1
|
Aivelo T, Alburkat H, Suomalainen N, Kukowski R, Heikkinen P, Oksanen A, Huitu O, Kivistö R, Sironen T. Potentially zoonotic pathogens and parasites in opportunistically sourced urban brown rats ( Rattus norvegicus) in and around Helsinki, Finland, 2018 to 2023. Euro Surveill 2024; 29:2400031. [PMID: 39364602 PMCID: PMC11451135 DOI: 10.2807/1560-7917.es.2024.29.40.2400031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/13/2024] [Indexed: 10/05/2024] Open
Abstract
BackgroundBrown rats (Rattus norvegicus) are synanthropic rodents with worldwide distribution, which are known to harbour many zoonotic pathogens and parasites. No systematic zoonotic surveys targeting multiple pathogens and parasites have previously been conducted in urban rats in Finland.AimIn Helsinki, Finland, we explored the presence and prevalence in brown rats of certain pathogens and parasites (including helminths, viruses and bacteria) across potentially zoonotic taxa.MethodsWe opportunistically received rat carcasses from pest management operators and citizens from 2018 to 2023. We searched for heart- or lungworms, performed rat diaphragm digestion to check for Trichinella and morphologically identified intestinal helminths. We assessed virus exposure by immunofluorescence assay or PCR, and detected bacteria by PCR (Leptospira) or culture (Campylobacter).ResultsAmong the rats investigated for helminths, no heart- or lungworms or Trichinella species were detected and the most common finding was the cestode Hymenolepis nana (in 9.7% of individuals sampled, 28/288). For some of the surveyed virus taxa, several rats were seropositive (orthopoxviruses, 5.2%, 11/211; arenaviruses, 2.8%, 6/211; hantaviruses 5.2%, 11/211) or tested positive by PCR (rat hepatitis E virus, 1.8%, 4/216). Campylobacter jejuni (6.6%, 17/259) and Leptospira interrogans (1.2%, 2/163) bacteria were also present in the rat population examined.ConclusionsPrevalences of potentially zoonotic pathogens and parasites in brown rats in Helsinki appeared low. This may explain low or non-existent diagnosis levels of rat-borne pathogen and parasite infections reported in people there. Nevertheless, further assessment of under-diagnosis, which cannot be excluded, would enhance understanding the risks of zoonoses.
Collapse
Affiliation(s)
- Tuomas Aivelo
- Organismal and Evolutionary Biology research program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Science Communication & Society, Institute of Biology, University of Leiden, Leiden, The Netherlands
| | - Hussein Alburkat
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Nina Suomalainen
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Rebekka Kukowski
- Organismal and Evolutionary Biology research program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Petra Heikkinen
- Finnish Food Authority, Animal Health Diagnostic Unit (FINPAR), Oulu, Finland
| | - Antti Oksanen
- Finnish Food Authority, Animal Health Diagnostic Unit (FINPAR), Oulu, Finland
| | - Otso Huitu
- Natural Resources Institute Finland, Helsinki, Finland
| | - Rauni Kivistö
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Tarja Sironen
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
de Cock MP, de Vries A, Fonville M, Esser HJ, Mehl C, Ulrich RG, Joeres M, Hoffmann D, Eisenberg T, Schmidt K, Hulst M, van der Poel WHM, Sprong H, Maas M. Increased rat-borne zoonotic disease hazard in greener urban areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165069. [PMID: 37392874 DOI: 10.1016/j.scitotenv.2023.165069] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/03/2023]
Abstract
Urban greening has benefits for both human and environmental health. However, urban greening might also have negative effects as the abundance of wild rats, which can host and spread a great diversity of zoonotic pathogens, increases with urban greenness. Studies on the effect of urban greening on rat-borne zoonotic pathogens are currently unavailable. Therefore, we investigated how urban greenness is associated with rat-borne zoonotic pathogen prevalence and diversity, and translated this to human disease hazard. We screened 412 wild rats (Rattus norvegicus and Rattus rattus) from three cities in the Netherlands for 18 different zoonotic pathogens: Bartonella spp., Leptospira spp., Borrelia spp., Rickettsia spp., Anaplasma phagocytophilum, Neoehrlichia mikurensis, Spiroplasma spp., Streptobacillus moniliformis, Coxiella burnetii, Salmonella spp., methicillin-resistant Staphylococcus aureus (MRSA), extended-spectrum beta-lactamase (ESBL)/AmpC-producing Escherichia coli, rat hepatitis E virus (ratHEV), Seoul orthohantavirus, Cowpox virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Toxoplasma gondii and Babesia spp. We modelled the relationships between pathogen prevalence and diversity and urban greenness. We detected 13 different zoonotic pathogens. Rats from greener urban areas had a significantly higher prevalence of Bartonella spp. and Borrelia spp., and a significantly lower prevalence of ESBL/AmpC-producing E. coli and ratHEV. Rat age was positively correlated with pathogen diversity while greenness was not related to pathogen diversity. Additionally, Bartonella spp. occurrence was positively correlated with that of Leptospira spp., Borrelia spp. and Rickettsia spp., and Borrelia spp. occurrence was also positively correlated with that of Rickettsia spp. Our results show an increased rat-borne zoonotic disease hazard in greener urban areas, which for most pathogens was driven by the increase in rat abundance rather than pathogen prevalence. This highlights the importance of keeping rat densities low and investigating the effects of urban greening on the exposure to zoonotic pathogens in order to make informed decisions and to take appropriate countermeasures preventing zoonotic diseases.
Collapse
Affiliation(s)
- Marieke P de Cock
- Centre for Infectious diseases, National Institute for Public Health and the Environment, Bilthoven, Utrecht, the Netherlands; Quantitative Veterinary Epidemiology, Wageningen University & Research, Wageningen, Gelderland, the Netherlands.
| | - Ankje de Vries
- Centre for Infectious diseases, National Institute for Public Health and the Environment, Bilthoven, Utrecht, the Netherlands.
| | - Manoj Fonville
- Centre for Infectious diseases, National Institute for Public Health and the Environment, Bilthoven, Utrecht, the Netherlands.
| | - Helen J Esser
- Wildlife Ecology and Conservation Group, Wageningen University & Research, Wageningen, Gelderland, the Netherlands.
| | - Calvin Mehl
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Germany; Partner Site Hamburg-Lübeck-Borstel-Riems, German Center for Infection Research (DZIF), Greifswald-Insel Riems, Mecklenburg-Vorpommern, Germany.
| | - Rainer G Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Germany; Partner Site Hamburg-Lübeck-Borstel-Riems, German Center for Infection Research (DZIF), Greifswald-Insel Riems, Mecklenburg-Vorpommern, Germany.
| | - Maike Joeres
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Mecklenburg-Vorpommern, Germany.
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Mecklenburg-Vorpommern, Germany.
| | - Tobias Eisenberg
- Department of Veterinary Medicine, Hessian State Laboratory, Giessen, Hessen, Germany.
| | - Katja Schmidt
- Microbiological Diagnostics, German Cancer Research Center (DKFZ), Heidelberg, Baden-Württemberg, Germany.
| | - Marcel Hulst
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, Flevoland, the Netherlands.
| | - Wim H M van der Poel
- Quantitative Veterinary Epidemiology, Wageningen University & Research, Wageningen, Gelderland, the Netherlands; Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, Flevoland, the Netherlands.
| | - Hein Sprong
- Centre for Infectious diseases, National Institute for Public Health and the Environment, Bilthoven, Utrecht, the Netherlands.
| | - Miriam Maas
- Centre for Infectious diseases, National Institute for Public Health and the Environment, Bilthoven, Utrecht, the Netherlands.
| |
Collapse
|
3
|
Strand TM, Olsson Engvall E, Lahti E, Hjertqvist M, Lundkvist Å. Leptospira Status in Sweden during the Past Century, Neglected and Re-Emerging? Microorganisms 2023; 11:1991. [PMID: 37630551 PMCID: PMC10459319 DOI: 10.3390/microorganisms11081991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
We compiled data on notified cases of leptospirosis in animals and humans in Sweden. Published studies on leptospirosis in humans and animals from the beginning of the 20th century onwards are summarized. During the Second World War, hundreds of leptospirosis cases in humans were reported in Sweden, but since then, there have been only a few severe cases. Surveillance of leptospirosis in domestic animals demonstrates that the pathogen is still occurring. The occurrence of Leptospira in humans and animals in the other Nordic countries resembles that in Sweden. Leptospirosis is an underdiagnosed and underreported disease globally, both in animals and humans, partly due to the lack of simple, rapid diagnostic tools but possibly also due to the lack of awareness among physicians, veterinarians and nurses. Traditionally, leptospirosis has been mostly diagnosed by serology, but development of molecular methodshas improved the capability for correct diagnosis. As of today, leptospirosis is regarded as a relatively uncommon disease in the Nordic countries, but in some other countries, it is considered a neglected zoonosis or a (re-)emerging disease that may become more common in the future. Possible factors that could contribute to an increase in incidence are discussed in this review. Active surveillance of humans and domestic and wild animals and stringent rodent control in society and animal farms are of outmost importance for prevention.
Collapse
Affiliation(s)
- Tanja M. Strand
- National Veterinary Institute, SE-751 89 Uppsala, Sweden
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Eva Olsson Engvall
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Elina Lahti
- National Veterinary Institute, SE-751 89 Uppsala, Sweden
| | - Marika Hjertqvist
- Department of Communicable Disease Control and Health Protection, Public Health Agency of Sweden, SE-171 82 Solna, Sweden
| | - Åke Lundkvist
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden
| |
Collapse
|
4
|
Scahill K, Windahl U, Boqvist S, Pelander L. Leptospira seroprevalence and associated risk factors in healthy Swedish dogs. BMC Vet Res 2022; 18:376. [PMID: 36273163 PMCID: PMC9587587 DOI: 10.1186/s12917-022-03472-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Leptospirosis is an emerging zoonotic infection worldwide and a cause of life-threatening disease in dogs. Seroprevalence in Swedish dogs is unknown. The aims of the present study were to estimate seroprevalence of pathogenic Leptospira in healthy dogs in Sweden using the microagglutination test (MAT) and a rapid point-of-care enzyme-linked immunosorbent assay (ELISA), and to evaluate risk factors of Leptospira exposure in Swedish dogs. RESULTS Positive MAT titres (≥ 1:50) were detected in 27/369 (7.3%) of included dogs. Five different serovars were represented of which the Saxkoebing serovar was the most common (64.3%), followed by Copenhagi (14.3%), Bratislava (10.7%), Icterohaemorrhagiae (7.1%), and Canicola (3.6%). The ELISA test (SNAP® Lepto) was positive in 3/316 (0.9%) dogs. Living in urban areas and contact with stagnant water were found to be risk factors for Leptospira seropositivity (p < 0.05) in a multivariable logistic regression model. CONCLUSION In this first seroprevalence study of Leptospira in Swedish dogs, it was shown that healthy dogs without recent (24 months) travel history and antileptospira vaccination had been exposed to pathogenic Leptospira interrogans serovars. Contact with stagnant water and living in urban areas were independent risk factors for seropositivity.
Collapse
Affiliation(s)
- Karolina Scahill
- Infection Medicine, 1 George Square, Biomedical Sciences, Edinburgh Medical School, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, EH8 9JZ, UK.
| | - Ulrika Windahl
- Swedish National Veterinary Institute (SVA), 751 89, Uppsala, Sweden
| | - Sofia Boqvist
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7039, 750 07, Uppsala, Sweden
| | - Lena Pelander
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Ulls väg 26, 750 07, Uppsala, Sweden
| |
Collapse
|
5
|
Robinson SJ, Finer R, Himsworth CG, Pearl DL, Rousseau J, Weese JS, Lindsay LR, Dibernardo A, Huynh C, Jardine CM. Evaluating the utility of pest control sourced rats for zoonotic pathogen surveillance. Zoonoses Public Health 2022; 69:468-474. [DOI: 10.1111/zph.12936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/31/2022] [Accepted: 02/19/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Sarah J. Robinson
- Department of Pathobiology Ontario Veterinary College, University of Guelph Guelph Ontario Canada
| | - Rachel Finer
- Department of Pathobiology Ontario Veterinary College, University of Guelph Guelph Ontario Canada
| | - Chelsea G. Himsworth
- School of Population and Public Health University of British Columbia Vancouver British Columbia Canada
| | - David L. Pearl
- Department of Population Medicine Ontario Veterinary College, University of Guelph Guelph Ontario Canada
| | - Joyce Rousseau
- Department of Pathobiology Ontario Veterinary College, University of Guelph Guelph Ontario Canada
| | - J. Scott Weese
- Department of Pathobiology Ontario Veterinary College, University of Guelph Guelph Ontario Canada
| | - L. Robbin Lindsay
- Public Health Agency of Canada, National Microbiology Laboratory Winnipeg Manitoba Canada
| | - Antonia Dibernardo
- Public Health Agency of Canada, National Microbiology Laboratory Winnipeg Manitoba Canada
| | - Chris Huynh
- Public Health Agency of Canada, National Microbiology Laboratory Winnipeg Manitoba Canada
| | - Claire M. Jardine
- Department of Pathobiology Ontario Veterinary College, University of Guelph Guelph Ontario Canada
- Canadian Wildlife Health Cooperative, Ontario Veterinary College, University of Guelph Guelph Ontario Canada
| |
Collapse
|
6
|
Parsons MH, Richardson JL, Kiyokawa Y, Stryjek R, Corrigan RM, Deutsch MA, Ootaki M, Tanikawa T, Parsons FE, Munshi-South J. Rats and the COVID-19 pandemic: considering the influence of social distancing on a global commensal pest. JOURNAL OF URBAN ECOLOGY 2021. [PMCID: PMC8500081 DOI: 10.1093/jue/juab027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Rats contaminate foods and spread pathogens. Thus, changes in rat populations have consequences for society, especially in densely-populated cities. Following widespread social distancing and lockdown measures to curtail SARS-CoV-2, worldwide media outlets reported increased sightings of rats. To document possible changes in rat populations, we: (i) examined public service requests in the 6 years before, and during, ‘lockdown’ in New York City; (ii) used spatial analyses to identify calls in proximity to food service establishments (FSE); and (iii) surveyed pest-management companies. Over 6 years prior to the pandemic, we found a consistent moderate spatial association (r = 0.35) between FSE and rat-related calls. During the early stages of the pandemic, the association between rat reports and food services did not decrease as would be expected by restaurant closures, but instead modestly increased (r = 0.45). There was a 29.5% decrease in rat reports, overall. However, hotspot analysis showed that new reports were highly localized, yet absent in several industrial areas they were previously observed in, potentially masking a higher proportion of calls in neighborhoods near closed restaurants. Additionally, 37% of pest management companies surveyed reported that, unlike previous years, 50–100% of requests were from new clients and addresses. The finding that hotspots remained nearby dense clusters of restaurants does not support the common narrative that rats moved long distances. Rather, our results are consistent with rats finding nearby alternative food resources. Tracking these dynamics as the COVID-19 pandemic abates will be an important step to identifying how rats respond to society returning to normal activity patterns.
Collapse
Affiliation(s)
- Michael H Parsons
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | | | - Yasushi Kiyokawa
- Laboratory of Veterinary Ethology, The University of Tokyo, Tokyo, Japan
| | - Rafal Stryjek
- Institute of Psychology, Polish Academy of Sciences, Warsaw, Poland
| | | | - Michael A Deutsch
- Medical and Applied Entomology, Arrow Exterminating Company, Inc., Lynbrook, NY, USA
| | - Masato Ootaki
- Laboratory of Veterinary Ethology, The University of Tokyo, Tokyo, Japan
| | | | - Faith E Parsons
- CareSet Systems, Houston, TX, USA
- Center for Behavioral and Cardiovascular Health, Columbia University, New York, NY, USA
| | - Jason Munshi-South
- Department of Biological Sciences and the Louis Calder Center—Biological Field Station, Fordham University, Armonk, NY, USA
| |
Collapse
|
7
|
Gunasegar S, Neela VK. Evaluation of diagnostic accuracy of loop-mediated isothermal amplification method (LAMP) compared with polymerase chain reaction (PCR) for Leptospira spp. in clinical samples: a systematic review and meta-analysis. Diagn Microbiol Infect Dis 2021; 100:115369. [PMID: 33845305 DOI: 10.1016/j.diagmicrobio.2021.115369] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/20/2021] [Accepted: 03/06/2021] [Indexed: 12/29/2022]
Abstract
Loop-mediated isothermal amplification (LAMP) test is widely used in molecular diagnostics as a point-of-care technique alternative to traditional PCR especially in resource-limited countries. LAMP has been recently used to diagnose leptospirosis. Therefore, we undertook a systematic review and meta-analysis to compare the accuracy of LAMP with PCR in the diagnosis of leptospirosis. Sixty-one studies were extracted from three international databases and analyzed throughout using the PRISMA guideline. The pooled sensitivity of LAMP and PCR technique was 0.80 (95% CI: 0.58-0.90) and 0.54 (95% CI: 0.35-0.67) respectively indicating that LAMP is more sensitive than PCR. The Q* value of LAMP and PCR-based technique is 274.61 and 397.95, respectively. Among the analyzed studies, significant heterogeneity was observed where I2 is 90.90% for LAMP-based and 86.18% for PCR-based. Our study suggests that LAMP has better diagnostic accuracy than PCR. However, future work should be carried out to reduce heterogeneity as well as to improve and develop effective intervention strategies.
Collapse
Affiliation(s)
- Shan Gunasegar
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Vasantha Kumari Neela
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
| |
Collapse
|