Spencer AJ, Furze J, Honeycutt JD, Calvert A, Saurya S, Colloca S, Wyllie DH, Gilbert SC, Bregu M, Cottingham MG, Hill AVS. 4-1BBL enhances CD8+ T cell responses induced by vectored vaccines in mice but fails to improve immunogenicity in rhesus macaques.
PLoS One 2014;
9:e105520. [PMID:
25140889 PMCID:
PMC4139357 DOI:
10.1371/journal.pone.0105520]
[Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/21/2014] [Indexed: 01/28/2023] Open
Abstract
T cells play a central role in the immune response to many of the world's major infectious diseases. In this study we investigated the tumour necrosis factor receptor superfamily costimulatory molecule, 4-1BBL (CD137L, TNFSF9), for its ability to increase T cell immunogenicity induced by a variety of recombinant vectored vaccines. To efficiently test this hypothesis, we assessed a number of promoters and developed a stable bi-cistronic vector expressing both the antigen and adjuvant. Co-expression of 4-1BBL, together with our model antigen TIP, was shown to increase the frequency of murine antigen-specific IFN-γ secreting CD8(+) T cells in three vector platforms examined. Enhancement of the response was not limited by co-expression with the antigen, as an increase in CD8(+) immunogenicity was also observed by co-administration of two vectors each expressing only the antigen or adjuvant. However, when this regimen was tested in non-human primates using a clinical malaria vaccine candidate, no adjuvant effect of 4-1BBL was observed limiting its potential use as a single adjuvant for translation into a clinical vaccine.
Collapse