1
|
Human IgA Monoclonal Antibodies That Neutralize Poliovirus, Produced by Hybridomas and Recombinant Expression. Antibodies (Basel) 2020; 9:antib9010005. [PMID: 32121092 PMCID: PMC7148538 DOI: 10.3390/antib9010005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/01/2020] [Accepted: 02/11/2020] [Indexed: 12/13/2022] Open
Abstract
Poliovirus (PV)-specific intestinal IgAs are important for cessation of PV shedding in the gastrointestinal tract following an acute infection with wild type or vaccine-derived PV strains. We sought to produce IgA monoclonal antibodies (mAbs) with PV neutralizing activity. We first performed de novo IgA discovery from primary human B cells using a hybridoma method that allows assessment of mAb binding and expression on the hybridoma surface: On-Cell mAb Screening (OCMS™). Six IgA1 mAbs were cloned by this method; three potently neutralized type 3 Sabin and wt PV strains. The hybridoma mAbs were heterogeneous, expressed in monomeric, dimeric, and aberrant forms. We also used recombinant methods to convert two high-potency anti-PV IgG mAbs into dimeric IgA1 and IgA2 mAbs. Isotype switching did not substantially change their neutralization activities. To purify the recombinant mAbs, Protein L binding was used, and one of the mAbs required a single amino acid substitution in its κ LC in order to enable protein L binding. Lastly, we used OCMS to assess IgA expression on the surface of hybridomas and transiently transfected, adherent cells. These studies have generated potent anti-PV IgA mAbs, for use in animal models, as well as additional tools for the discovery and production of human IgA mAbs.
Collapse
|
2
|
Nakanishi K, Morikane S, Hosokawa N, Kajihara Y, Kurohane K, Niwa Y, Kobayashi H, Imai Y. Plant-derived secretory component forms secretory IgA with shiga toxin 1-specific dimeric IgA produced by mouse cells and whole plants. PLANT CELL REPORTS 2019; 38:161-172. [PMID: 30506369 DOI: 10.1007/s00299-018-2358-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
A key module, secretory component (SC), was efficiently expressed in Arabidopsis thaliana. The plant-based SC and immunoglobulin A of animal or plant origin formed secretory IgA that maintains antigen-binding activity. Plant expression systems are suitable for scalable and cost-effective production of biologics. Secretory immunoglobulin A (SIgA) will be useful as a therapeutic antibody against mucosal pathogens. SIgA is equipped with a secretory component (SC), which assists the performance of SIgA on the mucosal surface. Here we produced SC using a plant expression system and formed SIgA with dimeric IgAs produced by mouse cells as well as by whole plants. To increase the expression level, an endoplasmic reticulum retention signal peptide, KDEL (Lys-Asp-Glu-Leu), was added to mouse SC (SC-KDEL). The SC-KDEL cDNA was inserted into a binary vector with a translational enhancer and an efficient terminator. The SC-KDEL transgenic Arabidopsis thaliana produced SC-KDEL at the level of 2.7% of total leaf proteins. In vitro reaction of the plant-derived SC-KDEL with mouse dimeric monoclonal IgAs resulted in the formation of SIgA. When reacted with Shiga toxin 1 (Stx1)-specific ones, the antigen-binding activity was maintained. When an A. thaliana plant expressing SC-KDEL was crossed with one expressing dimeric IgA specific for Stx1, the plant-based SIgA exhibited antigen-binding activity. Leaf extracts of the crossbred transgenic plants neutralized Stx1 cytotoxicity against Stx1-sensitive cells. These results suggest that transgenic plants expressing SC-KDEL will provide a versatile means of SIgA production.
Collapse
Affiliation(s)
- Katsuhiro Nakanishi
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Shizuoka, 422-8526, Japan
| | - Shota Morikane
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Shizuoka, 422-8526, Japan
| | - Nao Hosokawa
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Shizuoka, 422-8526, Japan
| | - Yuka Kajihara
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Shizuoka, 422-8526, Japan
| | - Kohta Kurohane
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Shizuoka, 422-8526, Japan
| | - Yasuo Niwa
- Laboratory of Plant Molecular Improvement, Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka City, Shizuoka, 422-8526, Japan
| | - Hirokazu Kobayashi
- Laboratory of Plant Molecular Improvement, Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka City, Shizuoka, 422-8526, Japan
| | - Yasuyuki Imai
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Shizuoka, 422-8526, Japan.
| |
Collapse
|
3
|
Matlschweiger A, Engelmaier H, Himmler G, Hahn R. Secretory immunoglobulin purification from whey by chromatographic techniques. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1060:53-62. [DOI: 10.1016/j.jchromb.2017.05.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/23/2017] [Accepted: 05/25/2017] [Indexed: 02/06/2023]
|
4
|
Nakanishi K, Morikane S, Ichikawa S, Kurohane K, Niwa Y, Akimoto Y, Matsubara S, Kawakami H, Kobayashi H, Imai Y. Protection of Human Colon Cells from Shiga Toxin by Plant-based Recombinant Secretory IgA. Sci Rep 2017; 7:45843. [PMID: 28368034 PMCID: PMC5377459 DOI: 10.1038/srep45843] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 03/06/2017] [Indexed: 01/07/2023] Open
Abstract
Shiga toxin is a major virulence factor of food-poisoning caused by Escherichia coli such as O157:H7. Secretory immunoglobulin (Ig) A (SIgA) is supposed to prevent infection of the mucosal surface and is a candidate agent for oral immunotherapy. We previously established a recombinant monoclonal antibody (mAb) consisting of variable regions from a mouse IgG mAb specific for the binding subunit of Shiga toxin 1 (Stx1) and the Fc region of mouse IgA. Here we produced a secretory form of the recombinant IgA (S-hyIgA) with transgenic Arabidopsis thaliana plant. All the S-hyIgA cDNAs (heavy, light, J chain and secretory component) were expressed under the control of a bidirectional promoter of a chlorophyll a/b-binding protein of A. thaliana without using a viral promoter. The plant-based S-hyIgA exhibited antigen binding, and was modified with plant-specific N-linked sugar chains. The Ig heavy chain and secretory components were observed in an intracellular protein body-like structure of the transgenic leaves on immuno-electron microscopy. An extract of the transgenic leaves neutralized the cytotoxicity of Stx1 toward butyrate-treated Caco-2 cells, a human colon carcinoma cell line. These results will contribute to the development of edible therapeutic antibodies such as those for the treatment of mucosal infection.
Collapse
Affiliation(s)
- Katsuhiro Nakanishi
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Shizuoka 422-8526, Japan
| | - Shota Morikane
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Shizuoka 422-8526, Japan
| | - Shiori Ichikawa
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Shizuoka 422-8526, Japan
| | - Kohta Kurohane
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Shizuoka 422-8526, Japan
| | - Yasuo Niwa
- Laboratory of Plant Molecular Improvement, Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka City, Shizuoka 422-8526, Japan
| | - Yoshihiro Akimoto
- Department of Anatomy, Kyorin University School of Medicine, Mitaka, Tokyo 181-8612, Japan
| | - Sachie Matsubara
- Laboratory for Electron Microscopy, Kyorin University School of Medicine, Mitaka, Tokyo 181-8612, Japan
| | - Hayato Kawakami
- Department of Anatomy, Kyorin University School of Medicine, Mitaka, Tokyo 181-8612, Japan
| | - Hirokazu Kobayashi
- Laboratory of Plant Molecular Improvement, Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka City, Shizuoka 422-8526, Japan
| | - Yasuyuki Imai
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Shizuoka 422-8526, Japan
| |
Collapse
|