1
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Extracellular Vesicles in Viral Liver Diseases. Viruses 2024; 16:1785. [PMID: 39599900 PMCID: PMC11598962 DOI: 10.3390/v16111785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Extracellular vesicles (EVs) are bilayer vesicles released by cells in the microenvironment of the liver including parenchymal and non-parenchymal cells. They are the third important mechanism in the communications between cells, besides the secretion of cytokines and chemokines and the direct cell-to-cell contact. The aim of this review is to discuss the important role of EVs in viral liver disease, as there is increasing evidence that the transportation of viral proteins, all types of RNA, and viral particles including complete virions is implicated in the pathogenesis of both viral cirrhosis and viral-related hepatocellular carcinoma. The biogenesis of EVs is discussed and their role in the pathogenesis of viral liver diseases is presented. Their use as diagnostic and prognostic biomarkers is also analyzed. Most importantly, the significance of possible novel treatment strategies for liver fibrosis and hepatocellular carcinoma is presented, although available data are based on experimental evidence and clinical trials have not been reported.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Greece;
| | - Ioannis Tsomidis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Greece;
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Greece;
| |
Collapse
|
2
|
King HAD, Lewin SR. Immune checkpoint inhibitors in infectious disease. Immunol Rev 2024; 328:350-371. [PMID: 39248154 PMCID: PMC11659942 DOI: 10.1111/imr.13388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Following success in cancer immunotherapy, immune checkpoint blockade is emerging as an exciting potential treatment for some infectious diseases, specifically two chronic viral infections, HIV and hepatitis B. Here, we will discuss the function of immune checkpoints, their role in infectious disease pathology, and the ability of immune checkpoint blockade to reinvigorate the immune response. We focus on blockade of programmed cell death 1 (PD-1) to induce durable immune-mediated control of HIV, given that anti-PD-1 can restore function to exhausted HIV-specific T cells and also reverse HIV latency, a long-lived form of viral infection. We highlight several key studies and future directions of research in relation to anti-PD-1 and HIV persistence from our group, including the impact of immune checkpoint blockade on the establishment (AIDS, 2018, 32, 1491), maintenance (PLoS Pathog, 2016, 12, e1005761; J Infect Dis, 2017, 215, 911; Cell Rep Med, 2022, 3, 100766) and reversal of HIV latency (Nat Commun, 2019, 10, 814; J Immunol, 2020, 204, 1242), enhancement of HIV-specific T cell function (J Immunol, 2022, 208, 54; iScience, 2023, 26, 108165), and investigating the effects of anti-PD-1 and anti-CTLA-4 in vivo in people with HIV on ART with cancer (Sci Transl Med, 2022, 14, eabl3836; AIDS, 2021, 35, 1631; Clin Infect Dis, 2021, 73, e1973). Our future work will focus on the impact of anti-PD-1 in vivo in people with HIV on ART without cancer and potential combinations of anti-PD-1 with other interventions, including therapeutic vaccines or antibodies and less toxic immune checkpoint blockers.
Collapse
Affiliation(s)
- Hannah A. D. King
- Department of Infectious DiseasesThe University of Melbourne at The Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
| | - Sharon R. Lewin
- Department of Infectious DiseasesThe University of Melbourne at The Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
- Victorian Infectious Diseases ServiceRoyal Melbourne Hospital at The Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
- Department of Infectious DiseasesAlfred Hospital and Monash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
3
|
Ważny Ł, Whiteside TL, Pietrowska M. Oncoviral Infections and Small Extracellular Vesicles. Viruses 2024; 16:1291. [PMID: 39205265 PMCID: PMC11359865 DOI: 10.3390/v16081291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Small extracellular vesicles (sEV) are small membrane-bound nanovesicles with a size range below 200 nm that are released by all types of cells. sEV carry a diverse cargo of proteins, lipids, glycans, and nucleic acids that mimic the content of producer cells. sEV mediate intercellular communication and play a key role in a broad variety of physiological and pathological conditions. Recently, numerous reports have emerged examining the role of sEV in viral infections. A significant number of similarities in the sEV biogenesis pathways and the replication cycles of viruses suggest that sEV might influence the course of viral infections in diverse ways. Besides directly modulating virus propagation by transporting the viral cargo (complete virions, proteins, RNA, and DNA), sEV can also modify the host antiviral response and increase the susceptibility of cells to infection. The network of mutual interactions is particularly complex in the case of oncogenic viruses, deserving special consideration because of its significance in cancer progression. This review summarizes the current knowledge of interactions between sEV and oncogenic viruses, focusing on sEV abilities to modulate the carcinogenic properties of oncoviruses.
Collapse
Affiliation(s)
- Łukasz Ważny
- Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland;
| | - Theresa L. Whiteside
- UPMC Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA;
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Monika Pietrowska
- Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland;
| |
Collapse
|
4
|
Wu C, Ke Y, Wan L, Xie X. Efficacy of immune checkpoint inhibitors differs in various status of carcinoma: a study based on 29 cohorts with 3255 participants. Cancer Immunol Immunother 2024; 73:79. [PMID: 38554165 PMCID: PMC10981616 DOI: 10.1007/s00262-024-03663-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/24/2024] [Indexed: 04/01/2024]
Abstract
BACKGROUND Pre-clinical data have revealed that viral infection, such as Hepatitis B virus (HBV), Hepatitis C virus (HCV), and Human Papilloma virus (HPV), may lead to the development of "hot" or "immune-sensitive" tumors, which may impact the efficacy of immune checkpoint inhibitor (ICIs). Therefore, This study aimed to investigate the impact of viral status on the efficacy of ICIs. METHODS Electronic databases were searched to identify relevant trials. The primary endpoints were overall survival (OS) and progression-free survival (PFS) measured by hazard ratio (HR). Stratified analyses were accomplished based on viral types, treatment regimens, and patient locations. RESULTS A total of 3255 participants were recruited, including 252 cases of gastric cancer, 156 cases of nasopharyngeal carcinoma, 1603 cases of hepatocellular carcinoma, and 1244 cases of head and neck squamous cell carcinoma. Pooled results demonstrated a significant association between viral infection and favorable outcomes in patients receiving ICIs, including improved OS [HR = 0.67, 95%CI (0.57-0.79), P < 0.0001], increased ORR [OR = 1.43, 95%CI (1.14-1.80), P = 0.0018], and a trend toward enhanced PFS [HR = 0.75, 95%CI (0.56-1.00), P = 0.05]. In subgroup analyses, patients treated with ICIs who were exposed to HBV/HCV or HPV infection exhibited an evidently superior OS without heterogeneity, compared to those without infection. CONCLUSIONS This study indicated that the presence of viral infection was evidently associated with improved outcomes in cancer patients undergoing ICIs, particularly in cases of HBV/HCV and HPV infections.
Collapse
Affiliation(s)
- Chunlan Wu
- Department of Oncology, Molecular Oncology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Oncology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Yujun Ke
- Department of Anesthesiology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Luying Wan
- Department of Oncology, Molecular Oncology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Oncology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Xianhe Xie
- Department of Oncology, Molecular Oncology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
- Department of Oncology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
- Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
5
|
Wu CC, Chen MS, Lee TY, Huang TS, Cho DY, Chen JY. Epstein-Barr Virus BRLF1 Induces PD-L1 Expression in Nasopharyngeal Carcinoma Cells. Viral Immunol 2024; 37:115-123. [PMID: 38498796 DOI: 10.1089/vim.2023.0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a specific human malignancy with unique geographic distribution and genetic backgrounds. Although early treatment with radio-chemotherapy has been proven effective for NPC therapy, its therapeutic efficacy substantially diminishes in the late stages of this malignancy. In the tumor microenvironment of NPC, PD-L1 has been demonstrated as a critical factor in impairing T cell activation. As an etiological role for NPC development, it is found that Epstein-Barr virus (EBV) latent proteins upregulated PD-L1 expression. However, whether EBV lytic protein affects PD-L1 expression remains unclear. In this study, through monitoring the mRNA expression pattern of lytic genes and PD-L1 in EBV-positive NPC cell line NA, EBV immediately-early gene BRLF1(Rta) was found to have the potential for PD-L1 activation. Furthermore, we identified that Rta expression enhanced PD-L1 expression in mRNA and protein levels through quantitative real-time polymerase chain reaction and western blotting analysis. The luciferase reporter assay revealed that Rta expression enhanced PD-L1 promoter activity. We also demonstrated that Rta-induced PD-L1 expressions could impair interleukin 2 secretion of T cells, and this mechanism may be through ERK activation. These results displayed the importance of EBV Rta in PD-L1 expression in NPC and may give an alternative target for NPC therapy.
Collapse
Affiliation(s)
- Chung-Chun Wu
- Department of Medical Research, Translational Cell Therapy Center, China Medical University Hospital, Taichung City, Taiwan
| | - Mei-Shu Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Ting-Ying Lee
- Department of Medical Research, Translational Cell Therapy Center, China Medical University Hospital, Taichung City, Taiwan
| | - Tze-Sing Huang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Der-Yang Cho
- Department of Medical Research, Translational Cell Therapy Center, China Medical University Hospital, Taichung City, Taiwan
| | - Jen-Yang Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| |
Collapse
|
6
|
Many Ways to Communicate-Crosstalk between the HBV-Infected Cell and Its Environment. Pathogens 2022; 12:pathogens12010029. [PMID: 36678377 PMCID: PMC9866324 DOI: 10.3390/pathogens12010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Chronic infection with the hepatitis B virus (HBV) affects an estimated 257 million people worldwide and can lead to liver diseases such as cirrhosis and liver cancer. Viral replication is generally considered not to be cytopathic, and although some HBV proteins may have direct carcinogenic effects, the majority of HBV infection-related disease is related to chronic inflammation resulting from disrupted antiviral responses and aberrant innate immune reactions. Like all cells, healthy and HBV-infected cells communicate with each other, as well as with other cell types, such as innate and adaptive immune cells. They do so by both interacting directly and by secreting factors into their environment. Such factors may be small molecules, such as metabolites, single viral proteins or host proteins, but can also be more complex, such as virions, protein complexes, and extracellular vesicles. The latter are small, membrane-enclosed vesicles that are exchanged between cells, and have recently gained a lot of attention for their potential to mediate complex communication and their potential for therapeutic repurposing. Here, we review how HBV infection affects the communication between HBV-infected cells and cells in their environment. We discuss the impact of these interactions on viral persistence in chronic infection, as well as their relation to HBV infection-related pathology.
Collapse
|
7
|
Tojo M, Horie H, Koinuma K, Miyato H, Tsukui H, Kaneko Y, Futoh Y, Kimura Y, Takahashi K, Saito A, Ohzawa H, Yamaguchi H, Lefor AK, Sata N, Kitayama J. Programmed cell death ligand 1 expression on monocytes is inversely correlated with tumour response to preoperative chemoradiotherapy for locally advanced rectal cancer. Colorectal Dis 2022; 24:1140-1149. [PMID: 35502766 PMCID: PMC9790410 DOI: 10.1111/codi.16167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/17/2022] [Accepted: 04/23/2022] [Indexed: 12/30/2022]
Abstract
AIM The clinical efficacy of chemoradiotherapy (CRT) is largely dependent on host immune status. The aim of this study was to identify possible markers expressed on circulating mononuclear cells to predict tumour response in patients with locally advanced rectal cancer (LARC). METHODS Peripheral blood samples were obtained from 47 patients diagnosed with LARC before and after CRT. The numbers of lymphocytes and monocyte subsets were analysed using flow cytometry. Based on clinical and pathological findings, patients were classified as high or low responders. RESULTS Lymphocyte counts were markedly decreased after CRT. Total numbers of lymphocytes (p = 0.030) and CD4(+) T cells (p = 0.041) in post-CRT samples were significantly lower in low responders than in high responders. In contrast, monocyte counts were not reduced and the number of CD14dim (+) CD16(+) nonclassical (patrolling) monocytes were somewhat increased after CRT (p = 0.050). Moreover, the ratios of programmed cell death ligand 1 (PD-L1) (+) cells on patrolling monocytes before and after CRT were significantly higher in low responders than in high responders (p = 0.0046, p = 0.0006). The same trend was observed for classical and intermediate monocytes. The expression of PD-L1 on patrolling monocytes before CRT correlated inversely with the number of T cells and natural killer (NK) cells after CRT. PD-L1(+) ratio in patrolling monocytes was an independent predictor for response to CRT. CONCLUSION Programmed cell death ligand 1 (PD-L1) expression on patrolling monocytes suppresses cell-mediated immunity in patients receiving CRT which could be related to tumour response, and may be a useful biomarker for decision-making in the management of patients with LARC.
Collapse
Affiliation(s)
- Mineyuki Tojo
- Department of SurgeryJichi Medical UniversityShimotsukeTochigiJapan
| | - Hisanaga Horie
- Department of SurgeryJichi Medical UniversityShimotsukeTochigiJapan
| | - Koji Koinuma
- Department of SurgeryJichi Medical UniversityShimotsukeTochigiJapan
| | - Hideyo Miyato
- Department of SurgeryJichi Medical UniversityShimotsukeTochigiJapan,Jichi Medical University HospitalDivision of Translational Research, Center for Clinical ResearchShimotsukeTochigiJapan
| | - Hidenori Tsukui
- Department of SurgeryJichi Medical UniversityShimotsukeTochigiJapan
| | - Yuki Kaneko
- Department of SurgeryJichi Medical UniversityShimotsukeTochigiJapan
| | - Yurie Futoh
- Department of SurgeryJichi Medical UniversityShimotsukeTochigiJapan
| | - Yuki Kimura
- Department of SurgeryJichi Medical UniversityShimotsukeTochigiJapan
| | - Kazuya Takahashi
- Department of SurgeryJichi Medical UniversityShimotsukeTochigiJapan
| | - Akira Saito
- Department of SurgeryJichi Medical UniversityShimotsukeTochigiJapan
| | - Hideyuki Ohzawa
- Department of SurgeryJichi Medical UniversityShimotsukeTochigiJapan,Department of Clinical OncologyJichi Medical UniversityShimotsukeTochigiJapan
| | - Hironori Yamaguchi
- Department of SurgeryJichi Medical UniversityShimotsukeTochigiJapan,Department of Clinical OncologyJichi Medical UniversityShimotsukeTochigiJapan
| | | | - Naohiro Sata
- Department of SurgeryJichi Medical UniversityShimotsukeTochigiJapan
| | - Joji Kitayama
- Department of SurgeryJichi Medical UniversityShimotsukeTochigiJapan,Jichi Medical University HospitalDivision of Translational Research, Center for Clinical ResearchShimotsukeTochigiJapan
| |
Collapse
|
8
|
Brom VC, Burger C, Wirtz DC, Schildberg FA. The Role of Immune Checkpoint Molecules on Macrophages in Cancer, Infection, and Autoimmune Pathologies. Front Immunol 2022; 13:837645. [PMID: 35418973 PMCID: PMC8995707 DOI: 10.3389/fimmu.2022.837645] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/02/2022] [Indexed: 12/13/2022] Open
Abstract
Immune checkpoint inhibitors have revolutionized immunotherapy against various cancers over the last decade. The use of checkpoint inhibitors results in remarkable re-activation of patients’ immune system, but is also associated with significant adverse events. In this review, we emphasize the importance of cell-type specificity in the context of immune checkpoint-based interventions and particularly focus on the relevance of macrophages. Immune checkpoint blockade alters the dynamic macrophage phenotypes and thereby substantially manipulates therapeutical outcome. Considering the macrophage-specific immune checkpoint biology, it seems feasible to ameliorate the situation of patients with severe side effects and even increase the probability of survival for non-responders to checkpoint inhibition. Apart from malignancies, investigating immune checkpoint molecules on macrophages has stimulated their fundamental characterization and use in other diseases as well, such as acute and chronic infections and autoimmune pathologies. Although the macrophage-specific effect of checkpoint molecules has been less studied so far, the current literature shows that a macrophage-centered blockade of immune checkpoints as well as a stimulation of their expression represents promising therapeutic avenues. Ultimately, the therapeutic potential of a macrophage-focused checkpoint therapy might be maximized by diagnostically assessing individual checkpoint expression levels on macrophages, thereby personalizing an effective treatment approach for each patient having cancer, infection, or autoimmune diseases.
Collapse
Affiliation(s)
- Victoria C Brom
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Christof Burger
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Dieter C Wirtz
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Frank A Schildberg
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
9
|
Lenart M, Kluczewska A, Szaflarska A, Rutkowska-Zapała M, Wąsik M, Ziemiańska-Pięta A, Kobylarz K, Pituch-Noworolska A, Siedlar M. Selective downregulation of natural killer activating receptors on NK cells and upregulation of PD-1 expression on T cells in children with severe and/or recurrent Herpes simplex virus infections. Immunobiology 2021; 226:152097. [PMID: 34015527 DOI: 10.1016/j.imbio.2021.152097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 10/21/2022]
Abstract
Severe, recurrent or atypical Herpes simplex virus (HSV) infections are still posing clinical and diagnostic problem in clinical immunology facilities. However, the molecular background of this disorder is still unclear. The aim of this study was to investigate the expression of activating receptors on NK cells (CD16, NKp46, NKG2D, NKp80, 2B4, CD48 and NTB-A) and checkpoint molecule PD-1 on T lymphocytes and NK cells, in patients with severe and/or recurrent infections with HSV and age-matched healthy control subjects. As a result, we noticed that patients with severe and/or recurrent infection with HSV had significantly lower percentage of CD16brightCD56dim and higher percentage of CD16dimCD56bright NK cell subsets, when compared to control subjects, which may be associated with abnormal NK cell maturation during chronic HSV infection. Patients had also significantly downregulated expression of CD16 receptor on CD16bright NK cells. The expression of activating receptors was significantly reduced on patients' NK cells - either both the percentage of NK cells expressing the receptor and MFI of its expression (NKp46, NKp80 and 2B4 on CD16brightCD56dim cells and NKp46 on CD16dimCD56bright cells) or only MFI (NKG2D on both NK cell subsets). It should be noted that the reduction of receptor expression was limited to NK cells, since there was no differences in the percentage of receptor-positive cells or MFI on T cells. However, NTB-A receptor was the only one which expression was not only simultaneously changed in patients' NK and T cells, but also significantly upregulated on CD16dimCD56bright NK cell and CD8+ cell subsets. Patients had also upregulated proportion of CD4+ T cells expressing PD-1. Thus, we suggest that an increased percentage of PD-1+ cells may represent an independent indirect mechanism of downregulation of antiviral response, separate from the reduction of NK cell activating receptors expression. Altogether, our studies indicate two possible mechanisms which may promote perpetuation of HSV infection: 1) selective inhibition of activating receptors on NK cells, but not on T cells, and 2) upregulation of checkpoint molecule PD-1 on CD4+ T cells.
Collapse
Affiliation(s)
- Marzena Lenart
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, Krakow, Poland
| | - Anna Kluczewska
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, Krakow, Poland
| | - Anna Szaflarska
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, Krakow, Poland
| | - Magdalena Rutkowska-Zapała
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, Krakow, Poland
| | - Magdalena Wąsik
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, Krakow, Poland
| | - Anna Ziemiańska-Pięta
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, Krakow, Poland
| | - Krzysztof Kobylarz
- Department of Anesthesiology and Intensive Care, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, Krakow, Poland
| | - Anna Pituch-Noworolska
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, Krakow, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, Krakow, Poland.
| |
Collapse
|
10
|
Liu LL, Zhang SW, Chao X, Wang CH, Yang X, Zhang XK, Wen YL, Yun JP, Luo RZ. Coexpression of CMTM6 and PD-L1 as a predictor of poor prognosis in macrotrabecular-massive hepatocellular carcinoma. Cancer Immunol Immunother 2021; 70:417-429. [PMID: 32770259 PMCID: PMC7889680 DOI: 10.1007/s00262-020-02691-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/31/2020] [Indexed: 12/20/2022]
Abstract
The "macrotrabecular-massive" (MTM) pattern of hepatocellular carcinoma (HCC) has been suggested to represent a distinct HCC subtype and is associated with specific molecular features. Since the immune microenvironment is heterogenous in HCC, it is important to evaluate the immune microenvironment of this novel variant. CMTM6, a key regulator of PD-L1, is an important immunocheckpoint inhibitor. This study aimed to evaluate the prognostic effect of CMTM6/PD-L1 coexpression and its relationship with inflammatory cells in HCC. We analyzed 619 HCC patients and tumors were classified into MTM and non-MTM HCC subtypes. The expression levels of CMTM6 and PD-L1 in tumor and inflammatory cells were evaluated by immunohistochemistry. The density of inflammatory cells in the cancer cell nest was calculated. Tumoral PD-L1 expression and inflammatory cell density were higher in the MTM type than in the non-MTM type. CMTM6-high expression was significantly associated with shorter OS and DFS than CMTM6-low expression in the whole HCC patient population and the MTM HCC patient population. Moreover, MTM HCC patients with CMTM6/PD-L1 coexpression experienced a higher risk of HCC progression and death. In addition, CMTM6/PD-L1 coexpression was shown to be related to a high density of inflammatory cells. Notably, a new immune classification, based on CMTM6/PD-L1 coexpression and inflammatory cells, successfully stratified OS and DFS in MTM HCC. CMTM6/PD-L1 coexpression has an adverse effect on the prognosis of HCC patients, especially MTM HCC patients. Our study provides evidence for the combination of immune status assessment with anti-CMTM6 and anti-PD-L1 therapy in MTM HCC patients.
Collapse
Affiliation(s)
- Li-Li Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Pathology, Sun Yat-Sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China
| | - Shi-Wen Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Pathology, Sun Yat-Sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 51800, China
| | - Xue Chao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Pathology, Sun Yat-Sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China
| | - Chun-Hua Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Pathology, Sun Yat-Sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China
| | - Xia Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Pathology, Sun Yat-Sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China
| | - Xin-Ke Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Pathology, Sun Yat-Sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China
| | - Yan-Lin Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Pathology, Sun Yat-Sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China
| | - Jing-Ping Yun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Pathology, Sun Yat-Sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China
| | - Rong-Zhen Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
- Department of Pathology, Sun Yat-Sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China.
| |
Collapse
|
11
|
Barili V, Boni C, Rossi M, Vecchi A, Zecca A, Penna A, Missale G, Ferrari C, Fisicaro P. Metabolic regulation of the HBV-specific T cell function. Antiviral Res 2020; 185:104989. [PMID: 33248194 DOI: 10.1016/j.antiviral.2020.104989] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 12/15/2022]
Abstract
Chronically HBV infected subjects are more than 260 million worldwide; cirrhosis and liver cancer represent possible outcomes which affect around 700,000 patients per year. Both innate and adaptive immune responses are necessary for viral control and both have been shown to be defective in chronic patients. Metabolic remodeling is an essential process in T cell biology, particularly for T cell activation, differentiation and survival. Cellular metabolism relies on the conversion of nutrients into energy to support intracellular processes, and to generate fundamental intermediate components for cell proliferation and growth. Adaptive immune responses are the central mechanisms for the resolution of primary human infections leading to the activation of pathogen-specific B and T cell functions. In chronic HBV infection the anti-viral immune response fails to contain the virus and leads to persistent hepatic tissue damage which may finally result in liver cirrhosis and cancer. This T cell failure is associated with metabolic alterations suggesting that control of nutrient uptake and intracellular utilization as well as correct regulation of intracellular metabolic pathways are strategic for T cell differentiation during persistent chronic infections. This review will discuss some of the main features of the T cell metabolic processes which are relevant to the generation of an efficient antiviral response, with specific focus on their clinical relevance in chronic HBV infection in the perspective of possible strategies to correct deregulated metabolic pathways underlying T cell dysfunction of chronic HBV patients.
Collapse
Affiliation(s)
- Valeria Barili
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Carolina Boni
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Marzia Rossi
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Andrea Vecchi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Alessandra Zecca
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Amalia Penna
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Gabriele Missale
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Carlo Ferrari
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.
| | - Paola Fisicaro
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| |
Collapse
|
12
|
Fisicaro P, Barili V, Rossi M, Montali I, Vecchi A, Acerbi G, Laccabue D, Zecca A, Penna A, Missale G, Ferrari C, Boni C. Pathogenetic Mechanisms of T Cell Dysfunction in Chronic HBV Infection and Related Therapeutic Approaches. Front Immunol 2020; 11:849. [PMID: 32477347 PMCID: PMC7235343 DOI: 10.3389/fimmu.2020.00849] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
A great effort of research has been devoted in the last few years to developing new anti-HBV therapies of finite duration that also provide effective sustained control of virus replication and antigen production. Among the potential therapeutic strategies, immune-modulation represents a promising option to cure HBV infection and the adaptive immune response is a rational target for novel therapeutic interventions, in consideration of the key role played by T cells in the control of virus infections. HBV-specific T cells are severely dysfunctional in chronic HBV infection as a result of several inhibitory mechanisms which are simultaneously active within the chronically inflamed liver. Indeed, the liver is a tolerogenic organ harboring different non-parenchymal cell populations which can serve as antigen presenting cells (APC) but are poorly efficient in effector T cell priming, with propensity to induce T cell tolerance rather than T cell activation, because of a poor expression of co-stimulatory molecules, up-regulation of the co-inhibitory ligands PD-L1 and PD-L2 upon IFN stimulation, and production of immune regulatory cytokines, such as IL10 and TGF-β. They include resident dendritic cells (DCs), comprising myeloid and plasmacytoid DCs, liver sinusoidal endothelial cells (LSECs), Kupffer cells (KCs), hepatic stellate cells (HSCs) as well as the hepatocytes themselves. Additional regulatory mechanisms which contribute to T cell attrition in the chronically infected liver are the high levels of soluble mediators, such as arginase, indoleamine 2,3-dioxygenase (IDO) and suppressive cytokines, the up-regulation of inhibitory checkpoint receptor/ligand pairs, the expansion of regulatory cells, such as CD4+FOXp3+ Treg cells, myeloid-derived suppressor cells and NK cells. This review will deal with the interactions between immune cells and liver environment discussing the different mechanisms which contribute to T cell dysfunction in chronic hepatitis B, some of which are specifically activated in HBV infection and others which are instead common to chronic inflammatory liver diseases in general. Therapeutic interventions targeting dysregulated pathways and cellular functions will be also delineated.
Collapse
Affiliation(s)
- Paola Fisicaro
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Valeria Barili
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Marzia Rossi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Ilaria Montali
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Andrea Vecchi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Greta Acerbi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Diletta Laccabue
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Alessandra Zecca
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Amalia Penna
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Gabriele Missale
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Carlo Ferrari
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Carolina Boni
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| |
Collapse
|
13
|
Li TY, Yang Y, Zhou G, Tu ZK. Immune suppression in chronic hepatitis B infection associated liver disease: A review. World J Gastroenterol 2019; 25:3527-3537. [PMID: 31367154 PMCID: PMC6658392 DOI: 10.3748/wjg.v25.i27.3527] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/29/2019] [Accepted: 06/01/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) infection is one the leading risk factors for chronic hepatitis, liver fibrosis, cirrhosis and hepatocellular cancer (HCC), which are a major global health problem. A large number of clinical studies have shown that chronic HBV persistent infection causes the dysfunction of innate and adaptive immune response involving monocytes/macrophages, dendritic cells, natural killer (NK) cells, T cells. Among these immune cells, cell subsets with suppressive features have been recognized such as myeloid derived suppressive cells(MDSC), NK-reg, T-reg, which represent a critical regulatory system during liver fibrogenesis or tumourigenesis. However, the mechanisms that link HBV-induced immune dysfunction and HBV-related liver diseases are not understood. In this review we summarize the recent studies on innate and adaptive immune cell dysfunction in chronic HBV infection, liver fibrosis, cirrhosis, and HCC, and further discuss the potential mechanism of HBV-induced immunosuppressive cascade in HBV infection and consequences. It is hoped that this article will help ongoing research about the pathogenesis of HBV-related hepatic fibrosis and HBV-related HCC.
Collapse
Affiliation(s)
- Tian-Yang Li
- Infectious Disease, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, Guangdong Province, China
| | - Yang Yang
- Institute of Liver diseases, the First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| | - Guo Zhou
- Infectious Disease, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, Guangdong Province, China
| | - Zheng-Kun Tu
- Infectious Disease, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, Guangdong Province, China
- Institute of Liver diseases, the First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| |
Collapse
|
14
|
Schönrich G, Raftery MJ. The PD-1/PD-L1 Axis and Virus Infections: A Delicate Balance. Front Cell Infect Microbiol 2019; 9:207. [PMID: 31263684 PMCID: PMC6584848 DOI: 10.3389/fcimb.2019.00207] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/27/2019] [Indexed: 12/17/2022] Open
Abstract
Programmed cell death protein (PD-1) and its ligands play a fundamental role in the evasion of tumor cells from antitumor immunity. Less well appreciated is the fact that the PD-1/PD-L1 axis also regulates antiviral immune responses and is therefore modulated by a number of viruses. Upregulation of PD-1 and its ligands PD-L1 and PD-L2 is observed during acute virus infection and after infection with persistent viruses including important human pathogens such as human immunodeficiency virus (HIV), hepatitis C virus (HCV), and hepatitis B virus (HBV). Experimental evidence suggests that insufficient signaling through the PD-1 pathway promotes immunopathology during acute infection by exaggerating primary T cell responses. If chronic infection is established, however, high levels of PD-1 expression can have unfavorable immunological consequences. Exhaustion and suppression of antiviral immune responses can result in viral immune evasion. The role of the PD-1/PD-L1 axis during viral infections is further complicated by evidence that PD-L1 also mediates inflammatory effects in the acute phase of an immune response. In this review, we discuss the intricate interplay between viruses and the PD-1/PD-L1 axis.
Collapse
Affiliation(s)
- Günther Schönrich
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany
| | | |
Collapse
|
15
|
HBV Immune-Therapy: From Molecular Mechanisms to Clinical Applications. Int J Mol Sci 2019; 20:ijms20112754. [PMID: 31195619 PMCID: PMC6600394 DOI: 10.3390/ijms20112754] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection represents a worldwide public health concern with approximately 250 million people chronically infected and at risk of developing liver cirrhosis and hepatocellular carcinoma. Nucleos(t)ide analogues (NUC) are the most widely used therapies for HBV infection, but they often require long-lasting administration to avoid the risk of HBV reactivation at withdrawal. Therefore, there is an urgent need to develop novel treatments to shorten the duration of NUC therapy by accelerating virus control, and to complement the effect of available anti-viral therapies. In chronic HBV infection, virus-specific T cells are functionally defective, and this exhaustion state is a key determinant of virus persistence. Reconstitution of an efficient anti-viral T cell response may thus represent a rational strategy to treat chronic HBV patients. In this perspective, the enhancement of adaptive immune responses by a checkpoint inhibitor blockade, specific T cell vaccines, lymphocyte metabolism targeting, and autologous T cell engineering, including chimeric antigen receptor (CAR) and TCR-redirected T cells, constitutes a promising immune modulatory approach for a therapeutic restoration of protective immunity. The advances of the emerging immune-based therapies in the setting of the HBV research field will be outlined.
Collapse
|
16
|
Bartee MY, Dryja PC, Bartee E. Chimeric tumor modeling reveals role of partial PDL1 expression in resistance to virally induced immunotherapy. J Immunother Cancer 2019; 7:11. [PMID: 30651147 PMCID: PMC6335801 DOI: 10.1186/s40425-018-0496-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/26/2018] [Indexed: 02/08/2023] Open
Abstract
Expression of PDL1 on the surface of tumor cells can blunt the efficacy of many cancer immunotherapies. For example, our lab has previously shown that tumors derived from malignant cells incapable of expressing PDL1 are highly susceptible to immunotherapy induced by oncolytic virus treatment while tumors derived from PDL1 capable cells are highly resistant. In patient biopsies, however, expression of PDL1 on malignant cells is often not uniform with some cells expressing PDL1 while others do not. Importantly, how this partial PDL1 positivity influences the outcomes of immunotherapy remains largely unknown. In the current work, we expand on our previous findings by generating partially PDL1 positive tumors in immune competent animals and asking what percentage of tumor cells must express PDL1 for a tumor to become functionally resistant to oncolytic treatment. Our results indicate that the responsiveness of partially PDL1+ tumors correlates linearly with the percentage of PDL1 capable cells present at the initiation of treatment. Additionally, we observe that tumors which relapse after treatment display a significant increase in the numbers of PDL1 capable cells present suggesting that specific editing of mixed tumors might play a role in disease relapse. These data indicate that varying levels of PDL1 expression can play a significant role in the outcomes of oncolytic immunotherapy and challenges the concept that tumors should be viewed as simply PDL1+ or PDL1−.
Collapse
Affiliation(s)
- Mee Y Bartee
- Department of Microbiology and Immunology, Medical University of South Carolina, Basic Science Building Rm 208C, 173 Ashley Ave, Charleston, SC, 29425, USA
| | - Parker C Dryja
- Department of Microbiology and Immunology, Medical University of South Carolina, Basic Science Building Rm 208C, 173 Ashley Ave, Charleston, SC, 29425, USA
| | - Eric Bartee
- Department of Microbiology and Immunology, Medical University of South Carolina, Basic Science Building Rm 208C, 173 Ashley Ave, Charleston, SC, 29425, USA.
| |
Collapse
|
17
|
The immunological function of extracellular vesicles in hepatitis B virus-infected hepatocytes. PLoS One 2018; 13:e0205886. [PMID: 30596665 PMCID: PMC6312312 DOI: 10.1371/journal.pone.0205886] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 10/03/2018] [Indexed: 01/01/2023] Open
Abstract
Hepatitis B virus (HBV) generates large amounts of complete and incomplete viral particles. Except for the virion, which acts as infectious particles, the function of those particles remains elusive. Extracellular vesicles (EVs) have been revealed to have biological functions. The EVs which size are less than 100 nm in diameter, were collected from HBV infected-patients. These vesicles contain, complete and incomplete virions, and exosomes, which have been recently shown to be critical as intercellular communicators. Here, the effects of the exosome, the complete, and the incomplete particles on the target cells were investigated. These particles are endocytosed by monocyte/macrophages and function primarily to upregulate PD-L1. The functions and composition of the EVs were affected by nucleotide reverse transcriptase inhibitors (NRTIs), suggesting that the EVs are involved in the pathogenesis of HBV hepatitis and clinical course of those patients treated by NRTIs.
Collapse
|
18
|
Faure-Dupuy S, Durantel D, Lucifora J. Liver macrophages: Friend or foe during hepatitis B infection? Liver Int 2018; 38:1718-1729. [PMID: 29772112 DOI: 10.1111/liv.13884] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/07/2018] [Indexed: 12/15/2022]
Abstract
The Hepatitis B virus chronically infects the liver of 250 million people worldwide. Over the past decades, major advances have been made in the understanding of Hepatitis B virus life cycle in hepatocytes. Beside these parenchymal cells, the liver also contains resident and infiltrating myeloid cells involved in immune responses to pathogens and much less is known about their interplay with Hepatitis B virus. In this review, we summarized and discussed the current knowledge of the role of liver macrophages (including Kupffer cells and liver monocyte-derived macrophages), in HBV infection. While it is still unclear if liver macrophages play a role in the establishment and persistence of HBV infection, several studies disclosed data suggesting that HBV would favour liver macrophage anti-inflammatory phenotypes and thereby increase liver tolerance. In addition, alternatively activated liver macrophages might also play in the long term a key role in hepatitis B-associated pathogenesis, especially through the activation of hepatic stellate cells. Therapies aiming at a transient activation of pro-inflammatory liver macrophages should therefore be considered for the treatment of chronic HBV infection.
Collapse
Affiliation(s)
- Suzanne Faure-Dupuy
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France.,University of Lyon, University Claude-Bernard (UCBL), Lyon, France
| | - David Durantel
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France.,University of Lyon, University Claude-Bernard (UCBL), Lyon, France.,Laboratoire d'excellence (LabEx), DEVweCAN, Lyon, France
| | - Julie Lucifora
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France.,University of Lyon, University Claude-Bernard (UCBL), Lyon, France
| |
Collapse
|
19
|
Jin J, Xu H, Wu R, Niu J, Li S. Aberrant DNA methylation profile of hepatitis B virus infection. J Med Virol 2018; 91:81-92. [PMID: 30118556 DOI: 10.1002/jmv.25284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/09/2018] [Indexed: 12/16/2022]
Abstract
We aimed to study the aberrant DNA methylation profile associated with hepatitis B virus (HBV) infection and, to identify key genes and pathways associated with the HBV infection stage. A total of 54 antiviral treatment-naïve HBV-infected patients and six healthy controls were included. Genome-wide methylated DNA immunoprecipitation analysis was performed, as previously described, after which the chip data were preprocessed. Subsequently, Cytoscape software was used for the construction of a protein-protein interaction network, and a database for annotation, visualization, and integrated discovery software was used to conduct functional enrichment analysis. A total of 711 794 CpGs were obtained after data quality control, among which 152 780, 113 814, 90 747, and 175 868 CpGs showed differential methylation in acute hepatitis B (AHB) vs control, total-C vs control, CH1 vs CA1, and AHB vs total-C, respectively. Furthermore, RIPK3, PRDM10, JUN, and SNAI1 were at the center of the four associated networks, respectively. Differential methylated genes differentially methylated in these four comparisons were significantly enriched with olfactory transduction; positive regulation of transport; negative regulation of protein amino acid phosphorylation (eg, JUN), phosphorylation, phosphorus metabolic process, and phosphate metabolic process; and programmed cell death, respectively. RIPK3, PRDM10, JUN, and SNAI1 as well as olfactory transduction, positive regulation of transport, negative regulation of phosphorylation, and programmed cell death are important for the transformation associated with HBV infection stage. Moreover, JUN may be involved in HBV infection, mainly via the negative regulation of amino acid phosphorylation.
Collapse
Affiliation(s)
- Jinglan Jin
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Hongqin Xu
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, China.,Jilin Province Key Laboratory of Infectious Diseases, Laboratory of Molecular Virology, Changchun, China
| | - Ruihong Wu
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, China.,Jilin Province Key Laboratory of Infectious Diseases, Laboratory of Molecular Virology, Changchun, China
| | - Junqi Niu
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, China.,Jilin Province Key Laboratory of Infectious Diseases, Laboratory of Molecular Virology, Changchun, China
| | - Shibo Li
- Department of Pediatrics, Genetics Laboratory, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma
| |
Collapse
|
20
|
Shen XH, Xu P, Yu X, Song HF, Chen H, Zhang XG, Wu MY, Wang XF. Discrepant Clinical Significance of CD28 +CD8 - and CD4 +CD25 high Regulatory T Cells During the Progression of Hepatitis B Virus Infection. Viral Immunol 2018; 31:548-558. [PMID: 30117787 DOI: 10.1089/vim.2018.0035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence demonstrates that CD8+CD28- regulatory T cells increase in chronic viral infection as well as tumorigenesis. However, it is still not clear about their characteristics in hepatitis B virus (HBV) infection. In addition, it is not understood whether this regulatory immune subset is distinct from CD4+CD25high regulatory T cells in the aspect of impact on or relationship to the progression of HBV infection. Hence, we investigated their dynamics and compared their correlations with clinical parameters in the chronic and advanced phases of HBV infection. The data showed that compared with healthy controls, the frequencies of CD28+CD8- and CD4+CD25high T cells increased in both chronic and advanced phases, while there is no significant difference between the two case groups. Interestingly, we found that in chronic phase, the frequency of CD8+CD28- subset was negatively correlated with the levels of alanine aminotransaminase (ALT) and aspartate aminotransferase (AST), respectively, and did not present association with HBV DNA load, whereas that of CD4+CD25high T cells was positively correlated with HBV DNA load and the levels of ALT and AST, respectively. Amazingly, in advanced phase, the frequency of CD4+CD25high T cells was negatively correlated with HBV DNA load and the levels of ALT, respectively, while there is no significant correlation between the frequency of CD8+CD28- subset and those clinical parameters. Thereby, our findings demonstrated that CD28+CD8- and CD4+CD25high regulatory T cells might exert distinct effect on modulating antiviral immune responses and mitigate immunomediated liver damage in different phases of HBV infection, which represent potential prognostic markers and therapeutic targets for HBV-infected patients based on further exploration of detailed mechanism.
Collapse
Affiliation(s)
- Xing-Hua Shen
- 1 Department of Biochemistry and Molecular Biology, School of Biology and Basic Medical Sciences, Soochow University , Suzhou, China .,2 The Affiliated Infectious Hospital of Soochow University , Suzhou, China
| | - Ping Xu
- 2 The Affiliated Infectious Hospital of Soochow University , Suzhou, China
| | - Xi Yu
- 1 Department of Biochemistry and Molecular Biology, School of Biology and Basic Medical Sciences, Soochow University , Suzhou, China .,3 Suzhou Science and Technology Town Hospital , Suzhou, China
| | - Hua-Feng Song
- 2 The Affiliated Infectious Hospital of Soochow University , Suzhou, China
| | - Hui Chen
- 2 The Affiliated Infectious Hospital of Soochow University , Suzhou, China
| | - Xue-Guang Zhang
- 4 Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University , Suzhou, China .,5 Jiangsu Key Laboratory of Clinical Immunology, Soochow University , Suzhou, China .,6 Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University , Suzhou, China
| | - Mei-Ying Wu
- 2 The Affiliated Infectious Hospital of Soochow University , Suzhou, China
| | - Xue-Feng Wang
- 1 Department of Biochemistry and Molecular Biology, School of Biology and Basic Medical Sciences, Soochow University , Suzhou, China .,5 Jiangsu Key Laboratory of Clinical Immunology, Soochow University , Suzhou, China .,6 Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University , Suzhou, China
| |
Collapse
|
21
|
Abstract
The upregulation of immune checkpoint molecules, such as programmed cell death protein 1 (PD1) and cytotoxic T lymphocyte antigen 4 (CTLA4), on immune cells occurs during acute infections, such as malaria, as well as during chronic persistent viral infections, including HIV and hepatitis B virus. These pathways are important for preventing immune-driven pathology but can also limit immune-mediated clearance of the infection. The recent success of immune checkpoint blockade in cancer therapy suggests that targeting these pathways would also be effective for preventing and treating a range of infectious diseases. Here, we review our current understanding of immune checkpoint pathways in the pathogenesis of infectious diseases and discuss the potential for therapeutically targeting these pathways in this setting.
Collapse
Affiliation(s)
- Michelle N Wykes
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, Queensland 4006, Australia
| | - Sharon R Lewin
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria 3000, Australia
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Victoria 3004, Australia
| |
Collapse
|
22
|
Emery JS, Feld JJ. Treatment of hepatitis B virus with combination therapy now and in the future. Best Pract Res Clin Gastroenterol 2017; 31:347-355. [PMID: 28774417 DOI: 10.1016/j.bpg.2017.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 04/16/2017] [Indexed: 02/06/2023]
Abstract
Chronic Hepatitis B continues as a significant public health problem despite the availability of safe and effective antivirals and a highly effective protective vaccine. Current therapy, however rarely leads to cure and lifelong therapy is often required, contributing to poor uptake and ongoing morbidity. New insights into the hepatitis B viral life cycle and the host immune response have expanded the potential targets for drug therapies with interesting antiviral candidates and novel immunotherapeutic approaches in early stage development. Yet, HBV persistence is multifactorial - due to an intrahepatic reservoir and ongoing HBV-mediated immune dysregulation, making "cure" unlikely to be realized through even the most efficacious monotherapy. Building on the success seen in the treatment of hepatitis C (HCV) and human immunodeficiency virus (HIV), combination therapy may be an essential strategy to improve efficacy and decrease viral breakthrough. Combinations acting on immune and viral targets are particularly attractive. However, creating synergy while balancing efficacy and safety remains a clear challenge. Various approaches to combination therapy are reviewed, highlighting strengths and challenges of each potential strategy. Overall, combination therapies are attractive as the next step towards cure and are a key strategy for achieving treatment with finite durations and durable endpoints.
Collapse
Affiliation(s)
- Joel S Emery
- Toronto Centre for Liver Disease, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Jordan J Feld
- Toronto Centre for Liver Disease, University Health Network, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|