghielmetti
- Institute for Food Safety and Hygiene, Section of Veterinary Bacteriology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
| | - Nicole Borel
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
| | - Enrico Bollo
- Department of Veterinary Science, University of Turin, Largo Braccini 2, 10095 Turin, Italy; (M.D.); (P.P.); (E.B.)
| |
Collapse
|
3
|
Su Q, Chen Y, Wang B, Huang C, Han S, Yuan G, Zhang Q, He H. Epidemiology and genetic diversity of zoonotic pathogens in urban rats (Rattus spp.) from a subtropical city, Guangzhou, southern China. Zoonoses Public Health 2020; 67:534-545. [PMID: 32452163 DOI: 10.1111/zph.12717] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 12/13/2022]
Abstract
Commensal rats (Rattus spp.), which are globally distributed, harbour many pathogens responsible for significant human diseases. Despite this, we have a poor understanding of the epidemiology and genetic diversity of some recently neglected zoonotic pathogens, such as Leptospira spp., Bartonella spp. and hepatitis E virus (HEV), which constitute a major public health threat. Thus, we surveyed the occurrences, co-infection and genetic diversity of these pathogens in 129 urban rats from China. For Rattus tanezumi, the prevalences of Leptospira spp., Bartonella spp. and HEV infection were 6.67%, 0% and 46.67%, respectively. The prevalences of Leptospira spp., Bartonella spp. and HEV infection were 57.89%, 9.65% and 57.89% for Rattus norvegicus respectively. Leptospira spp. and HEV infections were more likely to occur in mature R. norvegicus. Phylogenetic analyses showed that pathogenic Leptospira interrogans and Leptospira borgpetersenii might exist. We also found that Bartonella spp. showed high similarity to Bartonella elizabethae, Bartonella rochalimae and Bartonella tribocorum, which are implicated in human disease. Dual and triple infections were both detected. Moreover, dual infections with Leptospira spp. and HEV represented the most frequent co-infection, and there was a significantly positive association between them. High genetic diversity was observed in genes segments from Leptospira, Bartonella and HEV. Our results first discover the occurrence of multiple co-infections and genetic diversity of Leptospira, Bartonella and HEV in commensal rats from China. Altogether, the present study provides an insight into evaluating the risk of rat-borne zoonoses in urban China.
Collapse
Affiliation(s)
- Qianqian Su
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yi Chen
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bo Wang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chengmei Huang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shuyi Han
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Guohui Yuan
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qingxun Zhang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hongxuan He
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Kang JG, Chae JB, Cho YK, Jo YS, Shin NS, Lee H, Choi KS, Yu DH, Park J, Park BK, Chae JS. Molecular Detection of Anaplasma, Bartonella, and Borrelia theileri in Raccoon Dogs ( Nyctereutes procyonoides) in Korea. Am J Trop Med Hyg 2018; 98:1061-1068. [PMID: 29436346 PMCID: PMC5928811 DOI: 10.4269/ajtmh.17-0380] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 01/11/2018] [Indexed: 11/07/2022] Open
Abstract
Anaplasmosis, cat-scratch disease, and Lyme disease are emerging vector-borne infectious diseases in Korea. Although the prevalence of vector-borne pathogens (VBPs) in domestic animals and vector arthropods has been documented, there is limited information on the presence of VBPs in wild animals. The raccoon dog (Nyctereutes procyonoides), a wild canid found in East Asia and Europe, represents a potential wildlife reservoir for zoonotic diseases. To investigate the prevalence of VBPs in raccoon dogs, 142 carcasses and 51 blood samples from captured raccoon dogs were collected from 2003 to 2010 and from 2008 to 2009, respectively, in Korea. In addition, 105 Haemaphysalis flava (14 larvae, 43 nymphs, 32 males, and 16 females) and nine Haemaphysalis longicornis (all female) were collected from three raccoon dogs. Samples of the spleen and blood were tested for the presence of VBPs by using nested polymerase chain reaction. Among the samples collected from 193 raccoon dogs and 114 ticks, two samples were positive for Anaplasma phagocytophilum, four for Anaplasma bovis, two for Borrelia theileri, and two for Bartonella henselae. To the best of our knowledge, this study is the largest survey of raccoon dogs aimed at the analysis of VBPs in this species. Moreover, the present study represents the first identification of A. phagocytophilum, B. henselae, and B. theileri in raccoon dogs in their native habitat (East Asia).
Collapse
Affiliation(s)
- Jun-Gu Kang
- Laboratory of Veterinary Internal Medicine, Research Institute BK21 Program for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Jeong-Byoung Chae
- Laboratory of Veterinary Internal Medicine, Research Institute BK21 Program for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Yoon-Kyoung Cho
- Laboratory of Veterinary Internal Medicine, Research Institute BK21 Program for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Young-Sun Jo
- Laboratory of Veterinary Internal Medicine, Research Institute BK21 Program for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Nam-Shik Shin
- Laboratory of Zoo and Wildlife Medicine, Research Institute and BK21 Program for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Hang Lee
- College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Kyoung-Seong Choi
- College of Ecology and Environmental Science, Kyungpook National University, Sangju, Korea
| | - Do-Hyeon Yu
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Korea
| | - Jinho Park
- College of Veterinary Medicine, Chonbuk National University, Iksan, Korea
| | - Bae-Keun Park
- Research Institute of Veterinary Medicine and College of Veterinary Medicine, Chungnam National University, Daejeon, Korea
| | - Joon-Seok Chae
- Laboratory of Veterinary Internal Medicine, Research Institute BK21 Program for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Korea
| |
Collapse
|
5
|
Gutiérrez R, Krasnov B, Morick D, Gottlieb Y, Khokhlova IS, Harrus S. Bartonella infection in rodents and their flea ectoparasites: an overview. Vector Borne Zoonotic Dis 2015; 15:27-39. [PMID: 25629778 PMCID: PMC4307031 DOI: 10.1089/vbz.2014.1606] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Epidemiological studies worldwide have reported a high prevalence and a great diversity of Bartonella species, both in rodents and their flea parasites. The interaction among Bartonella, wild rodents, and fleas reflects a high degree of adaptation among these organisms. Vertical and horizontal efficient Bartonella transmission pathways within flea communities and from fleas to rodents have been documented in competence studies, suggesting that fleas are key players in the transmission of Bartonella to rodents. Exploration of the ecological traits of rodents and their fleas may shed light on the mechanisms used by bartonellae to become established in these organisms. The present review explores the interrelations within the Bartonella-rodent-flea system. The role of the latter two components is emphasized.
Collapse
Affiliation(s)
- Ricardo Gutiérrez
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Israel
| | - Boris Krasnov
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Danny Morick
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Israel
| | - Yuval Gottlieb
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Israel
| | - Irina S. Khokhlova
- Wyler Department of Dryland Agriculture, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Shimon Harrus
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Israel
| |
Collapse
|
6
|
Jiyipong T, Jittapalapong S, Morand S, Rolain JM. Bartonella species in small mammals and their potential vectors in Asia. Asian Pac J Trop Biomed 2014. [DOI: 10.12980/apjtb.4.2014c742] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
7
|
Kim BJ, Kim H, Won S, Kim HC, Chong ST, Klein TA, Kim KG, Seo HY, Chae JS. Ticks collected from wild and domestic animals and natural habitats in the Republic of Korea. THE KOREAN JOURNAL OF PARASITOLOGY 2014; 52:281-5. [PMID: 25031468 PMCID: PMC4096639 DOI: 10.3347/kjp.2014.52.3.281] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 03/04/2014] [Accepted: 03/26/2014] [Indexed: 11/23/2022]
Abstract
Ticks were collected from 35 animals from 5 provinces and 3 metropolitan cities during 2012. Ticks also were collected by tick drag from 4 sites in Gyeonggi-do (2) and Jeollabuk-do (2) Provinces. A total of 612 ticks belonging to 6 species and 3 genera were collected from mammals and a bird (n=573) and by tick drag (n=39). Haemaphyalis longicornis (n=434) was the most commonly collected tick, followed by H. flava (158), Ixodes nipponensis (11), Amblyomma testudinarium (7), H. japonica (1), and H. formosensis (1). H. longicornis and H. flava were collected from all animal hosts examined. For animal hosts (n>1), the highest Tick Index (TI) was observed for domestic dogs (29.6), followed by Siberian roe deer (17.4), water deer (14.4), and raccoon dogs (1.3). A total of 402 H. longicornis (adults 86, 21.4%; nymphs 160, 39.8%; larvae 156, 38.9%) were collected from wild and domestic animals. A total of 158 H. flava (n=158) were collected from wild and domestic animals and 1 ring-necked pheasant, with a higher proportion of adults (103, 65.2%), while nymphs and larvae only accounted for 12.7% (20) and 22.2% (35), respectively. Only 7 A. testudinarium were collected from the wild boar (6 adults) and Eurasian badger (1 nymph), while only 5 I. nipponensis were collected from the water deer (4 adults) and a raccoon dog (1 adult). One adult female H. formosensis was first collected from vegetation by tick drag from Mara Island, Seogwipo-si, Jeju-do Province.
Collapse
Affiliation(s)
- Baek-Jun Kim
- Department of Climate and Ecology, National Institute of Ecology, Seocheon, 325-813, Korea
| | - Hyewon Kim
- Laboratory of Veterinary Internal Medicine, Research Institute for Veterinary Science, and College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea
| | - Sohyun Won
- Laboratory of Veterinary Internal Medicine, Research Institute for Veterinary Science, and College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea
| | - Heung-Chul Kim
- th Medical Detachment, th Multifunctional Medical Battalion, th Medical Brigade, Unit 15247, APO AP 96205-5247, USA
| | - Sung-Tae Chong
- th Medical Detachment, th Multifunctional Medical Battalion, th Medical Brigade, Unit 15247, APO AP 96205-5247, USA
| | - Terry A Klein
- Public Health Command Region-Pacific, Camp Zama, Japan; th Medical Brigade Unit 15281, APO AP 96205-5281, USA
| | - Ki-Gyoung Kim
- National Institute of Biological Resources, Environmental Research Complex, Incheon 404-708, Korea
| | - Hong-Yul Seo
- National Institute of Biological Resources, Environmental Research Complex, Incheon 404-708, Korea
| | - Joon-Seok Chae
- Laboratory of Veterinary Internal Medicine, Research Institute for Veterinary Science, and College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea
| |
Collapse
|