1
|
Lin X, Lin F, Liang T, Ducatez MF, Zanin M, Wong SS. Antibody Responsiveness to Influenza: What Drives It? Viruses 2021; 13:v13071400. [PMID: 34372607 PMCID: PMC8310379 DOI: 10.3390/v13071400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 02/06/2023] Open
Abstract
The induction of a specific antibody response has long been accepted as a serological hallmark of recent infection or antigen exposure. Much of our understanding of the influenza antibody response has been derived from studying antibodies that target the hemagglutinin (HA) protein. However, growing evidence points to limitations associated with this approach. In this review, we aim to highlight the issue of antibody non-responsiveness after influenza virus infection and vaccination. We will then provide an overview of the major factors known to influence antibody responsiveness to influenza after infection and vaccination. We discuss the biological factors such as age, sex, influence of prior immunity, genetics, and some chronic infections that may affect the induction of influenza antibody responses. We also discuss the technical factors, such as assay choices, strain variations, and viral properties that may influence the sensitivity of the assays used to measure influenza antibodies. Understanding these factors will hopefully provide a more comprehensive picture of what influenza immunogenicity and protection means, which will be important in our effort to improve influenza vaccines.
Collapse
Affiliation(s)
- Xia Lin
- State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, 195 Dongfengxi Rd, Guangzhou 510182, China; (X.L.); (F.L.); (T.L.); (M.Z.)
| | - Fangmei Lin
- State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, 195 Dongfengxi Rd, Guangzhou 510182, China; (X.L.); (F.L.); (T.L.); (M.Z.)
| | - Tingting Liang
- State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, 195 Dongfengxi Rd, Guangzhou 510182, China; (X.L.); (F.L.); (T.L.); (M.Z.)
| | | | - Mark Zanin
- State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, 195 Dongfengxi Rd, Guangzhou 510182, China; (X.L.); (F.L.); (T.L.); (M.Z.)
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Sook-San Wong
- State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, 195 Dongfengxi Rd, Guangzhou 510182, China; (X.L.); (F.L.); (T.L.); (M.Z.)
- School of Public Health, The University of Hong Kong, Hong Kong, China
- Correspondence: ; Tel.: +86-178-2584-6078
| |
Collapse
|
2
|
Lim J, Cheong Y, Kim YS, Chae W, Hwang BJ, Lee J, Jang YH, Roh YH, Seo SU, Seong BL. RNA-dependent assembly of chimeric antigen nanoparticles as an efficient H5N1 pre-pandemic vaccine platform. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 37:102438. [PMID: 34256061 DOI: 10.1016/j.nano.2021.102438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/12/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022]
Abstract
Highly pathogenic avian influenza viruses (HPAIVs) pose a significant threat to human health, with high mortality rates, and require effective vaccines. We showed that, harnessed with novel RNA-mediated chaperone function, hemagglutinin (HA) of H5N1 HPAIV could be displayed as an immunologically relevant conformation on self-assembled chimeric nanoparticles (cNP). A tri-partite monomeric antigen was designed including: i) an RNA-interaction domain (RID) as a docking tag for RNA to enable chaperna function (chaperna: chaperone + RNA), ii) globular head domain (gd) of HA as a target antigen, and iii) ferritin as a scaffold for 24 mer-assembly. The immunization of mice with the nanoparticles (~46 nm) induced a 25-30 fold higher neutralizing capacity of the antibody and provided cross-protection from homologous and heterologous lethal challenges. This study suggests that cNP assembly is conducive to eliciting antibodies against the conserved region in HA, providing potent and broad protective efficacy.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/therapeutic use
- Antibodies, Viral/immunology
- Antibodies, Viral/therapeutic use
- Birds/virology
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/therapeutic use
- Humans
- Influenza A Virus, H5N1 Subtype/drug effects
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza A Virus, H5N1 Subtype/pathogenicity
- Influenza Vaccines/chemistry
- Influenza Vaccines/immunology
- Influenza Vaccines/therapeutic use
- Influenza in Birds/immunology
- Influenza in Birds/prevention & control
- Influenza in Birds/virology
- Mice
- Nanoparticles/chemistry
- Nanoparticles/therapeutic use
- Pandemics
- RNA/genetics
- RNA/immunology
- RNA/therapeutic use
Collapse
Affiliation(s)
- Jongkwan Lim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Yucheol Cheong
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Young-Seok Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Wonil Chae
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Beom Jeung Hwang
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jinhee Lee
- Department of Integrated OMICS for Biomedical Science, College of Life Sciences and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Yo Han Jang
- Department of Biological Sciences and Biotechnology, College of Life Sciences and Biotechnology, Andong National University, Andong, Republic of Korea
| | - Young Hoon Roh
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, Republic of Korea.
| | - Sang-Uk Seo
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Baik L Seong
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, Republic of Korea; Department of Microbiology, College of Medicine, Yonsei University, Seoul, Republic of Korea; Vaccine Innovative Technology Alliance-Korea, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Jang YH, Seong BL. Call for a paradigm shift in the design of universal influenza vaccines by harnessing multiple correlates of protection. Expert Opin Drug Discov 2020; 15:1441-1455. [PMID: 32783765 DOI: 10.1080/17460441.2020.1801629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The genetic variability and diversity of influenza viruses, and the expansion of their hosts, present a significant threat to human health. The development of a universal influenza vaccine is urgently needed to tackle seasonal epidemics, pandemics, vaccine mismatch, and zoonotic transmissions to humans. AREAS COVERED Despite the identification of broadly neutralizing antibodies against influenza viruses, designing a universal influenza vaccine that induces such broadly neutralizing antibodies at protective levels in humans has remained challenging. Besides neutralizing antibodies, multiple correlates of protection have recently emerged as crucially important for eliciting broad protection against diverse influenza viruses. This review discusses the immune responses required for broad protection against influenza viruses, and suggests a paradigm shift from an HA stalk-based approach to other approaches that can induce multiple immunological correlates of protection for the development of a universal influenza vaccine. EXPERT OPINION To develop a truly universal influenza vaccine, multiple correlates of protection should be considered, including antibody responses and T cell immunity. Balanced induction of neutralizing antibodies, antibody effector functions, and T cell immunity will contribute to the most effective vaccination strategy. Live-attenuated influenza vaccines provide an attractive platform to improve the breadth and potency of vaccines for broader protection.
Collapse
Affiliation(s)
- Yo Han Jang
- Department of Biological Sciences and Biotechnology Major in Bio-Vaccine Engineering, Andong National University , Andong, South Korea
| | - Baik L Seong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University , Seoul, South Korea.,Vaccine Innovation Technology Alliance (VITAL)-Korea, Yonsei University , Seoul, South Korea
| |
Collapse
|
4
|
Florek K, Mutschler J, McLean HQ, King JP, Flannery B, Belongia EA, Friedrich TC. Antibody-dependent cell-mediated cytotoxicity antibody responses to inactivated and live-attenuated influenza vaccination in children during 2014-15. Vaccine 2019; 38:2088-2094. [PMID: 31753674 DOI: 10.1016/j.vaccine.2019.10.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Seasonal influenza vaccines aim to induce strain-specific neutralizing antibodies. Non-neutralizing antibodies may be more broadly cross-reactive and still protect through mechanisms including antibody-dependent cell-mediated cytotoxicity (ADCC). Influenza vaccines may stimulate ADCC antibodies in adults, but whether they do so in children is unknown. Here we examined how vaccination affects cross-reactive ADCC antibody responses in children after receipt of inactivated trivalent vaccine (IIV3) or quadrivalent live-attenuated vaccine (LAIV4). METHODS Children aged 5-17 were recruited in fall 2014 to provide pre- and post-vaccination serum samples. Children aged 5-9 received LAIV4 based on then-current recommendation, and older children were randomly assigned to IIV3 or LAIV4. We used microtiter-plate-based flow cytometry with an NK cell line to examine ADCC antibody responses to the 2014-15 H3N2 vaccine component (A/Texas/50/2012 [TX12]) and a drifted strain, A/Switzerland/9715293/2013 (SW13). Responses were stratified by two-season (2013-14 and 2014-15) vaccine sequence. RESULTS Eighty-five children received LAIV4 and 45 received IIV3. Prevaccination ADCC activity was highest in children who had received any vaccine in the prior season. Increase in ADCC antibody responses against the vaccine strain TX12 following vaccination was greatest for participants who received IIV3 in 2014-15 and LAIV4 in the prior season (geometric mean fold rise [MFR] = 1.6, 95% CI. 1.23-2.11). This group also had a detectable ADCC response to the drifted SW13 strain. There was a modest ADCC response against SW13 in LAIV4 recipients who were unvaccinated in the previous season (MFR = 1.18, 95% CI 1.10-1.25). There were no significant changes in 2014-15 ADCC response to vaccination among children who had received IIV3 in 2013-14. CONCLUSIONS Vaccinating children with IIV3 after prior receipt of LAIV4 generated a modest increase in ADCC antibodies, including some cross-reactivity with an emerging drift variant. Other vaccine-induced ADCC responses were minimal and not affected by vaccine type or sequence.
Collapse
Affiliation(s)
- Kelsey Florek
- Wisconsin State Laboratory of Hygiene, Madison, WI 53714, USA
| | - James Mutschler
- Department of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, WI 53706, USA
| | - Huong Q McLean
- Center for Clinical Epidemiology and Population Health, Marshfield Clinic Research Institute, 1000 North Oak Ave, Marshfield 54449, WI, USA
| | - Jennifer P King
- Center for Clinical Epidemiology and Population Health, Marshfield Clinic Research Institute, 1000 North Oak Ave, Marshfield 54449, WI, USA
| | - Brendan Flannery
- Centers for Disease Control and Prevention, 1600 Clifton Rd, Atlanta 30333, GA, USA
| | - Edward A Belongia
- Center for Clinical Epidemiology and Population Health, Marshfield Clinic Research Institute, 1000 North Oak Ave, Marshfield 54449, WI, USA.
| | - Thomas C Friedrich
- Department of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, WI 53706, USA; Wisconsin National Primate Research Center, Madison, WI 53715, USA.
| |
Collapse
|
5
|
Jegaskanda S, Vanderven HA, Wheatley AK, Kent SJ. Fc or not Fc; that is the question: Antibody Fc-receptor interactions are key to universal influenza vaccine design. Hum Vaccin Immunother 2017; 13:1-9. [PMID: 28332900 DOI: 10.1080/21645515.2017.1290018] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A universal vaccine that provides long-lasting protection from both epidemic and pandemic influenza viruses remains the "holy grail" of influenza vaccine research. Though virus neutralization assays are the current benchmark of measuring vaccine effectiveness, it is clear that Fc-receptor functions can drastically improve the effectiveness of antibodies and vaccines in vivo. Antibodies that kill virus-infected cells and/or elicit an antiviral environment, termed antibody-dependent cellular cytotoxicity (ADCC)-mediating antibodies, provide a link between the innate and adaptive immune response. New technologies allowing the rapid isolation and characterization of monoclonal antibodies (mAb) have yielded a plethora of mAbs which target conserved regions of influenza virus, such as the hemagglutinin (HA) stem region. Many such mAbs have been used to gain a better understanding of Fc-receptor functions in vivo. In parallel, several studies have characterized the induction of polyclonal ADCC following influenza vaccination and infection in humans. Taken together, these studies suggest that ADCC-mediating antibodies (ADCC-Abs) significantly contribute to host immunity against influenza virus and may be a mechanism to exploit for rational vaccine and therapeutic design. We discuss recent research on influenza-specific ADCC and potential future avenues to extend our understanding.
Collapse
Affiliation(s)
- Sinthujan Jegaskanda
- a Department of Microbiology and Immunology , University of Melbourne, Peter Doherty Institute for Infection and Immunity , Melbourne , Victoria , Australia
| | - Hillary A Vanderven
- a Department of Microbiology and Immunology , University of Melbourne, Peter Doherty Institute for Infection and Immunity , Melbourne , Victoria , Australia
| | - Adam K Wheatley
- a Department of Microbiology and Immunology , University of Melbourne, Peter Doherty Institute for Infection and Immunity , Melbourne , Victoria , Australia
| | - Stephen J Kent
- a Department of Microbiology and Immunology , University of Melbourne, Peter Doherty Institute for Infection and Immunity , Melbourne , Victoria , Australia.,b ARC Centre for Excellence in Convergent Bio-Nano Science and Technology , University of Melbourne , Melbourne , Australia.,c Melbourne Sexual Health Centre, Department of Infectious Diseases, Alfred Health, Central Clinical School , Monash University , Melbourne , Australia
| |
Collapse
|
6
|
Kumar N, Barua S, Riyesh T, Tripathi BN. Advances in peste des petits ruminants vaccines. Vet Microbiol 2017; 206:91-101. [PMID: 28161212 PMCID: PMC7130925 DOI: 10.1016/j.vetmic.2017.01.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/13/2016] [Accepted: 01/12/2017] [Indexed: 11/27/2022]
Abstract
Peste des petits ruminants (PPR) is a highly contagious disease of small ruminants that leads to high morbidity and mortality thereby results in devastating economic consequences to the livestock industry. PPR is currently endemic across most parts of Asia and Africa, the two regions with the highest concentration of poor people in the world. Sheep and goats in particularly contribute significantly towards the upliftment of livelihood of the poor and marginal farmers in these regions. In this context, PPR directly affecting the viability of sheep and goat husbandry has emerged as a major hurdle in the development of these regions. The control of PPR in these regions could significantly contribute to poverty alleviation, therefore, the Office International des Epizooties (OIE) and Food and Agricultural Organization (FAO) have targeted the control and eradication of PPR by 2030 a priority. In order to achieve this goal, a potent, safe and efficacious live-attenuated PPR vaccine with long-lasting immunity is available for immunoprophylaxis. However, the live-attenuated PPR vaccine is thermolabile and needs maintenance of an effective cold chain to deliver into the field. In addition, the infected animals cannot be differentiated from vaccinated animals. To overcome these limitations, some recombinant vaccines have been developed. This review comprehensively describes about the latest developments in PPR vaccines.
Collapse
Affiliation(s)
- Naveen Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India.
| | - Sanjay Barua
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India.
| | - Thachamvally Riyesh
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India
| | - Bhupendra N Tripathi
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India
| |
Collapse
|
7
|
Vanderven HA, Jegaskanda S, Wheatley AK, Kent SJ. Antibody-dependent cellular cytotoxicity and influenza virus. Curr Opin Virol 2017; 22:89-96. [PMID: 28088123 DOI: 10.1016/j.coviro.2016.12.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/11/2016] [Accepted: 12/19/2016] [Indexed: 10/20/2022]
Abstract
Antibodies are a key defence against influenza infection and disease, but neutralizing antibodies are often strain-specific and of limited utility against divergent or pandemic viruses. There is now considerable evidence that influenza-specific antibodies with Fc-mediated effector functions, such as antibody-dependent cellular cytotoxicity (ADCC), can assist in the clearance of influenza infection in vitro and in animal models. Further, ADCC-mediating antibodies that recognize a broad array of influenza strains are common in humans, likely as a result of being regularly exposed to influenza infections. The concept that influenza-specific ADCC can assist in the partial control of influenza infections in humans is gaining momentum. This review examines the utility of influenza-specific ADCC antibodies.
Collapse
Affiliation(s)
- Hillary A Vanderven
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Sinthujan Jegaskanda
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia; Melbourne Sexual Health Clinic and Infectious Diseases Department, Alfred Hospital, Monash University Central Clinical School, Carlton, Victoria, Australia; ARC Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, Australia.
| |
Collapse
|