1
|
Kumar S, Batra H, Singh S, Chawla H, Singh R, Katpara S, Hussain AW, Das BK, Lodha R, Kabra SK, Luthra K. Effect of combination antiretroviral therapy on human immunodeficiency virus 1 specific antibody responses in subtype-C infected children. J Gen Virol 2020; 101:1289-1299. [PMID: 32915123 DOI: 10.1099/jgv.0.001480] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protective antibody responses to human immunodeficiency virus (HIV)-1 infection evolve only in a fraction of infected individuals by developing broadly neutralizing antibodies (bnAbs) and/or effector functions such as antibody-dependent cellular cytotoxicity (ADCC). HIV-1 chronically infected adults and children on combination antiretroviral therapy (cART) showed a reduction in ADCC activity and improvement in HIV-1 specific neutralizing antibody (nAb) responses. Early initiation of cART in infected adults is found to be beneficial in reducing the viral load and delaying disease progression. Herein, we longitudinally evaluated the effect of cART on HIV-1 specific plasma ADCC and nAb responses in a cohort of 20 perinatally HIV-1 subtype-C infected infants and children ≤2 years of age, pre-cART and up to 1 year post-cART initiation. Significant reductions in HIV-1 specific plasma ADCC responses to subtype-C and subtype-B viruses and improvement in HIV-1 neutralization were observed in HIV-1 infected children 1 year post-cART initiation. A positive correlation between reduction in viral load and the loss of ADCC response was observed. This study provides information aiding the understanding of the effects of early initiation of cART on antibody effector functions and viral neutralization in HIV-1 infected children, which needs to be further evaluated in large cohorts of HIV-1 infected children on cART to plan future intervention strategies.
Collapse
Affiliation(s)
- Sanjeev Kumar
- ICGEB-Emory Vaccine Centre, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.,Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Himanshu Batra
- Department of Biology, Catholic University of America, Washington, DC, USA.,Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Swarandeep Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Himanshi Chawla
- Present address: Biological Sciences and the Institute for Life Sciences, University of Southampton, Southampton, UK.,Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Ravinder Singh
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Sanket Katpara
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Abdul Wahid Hussain
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Bimal Kumar Das
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Rakesh Lodha
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Sushil Kumar Kabra
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
2
|
An HIV-1 Broadly Neutralizing Antibody from a Clade C-Infected Pediatric Elite Neutralizer Potently Neutralizes the Contemporaneous and Autologous Evolving Viruses. J Virol 2019; 93:JVI.01495-18. [PMID: 30429339 DOI: 10.1128/jvi.01495-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/29/2018] [Indexed: 11/20/2022] Open
Abstract
Broadly neutralizing antibodies (bNAbs) have demonstrated protective effects against HIV-1 in primate studies and recent human clinical trials. Elite neutralizers are potential candidates for isolation of HIV-1 bNAbs. The coexistence of bNAbs such as BG18 with neutralization-susceptible autologous viruses in an HIV-1-infected adult elite controller has been suggested to control viremia. Disease progression is faster in HIV-1-infected children than in adults. Plasma bNAbs with multiple epitope specificities are developed in HIV-1 chronically infected children with more potency and breadth than in adults. Therefore, we evaluated the specificity of plasma neutralizing antibodies of an antiretroviral-naive HIV-1 clade C chronically infected pediatric elite neutralizer, AIIMS_330. The plasma antibodies showed broad and potent HIV-1 neutralizing activity with >87% (29/33) breadth, a median inhibitory dilution (ID50) value of 1,246, and presence of N160 and N332 supersite-dependent HIV-1 bNAbs. The sorting of BG505.SOSIP.664.C2 T332N gp140 HIV-1 antigen-specific single B cells of AIIMS_330 resulted in the isolation of an HIV-1 N332 supersite-dependent bNAb, AIIMS-P01. The AIIMS-P01 neutralized 67% of HIV-1 cross-clade viruses, exhibited substantial indels despite limited somatic hypermutations, interacted with native-like HIV-1 trimer as observed in negative stain electron microscopy, and demonstrated high binding affinity. In addition, AIIMS-P01 neutralized the coexisting and evolving autologous viruses, suggesting the coexistence of vulnerable autologous viruses and HIV-1 bNAbs in the AIIMS_330 pediatric elite neutralizer. Such pediatric elite neutralizers can serve as potential candidates for isolation of novel HIV-1 pediatric bNAbs and for understanding the coevolution of virus and host immune response.IMPORTANCE More than 50% of the HIV-1 infections globally are caused by clade C viruses. To date, there is no effective vaccine to prevent HIV-1 infection. Based on the structural information of the currently available HIV-1 bNAbs, attempts are under way to design immunogens that can elicit correlates of protection upon vaccination. Here, we report the isolation and characterization of an HIV-1 N332 supersite-dependent bNAb, AIIMS-P01, from a clade C chronically infected pediatric elite neutralizer. The N332 supersite is an important epitope and is one of the current HIV-1 vaccine targets. AIIMS-P01 potently neutralized the contemporaneous and autologous evolving viruses and exhibited substantial indels despite low somatic hypermutations. Taken together with the information on infant bNAbs, further isolation and characterization of bNAbs contributing to the plasma breadth in HIV-1 chronically infected children may help provide a better understanding of their role in controlling HIV-1 infection.
Collapse
|
3
|
Aggarwal H, Khan L, Chaudhary O, Kumar S, Makhdoomi MA, Singh R, Sharma K, Mishra N, Lodha R, Srinivas M, Das BK, Kabra SK, Luthra K. Alterations in B Cell Compartment Correlate with Poor Neutralization Response and Disease Progression in HIV-1 Infected Children. Front Immunol 2017; 8:1697. [PMID: 29250072 PMCID: PMC5717014 DOI: 10.3389/fimmu.2017.01697] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 11/17/2017] [Indexed: 12/12/2022] Open
Abstract
Several B cell defects are reported in HIV-1 infected individuals including variation in B cell subsets, polyclonal B cell activation and exhaustion, with broadly neutralizing antibodies elicited in less than 10–20% of the infected population. HIV-1 disease progression is faster in children than adults. B Lymphocyte Stimulator (BLyS), expressed on dendritic cells (DCs), is a key regulator of B cell homeostasis. Understanding how DCs influence B cell phenotype and functionality (viral neutralization), thereby HIV-1 disease outcome in infected children, is important to develop interventional strategies for restoration of B cell function. In this study, a total of 38 vertically transmitted HIV-1 infected antiretroviral therapy (ART) naïve children and 25 seronegative controls were recruited. Based on the CD4 counts and years post-infection, infected children were categorized as long-term non-progressors (LTNPs) (n = 20) and progressors (n = 18). Eight of these progressors were followed up at 6–12 months post-ART. Percentages (%) of DCs, B cell subsets, and expression of BLyS on DCs were analyzed by flow-cytometry. Plasma levels of B cell growth factors were measured by ELISA and viral neutralization activity was determined using TZM-bl assay. Lower (%) of myeloid DCs (mDCs), plasmacytoid DCs, and high expression of BLyS on mDCs were observed in HIV-1 infected progressors than seronegative controls. Progressors showed lower % of naive B cells, resting memory B cells and higher % of mature activated, tissue-like memory B cells as compared to seronegative controls. Higher plasma levels of IL-4, IL-6, IL-10, and IgA were observed in progressors vs. seronegative controls. Plasma levels of IgG were high in progressors and in LTNPs than seronegative controls, suggesting persistence of hypergammaglobulinemia at all stages of disease. High plasma levels of BLyS in progressors positively correlated with poor viral neutralizing activity. Interestingly on follow up, treatment naïve progressors, post-ART showed increase in resting memory B cells along with reduction in plasma BLyS levels that correlated with improvement in viral neutralization. This is the first study to demonstrate that reduction in plasma BLyS levels correlates with restoration of B cell function, in terms of viral neutralization in HIV-1-infected children.
Collapse
Affiliation(s)
- Heena Aggarwal
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Lubina Khan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Omkar Chaudhary
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Sanjeev Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | | - Ravinder Singh
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Kanika Sharma
- Department of Pediatric Surgery, All India Institute of Medical Sciences, New Delhi, India
| | - Nitesh Mishra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Rakesh Lodha
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Maddur Srinivas
- Department of Pediatric Surgery, All India Institute of Medical Sciences, New Delhi, India
| | - Bimal Kumar Das
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Sushil Kumar Kabra
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
4
|
Kumar S, Kumar R, Khan L, Makhdoomi MA, Thiruvengadam R, Mohata M, Agarwal M, Lodha R, Kabra SK, Sinha S, Luthra K. CD4-Binding Site Directed Cross-Neutralizing scFv Monoclonals from HIV-1 Subtype C Infected Indian Children. Front Immunol 2017; 8:1568. [PMID: 29187855 PMCID: PMC5694743 DOI: 10.3389/fimmu.2017.01568] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/01/2017] [Indexed: 12/12/2022] Open
Abstract
Progression of human immunodeficiency virus type-1 (HIV-1) infection in children is faster than adults. HIV-1 subtype C is responsible for more than 50% of the infections globally and more than 90% infections in India. To date, there is no effective vaccine against HIV-1. Recent animal studies and human Phase I trials showed promising results of the protective effect of anti-HIV-1 broadly neutralizing antibodies (bnAbs). Interaction between CD4 binding site (CD4bs) on the HIV-1 envelope glycoprotein and CD4 receptor on the host immune cells is the primary event leading to HIV-1 infection. The CD4bs is a highly conserved region, comprised of a conformational epitope, and is a potential target of bnAbs such as VRC01 that is presently under human clinical trials. Recombinant scFvs can access masked epitopes due to their small size and have shown the potential to inhibit viral replication and neutralize a broad range of viruses. Pediatric viruses are resistant to many of the existing bnAbs isolated from adults. Therefore, in this study, pooled peripheral blood mononuclear cells from 9 chronically HIV-1 subtype C infected pediatric cross-neutralizers whose plasma antibodies exhibited potent and cross-neutralizing activity were used to construct a human anti-HIV-1 scFv phage library of 9 × 108 individual clones. Plasma mapping using CD4bs-specific probes identified the presence of CD4bs directed antibodies in 4 of these children. By extensive biopanning of the library with CD4bs-specific antigen RSC3 core protein, we identified two cross-neutralizing scFv monoclonals 2B10 and 2E4 demonstrating a neutralizing breadth and GMT of 77%, 17.9 µg/ml and 32%, 51.2 µg/ml, respectively, against a panel of 49 tier 1, 2 and 3 viruses. Both scFvs competed with anti-CD4bs bnAb VRC01 confirming their CD4bs epitope specificity. The 2B10 scFv was effective in neutralizing the 7 subtype C and subtype A pediatric viruses tested. Somatic hypermutations in the VH gene of scFvs (10.1–11.1%) is comparable with that of the adult antibodies. These cross-neutralizing CD4bs-directed scFvs can serve as potential reagents for passive immunotherapy. A combination of cross-neutralizing scFvs of diverse specificities with antiretroviral drugs may be effective in suppressing viremia at an early stage of HIV-1 infection and prevent disease progression.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Rajesh Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Lubina Khan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | | | | - Madhav Mohata
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Mudit Agarwal
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Rakesh Lodha
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Sushil Kumar Kabra
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Subrata Sinha
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
5
|
Makhdoomi MA, Khan L, Kumar S, Aggarwal H, Singh R, Lodha R, Singla M, Das BK, Kabra SK, Luthra K. Evolution of cross-neutralizing antibodies and mapping epitope specificity in plasma of chronic HIV-1-infected antiretroviral therapy-naïve children from India. J Gen Virol 2017; 98:1879-1891. [PMID: 28696188 DOI: 10.1099/jgv.0.000824] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Delineating the factors leading to the development of broadly neutralizing antibodies (bnAbs) during natural HIV-1 infection and dissecting their epitope specificities generates useful information for vaccine design. This is the first longitudinal study to assess the plasma-neutralizing antibody response and neutralizing determinants in HIV-1-infected children from India. We enrolled 26 and followed up 20 antiretroviral therapy (ART)-naïve, asymptomatic, chronic HIV-1-infected children. Five (19.2 %) baseline and 10 (50 %) follow-up plasma samples neutralized ≥50 % of subtypes A, B and C tier 2 viruses at an ID50 titre ≥150. A modest improvement in neutralization breadth and potency was observed with time. At baseline, subtype C-specific neutralization predominated (P=0.026); interestingly, follow-up samples exhibited cross-neutralizing activity. Epitope mapping revealed V3C reactive antibodies with significantly increased Max50 binding titres in follow-up samples from five infected children; patient #4's plasma antibodies exhibited V3-directed neutralization. A salient observation was the presence of CD4 binding site (CD4bs)-specific NAbs in patient #18 that improved with time (1.76-fold). The RSC3 wild-type (RSC3WT) protein-depleted plasma eluate of patient #18 demonstrated a more than 50% ID50 decrease in neutralization capacity against five HIV-1 pseudoviruses. Further, the presence of CD4bs-neutralizing determinants in patient #18's plasma was confirmed by the neutralizing activity demonstrated by the CD4bs-directed IgG fraction purified from this plasma, and competition with sCD4 against JRFLgp120, identifying this paediatric donor as a potential candidate for the isolation of CD4bs-directed bnAbs. Overall, we observed a relative increase in plasma-neutralizing activity with time in HIV-1-infected children, which suggests that the bnAbs evolve.
Collapse
Affiliation(s)
- Muzamil A Makhdoomi
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Lubina Khan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sanjeev Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Heena Aggarwal
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Ravinder Singh
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Rakesh Lodha
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Mohit Singla
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Bimal K Das
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sushil K Kabra
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
6
|
Makhdoomi MA, Singh D, Nair Pananghat A, Lodha R, Kabra SK, Luthra K. Neutralization resistant HIV-1 primary isolates from antiretroviral naïve chronically infected children in India. Virology 2016; 499:105-113. [PMID: 27643887 DOI: 10.1016/j.virol.2016.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/09/2016] [Accepted: 09/10/2016] [Indexed: 10/21/2022]
Abstract
Anti-HIV-1 broadly neutralizing antibodies (bnAbs) have been extensively tested against pesudoviruses of diverse strains. We generated and characterized HIV-1 primary isolates from antiretroviral naïve infected Indian children, and determined their susceptibility to known NAbs. All the 8 isolates belonged to subtype-C and were R5 tropic. Majority of these viruses were resistant to neutralization by NAbs, suggesting that the bnAbs, known to efficiently neutralize pseudoviruses (adult and pediatric) of different strains, are less effective against pediatric primary isolates. Interestingly, AIIMS_329 isolate displayed high susceptibility to neutralization by PG9 and PG16bnAbs, with IC50 titer of 1.3 and 0.97μg/ml, suggesting exposure of this epitope on this virus. All isolates except AIIMS_506 were neutralized by contemporaneous plasma antibodies. Our findings suggest that primary isolates, due to close resemblance to viruses in natural infection, should be used to evaluate NAbs as effective vaccine candidates in both children and adults.
Collapse
Affiliation(s)
| | - Deepti Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Ambili Nair Pananghat
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India; Department of Biochemistry, Jamia Hamdard University, 110062 New Delhi, India
| | - Rakesh Lodha
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sushil Kumar Kabra
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
7
|
Prakash SS, Andrabi R, Kumar R, Lodha R, Kabra SK, Vajpayee M, Luthra K. Antibodies that cross-neutralize the tier-2 pseudoviruses are produced in antiretroviral-naïve HIV-1-infected children from northern India. Arch Virol 2012; 157:1797-801. [PMID: 22674340 DOI: 10.1007/s00705-012-1357-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 04/23/2012] [Indexed: 10/28/2022]
Abstract
In this cross-sectional study, we evaluated the efficiency of the plasma of 38 antiretroviral-naïve HIV-1-infected children from northern India against a standard panel of pseudoviruses (3 clade C and 3 clade B) by TZM-bl assay. Neutralization potential was observed to a variable extent, with a potency ranging up to reciprocal ID(50) titers of 1967. Cross-neutralization was observed in 28.9 % (11/38) of the children. There was a significant positive correlation between viremia and neutralization efficiency against two of the viruses studied (Du172 r = 0.49; p = 0.007 and RHPA r = 0.47; p = 0.01), suggesting that persistent antigenic stimulation is necessary for the generation of broadly neutralizing antibody responses in these children. Further mapping of the epitope specificities of the neutralization determinants in the polyclonal plasma would provide important information for immunogen design.
Collapse
Affiliation(s)
- S S Prakash
- Department of Biochemistry, All India Institute of Medical Sciences, Room No. 3002, New Delhi 110029, India
| | | | | | | | | | | | | |
Collapse
|
8
|
Prakash SS, Kalra R, Lodha R, Kabra SK, Luthra K. Diversity of HIV type 1 envelope (V3-V5) sequence in HIV type 1-infected Indian children. AIDS Res Hum Retroviruses 2012; 28:505-9. [PMID: 21902590 DOI: 10.1089/aid.2011.0206] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Abstract We assessed the viral envelope (V3-V5 region) sequence diversity from 13 HIV-1-infected Indian children from north India. All of the 13 children were found to be infected with subtype C viruses. One of the viral sequences exhibited usage of the CXCR4 coreceptor predicted by Web PSSM and Geno2pheno tools. This virus also had a longer V3 sequence with 37 amino acids, a GRGQ motif, and a methionine residue before it (AIIMS_307). A unique finding was the complete deletion of the V4 region of another virus (AIIMS_363). High sequence diversity was observed in the envelope of the HIV-1-infected Indian children.
Collapse
Affiliation(s)
- Somi Sankaran Prakash
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Rajesh Kalra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Rakesh Lodha
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Sushil K. Kabra
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
9
|
Prakash SS, Andrabi R, Kumar R, Kabra SK, Lodha R, Vajpayee M, Luthra K. Binding antibody responses to the immunogenic regions of viral envelope in HIV-1-infected Indian children. Viral Immunol 2012; 24:463-9. [PMID: 22149971 DOI: 10.1089/vim.2011.0039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Limited information exists on the antibody responses elicited against the viral envelope in HIV-1-infected children. In this cross-sectional study, we assessed the antibody responses against three different immunogenic regions of HIV-1 envelope, namely V3 region of gp120, membrane proximal external region (MPER), and immunodominant loop (IDL) of gp41 in HIV-1-infected children from north India. We recruited 75 HIV-1-infected (40 antiretroviral naive and 35 treated) children, with age ranging from 1.5 to 16 y. Antibodies to V3 and the IDL region were found in a majority of the infected children, whereas antibodies to MPER were found in approximately one-third of the children studied. Higher antibody titers to the immunogenic regions corresponded to the symptomatic stages of HIV-1 infection in both naive and antiretroviral therapy (ART)-treated children. High titers of anti-V3C and anti-IDL antibodies were observed in a subset of antiretroviral-naive patients with suppressed viremia (<47 RNA copies/mL), suggesting that antibodies to these immunogenic regions are present regardless of their viremic status. Further, the antibody titers were significantly lower in the plasma of treated patients compared to naive patients, regardless of whether they were virologically suppressed or not. This is the first report on the antibody responses elicited in HIV-1-infected children in India. The study may help to understand the humoral antibody responses directed against viral envelope in HIV-1-infected children.
Collapse
Affiliation(s)
- S S Prakash
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | | | | | | |
Collapse
|