1
|
Kim K, Choi K, Shin M, Hahn TW. A porcine circovirus type 2d-based virus-like particle vaccine induces humoral and cellular immune responses and effectively protects pigs against PCV2d challenge. Front Microbiol 2024; 14:1334968. [PMID: 38274769 PMCID: PMC10808717 DOI: 10.3389/fmicb.2023.1334968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/29/2023] [Indexed: 01/27/2024] Open
Abstract
The pathogenic porcine circovirus type 2 (PCV2) leads to significant economic losses in pig production. PCV2d is currently the dominant genotype causing porcine circovirus-associated disease (PCVAD) worldwide. Therefore, development of a recombinant PCV2d-based vaccine is required to elicit complete protection against PCV2d infection. In this study, we generated virus-like particles of PCV2d-based capsid protein (Bac-2dCP) using a baculovirus expression system and evaluated its protective efficacy against PCV2d infection in specific pathogen-free (SPF) pigs. Three-week-old SPF miniature pigs were intramuscularly immunized with purified Bac-2dCP and intranasally challenged with PCV2d at 4 weeks post-vaccination. The Bac-2dCP group showed significantly higher IgG levels and neutralizing antibodies against PCV2b and PCV2d genotypes, as well as increased interferon-γ levels, and increased body weight and average daily weight gain compared with positive (challenged) and negative (unchallenged) controls. In particular, the Bac-2dCP group showed almost complete absence of PCV2d DNA in serum, nasal, and rectal swabs and in lung, lymph node, and kidney tissue samples. However, the positive control group exhibited low levels of neutralizing antibody, and high levels of PCV2 DNA in serum, swab, and tissue samples, resulting in PCV2-associated pathological lesions. The results of this study demonstrated that a recombinant Bac-2dCP vaccine conferred complete protection against a PCV2d challenge in SPF miniature pigs.
Collapse
Affiliation(s)
- Kiju Kim
- INNOVAC, Chuncheon, Republic of Korea
| | | | | | - Tae-Wook Hahn
- INNOVAC, Chuncheon, Republic of Korea
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
2
|
Martin-Valls GE, Cortey M, Swam H, Jiménez M, Mateu E. High levels of maternally derived antibodies do not significantly interfere with the development of humoral and cell-mediated responses to Porcine circovirus 2 after intradermal vaccination. Porcine Health Manag 2023; 9:40. [PMID: 37715214 PMCID: PMC10503209 DOI: 10.1186/s40813-023-00335-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/01/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Vaccination of pigs against PCV2 is usually performed around weaning when animals still have maternally derived antibodies (MDA). The present study aimed to assess the possible interference of MDA in the development of the PCV2-specific immune response after vaccination of commercial weaners. For this purpose, a PRRS-negative 600-sow farrow-to-finish farm was selected. Half of the sows were vaccinated and revaccinated with Porcilis® PCV ID against PCV2 7 and 3 weeks before farrowing. After farrowing, piglets were tested by AlphaLisa to select 72 animals with high and low levels of MDA. Groups were further subdivided and vaccinated intradermally with Porcilis® PCV ID at 21 or 28 days of age. Unvaccinated controls were also included. Animals were followed afterward for 42 days to examine the development of PCV2-specific antibodies and interferon-γ secreting cells (IFN-γ SC). RESULTS The average titres of antibodies of the groups vaccinated in the presence of low or high MDA levels were similar at 28 and 42 days post-vaccination while in the controls the titres declined throughout the observation period. Results of vaccinating at 21 or 28 days of age were equivalent with regard to antibody development. Regarding the IFN-γ SC, vaccinated animals produced significant frequencies of IFN-γ SC by day 28. Again, no differences were observed between the groups with high or low antibody levels. CONCLUSION High levels of MDA did not interfere with the development of humoral and cell-mediated responses to Porcine circovirus 2 after intradermal vaccination at 21 or 28 days of age.
Collapse
Affiliation(s)
- Gerard E Martin-Valls
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Travessera dels Turons s/n, 08193, Cerdanyola del Vallès, Spain
| | - Martí Cortey
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Travessera dels Turons s/n, 08193, Cerdanyola del Vallès, Spain
| | - Hanny Swam
- MSD CDS, 5831 AN, Boxmeer, The Netherlands
| | - Marta Jiménez
- MSD Animal Health, 37008, Carbajosa de la Sagrada, Spain
| | - Enric Mateu
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Travessera dels Turons s/n, 08193, Cerdanyola del Vallès, Spain.
| |
Collapse
|
3
|
Kick AR, Grete AF, Crisci E, Almond GW, Käser T. Testable Candidate Immune Correlates of Protection for Porcine Reproductive and Respiratory Syndrome Virus Vaccination. Vaccines (Basel) 2023; 11:vaccines11030594. [PMID: 36992179 DOI: 10.3390/vaccines11030594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/26/2023] [Accepted: 02/26/2023] [Indexed: 03/08/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an on-going problem for the worldwide pig industry. Commercial and experimental vaccinations often demonstrate reduced pathology and improved growth performance; however, specific immune correlates of protection (CoP) for PRRSV vaccination have not been quantified or even definitively postulated: proposing CoP for evaluation during vaccination and challenge studies will benefit our collective efforts towards achieving protective immunity. Applying the breadth of work on human diseases and CoP to PRRSV research, we advocate four hypotheses for peer review and evaluation as appropriate testable CoP: (i) effective class-switching to systemic IgG and mucosal IgA neutralizing antibodies is required for protective immunity; (ii) vaccination should induce virus-specific peripheral blood CD4+ T-cell proliferation and IFN-γ production with central memory and effector memory phenotypes; cytotoxic T-lymphocytes (CTL) proliferation and IFN-γ production with a CCR7- phenotype that should migrate to the lung; (iii) nursery, finishing, and adult pigs will have different CoP; (iv) neutralizing antibodies provide protection and are rather strain specific; T cells confer disease prevention/reduction and possess greater heterologous recognition. We believe proposing these four CoP for PRRSV can direct future vaccine design and improve vaccine candidate evaluation.
Collapse
Affiliation(s)
- Andrew R Kick
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
- Department of Chemistry & Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Alicyn F Grete
- Department of Chemistry & Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Elisa Crisci
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Glen W Almond
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Tobias Käser
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| |
Collapse
|
4
|
Martínez-Boixaderas N, Garza-Moreno L, Sibila M, Segalés J. Impact of maternally derived immunity on immune responses elicited by piglet early vaccination against the most common pathogens involved in porcine respiratory disease complex. Porcine Health Manag 2022; 8:11. [PMID: 35296365 PMCID: PMC8928644 DOI: 10.1186/s40813-022-00252-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/01/2022] [Indexed: 11/20/2022] Open
Abstract
Background Newborn piglets can trigger an elementary immune response, but the acquirement of specific antibodies and/or cellular immunity against pathogens before they get infected post-natally is paramount to preserve their health. This is especially important for the pathogens involved in porcine respiratory disease complex (PRDC) as they are widespread, fairly resistant at environment, and genetically variable; moreover, some of them can cause intrauterine/early life infections. Main body Piglet protection can be achieved by either passive transfer of maternal derived immunity (MDI) and/or actively through vaccination. However, vaccinating piglets in the presence of remaining MDI might interfere with vaccine efficacy. Hence, the purpose of this work is to critically review the putative interference that MDI may exert on vaccine efficacy against PRDC pathogens. This knowledge is crucial to design a proper vaccination schedule. Conclusion MDI transferred from sows to offspring could potentially interfere with the development of an active humoral immune response. However, no conclusive interference has been shown regarding performance parameters based on the existing published literature.
Collapse
Affiliation(s)
- Núria Martínez-Boixaderas
- IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra (Barcelona), Catalonia, Spain.,Ceva Salud Animal, Avenida Diagonal, 609-615, 9º Planta, 08028, Barcelona, Spain
| | - Laura Garza-Moreno
- Ceva Salud Animal, Avenida Diagonal, 609-615, 9º Planta, 08028, Barcelona, Spain
| | - Marina Sibila
- IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra (Barcelona), Catalonia, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193, Bellaterra, Catalonia, Spain.,Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - Joaquim Segalés
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193, Bellaterra, Catalonia, Spain. .,Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Catalonia, Spain. .,Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain.
| |
Collapse
|
5
|
Kick AR, Wolfe ZC, Amaral AF, Cortes LM, Almond GW, Crisci E, Gauger PC, Pittman J, Käser T. Maternal Autogenous Inactivated Virus Vaccination Boosts Immunity to PRRSV in Piglets. Vaccines (Basel) 2021; 9:vaccines9020106. [PMID: 33572562 PMCID: PMC7912564 DOI: 10.3390/vaccines9020106] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 01/10/2023] Open
Abstract
Maternal-derived immunity is a critical component for the survival and success of offspring in pigs to protect from circulating pathogens such as Type 2 Porcine Reproductive and Respiratory Syndrome Virus (PRRSV-2). The purpose of this study is to investigate the transfer of anti-PRRSV immunity to piglets from gilts that received modified-live virus (MLV) alone (treatment (TRT) 0), or in combination with one of two autogenous inactivated vaccines (AIVs, TRT 1+2). Piglets from these gilts were challenged with the autogenous PRRSV-2 strain at two weeks of age and their adaptive immune response (IR) was evaluated until 4 weeks post inoculation (wpi). The systemic humoral and cellular IR was analyzed in the pre-farrow gilts, and in piglets, pre-inoculation, and at 2 and 4 wpi. Both AIVs partially protected the piglets with reduced lung pathology and increased weight gain; TRT 1 also lowered piglet viremia, best explained by the AIV-induced production of neutralizing antibodies in gilts and their transfer to the piglets. In piglets, pre-inoculation, the main systemic IFN-γ producers were CD21α+ B cells. From 0 to 4 wpi, the role of these B cells declined and CD4 T cells became the primary systemic IFN-γ producers. In the lungs, CD8 T cells were the primary and CD4 T cells were the secondary IFN-γ producers, including a novel subset of porcine CD8α−CCR7− CD4 T cells, potentially terminally differentiated CD4 TEMRA cells. In summary, this study demonstrates that maternal AIV vaccination can improve protection of pre-weaning piglets against PRRSV-2; it shows the importance of transferring neutralizing antibodies to piglets, and it introduces two novel immune cell subsets in pigs—IFN-γ producing CD21α+ B cells and CD8α−CCR7− CD4 T cells.
Collapse
Affiliation(s)
- Andrew R. Kick
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA; (A.R.K.); (Z.C.W.); (A.F.A.); (L.M.C.); (G.W.A.); (E.C.)
- Department of Chemistry & Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Zoe C. Wolfe
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA; (A.R.K.); (Z.C.W.); (A.F.A.); (L.M.C.); (G.W.A.); (E.C.)
| | - Amanda F. Amaral
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA; (A.R.K.); (Z.C.W.); (A.F.A.); (L.M.C.); (G.W.A.); (E.C.)
| | - Lizette M. Cortes
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA; (A.R.K.); (Z.C.W.); (A.F.A.); (L.M.C.); (G.W.A.); (E.C.)
| | - Glen W. Almond
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA; (A.R.K.); (Z.C.W.); (A.F.A.); (L.M.C.); (G.W.A.); (E.C.)
| | - Elisa Crisci
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA; (A.R.K.); (Z.C.W.); (A.F.A.); (L.M.C.); (G.W.A.); (E.C.)
| | - Phillip C. Gauger
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA;
| | | | - Tobias Käser
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA; (A.R.K.); (Z.C.W.); (A.F.A.); (L.M.C.); (G.W.A.); (E.C.)
- Correspondence: ; Tel.: +1-919-513-6352
| |
Collapse
|
6
|
Kraft C, Hennies R, Dreckmann K, Noguera M, Rathkjen PH, Gassel M, Gereke M. Evaluation of PRRSv specific, maternally derived and induced immune response in Ingelvac PRRSFLEX EU vaccinated piglets in the presence of maternally transferred immunity. PLoS One 2019; 14:e0223060. [PMID: 31577832 PMCID: PMC6774510 DOI: 10.1371/journal.pone.0223060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/12/2019] [Indexed: 11/26/2022] Open
Abstract
In this study, we analyzed PRRS virus (PRRSv) specific lymphocyte function in piglets vaccinated with Ingelvac PRRSFLEX EU® at two and three weeks of age in the presence of homologous maternal immunity. Complete analysis of maternal immunity to PRRSv was evaluated postpartum, as well as passive transfer of antibodies and T cells to the piglet through colostrum intake and before and after challenge with a heterologous PRRSv at ten weeks of age. Maternal-derived antibodies were detected in piglets but declined quickly after weaning. However, vaccinated animals restored PRRSv-specific antibody levels by anamnestic response to vaccination. Cell analysis in colostrum and milk revealed presence of PRRSv-specific immune cells at suckling with higher concentrations found in colostrum than in milk. In addition, colostrum and milk contained PRRSv-specific IgA and IgG that may contribute to protection of newborn piglets. Despite the presence of PRRSv-specific Peripheral Blood Mononuclear cells (PBMCs) in colostrum and milk, no PRRSv-specific cells could be detected from blood of the piglets at one or two weeks of life. Nevertheless, cellular immunity was detectable in pre-challenged piglets up to 7 weeks after vaccination while the non-vaccinated control group showed no interferon (IFN) γ response to PRRSv stimulation. After challenge, all piglets developed a PRRSv-specific IFNγ-response, which was more robust at significantly higher levels in vaccinated animals compared to the primary response to PRRSv in non-vaccinated animals. Cytokine analysis in the lung lumen showed a reduction of pro-inflammatory responses to PRRSv challenge in vaccinated animals, especially reduced interferon (IFN) α levels. In conclusion, vaccination of maternally positive piglets at 2 and 3 weeks of age with Ingelvac PRRSFLEX EU induced a humoral and cellular immune response to PRRSv and provided protection against virulent, heterologous PRRSv challenge.
Collapse
Affiliation(s)
- Christian Kraft
- Boehringer Ingelheim Veterinary Research Center GmbH & Co. KG., Hanover, Germany
- * E-mail:
| | - Rimma Hennies
- Boehringer Ingelheim Veterinary Research Center GmbH & Co. KG., Hanover, Germany
| | - Karla Dreckmann
- Boehringer Ingelheim Veterinary Research Center GmbH & Co. KG., Hanover, Germany
| | - Marta Noguera
- Boehringer Ingelheim Veterinary Research Center GmbH & Co. KG., Hanover, Germany
| | | | | | - Marcus Gereke
- Boehringer Ingelheim Veterinary Research Center GmbH & Co. KG., Hanover, Germany
| |
Collapse
|
7
|
Zhang F, Yang T, Ao H, Zhai L, Tan Z, Wang Y, Xing K, Zhao X, Wang Z, Yu Y, Wang C. Novel nucleotide variants in SLA-DOB and CD4 are associated with immune traits in pregnant sows. Gene 2019; 707:22-29. [PMID: 31026568 DOI: 10.1016/j.gene.2019.04.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/28/2019] [Accepted: 04/19/2019] [Indexed: 11/17/2022]
Abstract
Reinforcing the immunity of pregnant sows can not only improve their own health condition but also increase the survival rate and healthy status of their piglets. This study aims to find single-nucleotide polymorphism (SNP) and molecular markers that are associated with the immune traits of pregnant sows. SLA-DOB and CD4 were selected as candidate genes, and blood samples were randomly collected from pregnant Landrace sows and used to detect T-lymphocyte subsets, interferon alpha, interleukin 6, Toll-like receptor 3, serum antibody immunoglobulin G, and porcine reproductive and respiratory syndrome virus-specific antibody. Then, association analyses were conducted for the polymorphic sites of candidate genes with immune traits. We found 12 mutations in the two genes and conducted an association study with eight of them. Our results indicated that among the eight mutations, SNP1, SNP2, and SNP3 of the SLA-DOB gene and Ins9, SNP10, and SNP11 in the CD4 gene are newly discovered mutations. Except for SNP1, SNP3, and SNP11, the other five SNPs are associated with at least one immune trait tested. Especially, SNP2 and Ins9 are significantly associated with at least one of the T-lymphocyte subgroups and at least one antibody. These novel mutations have potential important effects on the polymorphic loci of the above immune traits in pregnant sows. The results suggest that the SLA-DOB and CD4 genes and their genetic mutations can be considered as important candidate genes and mutations for the immunity of pregnant sows.
Collapse
Affiliation(s)
- Fengxia Zhang
- National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, China
| | - Ting Yang
- National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, China
| | - Hong Ao
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liwei Zhai
- National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, China
| | - Zhen Tan
- National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, China
| | - Yuan Wang
- National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, China
| | - Kai Xing
- National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, China
| | - Xitong Zhao
- National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, China
| | - Zhiquan Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Ying Yu
- National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, China..
| | - Chuduan Wang
- National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, China..
| |
Collapse
|
8
|
Gray DK, Dvorak CMT, Robinson SR, Murtaugh MP. Characterization of age-related susceptibility of macrophages to porcine reproductive and respiratory syndrome virus. Virus Res 2019; 263:139-144. [PMID: 30690045 DOI: 10.1016/j.virusres.2019.01.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 11/18/2022]
Abstract
Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) is the most economically important disease affecting swine production worldwide. The severity and susceptibility of PRRSV infection varies with age. Nursery pigs have been shown to be more susceptible to PRRSV infection and a more severe and prolonged infection is observed as compared to growing or adult pigs. However, antibody responses to PRRSV are observed independent of age. Swine are the only known hosts of PRRSV, infection is restricted to cells of monocytic lineage, and fully differentiated porcine alveolar macrophages are the primary target of natural infection. Pulmonary intravascular macrophages from young pigs have been shown to be more susceptible to infection than those from adult pigs. A better understanding of why young pigs and macrophages from young pigs are more susceptible to PRRSV infection is critical to identify mechanisms of infection that can be explored for enhanced treatment or prevention of disease. This study examined PRRSV susceptibility of porcine alveolar macrophages isolated from the lungs of pigs of different age groups, and the presence of cell surface receptors to determine if differences correlated with infection level. The younger the pigs were, the more susceptible the macrophage were to PRRSV infection, but no differences in cellular receptor expression were observed between pigs of different ages. Resistance to infection is likely related to intracellular innate immune mechanisms rather than receptor-mediated entry.
Collapse
Affiliation(s)
- Diem K Gray
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1971 Commonwealth Ave, St. Paul, MN, 55108, USA.
| | - Cheryl M T Dvorak
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1971 Commonwealth Ave, St. Paul, MN, 55108, USA.
| | - Sally R Robinson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1971 Commonwealth Ave, St. Paul, MN, 55108, USA.
| | - Michael P Murtaugh
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1971 Commonwealth Ave, St. Paul, MN, 55108, USA.
| |
Collapse
|
9
|
Vargas-Bermudez DS, Díaz A, Mogollón JD, Jaime J. Longitudinal comparison of the humoral immune response and viral load of Porcine Circovirus Type 2 in pigs with different vaccination schemes under field conditions. F1000Res 2018; 7:42. [PMID: 30254738 PMCID: PMC6127736 DOI: 10.12688/f1000research.13160.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/23/2018] [Indexed: 12/02/2022] Open
Abstract
Background: Porcine Circovirus type 2 (PCV2) infections are distributed worldwide and cause Porcine Circovirus Associated Disease (PCVAD). To minimize the impact of PCV2 infection on swine health and production, different vaccination schemes have been used since 2006. However, the association between vaccination schemes, virus load and disease under field conditions are not completely understood. Therefore, the objective of this study was to compare the effect of two different PCV2 vaccination schemes on the humoral response and PCV2 load in pigs after weaning under field conditions. Methods: Two commercial pig farms (Farm A and B), endemically infected with PCV2, which were using two different PCV2 subunit vaccinations schemes for sow, gilts and piglets, were selected. We designed a longitudinal study and measured IgG levels by ELISA and virus load by quantitative PCR in pigs after weaning. Forty 3-week old piglets were randomly selected at weaning and followed for 20 weeks. IgG levels and virus loads were compared within and between farms and considered statistically different if the non-parametric Wilcoxon-test p value was lower than 0.05. Results: We found that low virus loads were maintained in pigs from both farms regardless of the vaccination scheme used (p>0.05). However, there was significant difference in the mean IgG levels observed over time (p<0.05) while there were no significant differences in viral loads. This suggests that different humoral immune response is not associated with different virus loads observed over time. Conclusions: These results are important because they can help to prevent PCV2 infections using different vaccination schemes to minimize the effect of PCVAD on swine health and production.
Collapse
Affiliation(s)
- Diana S Vargas-Bermudez
- Departamento de Salud Animal. Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | - José Darío Mogollón
- Departamento de Salud Animal. Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Jairo Jaime
- Departamento de Salud Animal. Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
10
|
Dvorak CM, Puvanendiran S, Murtaugh MP. Porcine circovirus 2 infection induces IFNβ expression through increased expression of genes involved in RIG-I and IRF7 signaling pathways. Virus Res 2018; 253:38-47. [DOI: 10.1016/j.virusres.2018.05.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 12/12/2022]
|
11
|
Oliver-Ferrando S, Segalés J, López-Soria S, Callén A, Merdy O, Joisel F, Sibila M. Exploratory field study on the effect of Porcine circovirus 2 (PCV2) sow vaccination on serological, virological and reproductive parameters in a PCV2 subclinically infected sow herd. BMC Vet Res 2018; 14:130. [PMID: 29661203 PMCID: PMC5902936 DOI: 10.1186/s12917-018-1452-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 04/05/2018] [Indexed: 12/23/2022] Open
Abstract
Background This study sought to evaluate the effect of sow vaccination against Porcine circovirus 2 (PCV2) on reproductive parameters during two consecutive reproductive cycles. The study was performed in a PCV2 subclinical infected breeding herd (PCV2 circulation but absence of major reproductive problems). Ninety-four pregnant sows were primo-immunized with a commercial PCV2 vaccine and ninety-seven were injected with phosphate-buffered saline at 6 and 3 weeks before the first studied farrowing, and then boosted at 2 weeks before the second one. Blood samples were taken throughout the study to assess PCV2 DNA load and antibodies. At farrowing, main reproductive parameters and piglet vitality index were registered. In addition, in those litters with more than three mummified or stillborn piglets, microscopic examination and PCV2 antigen detection in foetal myocardium was done. Results Vaccinated sows showed significantly higher antibody levels compared to the non-vaccinated counterparts. PCV2 DNA was only detected at farrowing in 2 (4.2%) non-vaccinated sows. Vaccinated sows had 1.3 more live-born piglets per litter at the second cycle than non-vaccinated counterparts. Piglets from vaccinated sows had significantly higher (+ 12.7%) vitality score than the ones born from non-vaccinated sows. No PCV2 compatible lesions neither PCV2 antigen were detected in the tested foetal hearts. Conclusions The present study represents a first attempt to demonstrate that PCV2 sow vaccination may have a positive influence on prolificacy and vitality of the offspring in a subclinical infected breeding herd. However, since reproductive outcomes at farm level may be affected by a number of factors, further studies would be needed to confirm this association.
Collapse
Affiliation(s)
- Salvador Oliver-Ferrando
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Joaquim Segalés
- UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, 08193, Bellaterra, Spain
| | - Sergio López-Soria
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | | | | | | | - Marina Sibila
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| |
Collapse
|