1
|
Xie Y, Liu F, Wu Y, Zhu Y, Jiang Y, Wu Q, Dong Z, Liu K. Inflammation in cancer: therapeutic opportunities from new insights. Mol Cancer 2025; 24:51. [PMID: 39994787 PMCID: PMC11849313 DOI: 10.1186/s12943-025-02243-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/20/2025] [Indexed: 02/26/2025] Open
Abstract
As one part of the innate immune response to external stimuli, chronic inflammation increases the risk of various cancers, and tumor-promoting inflammation is considered one of the enabling characteristics of cancer development. Recently, there has been growing evidence on the role of anti-inflammation therapy in cancer prevention and treatment. And researchers have already achieved several noteworthy outcomes. In the review, we explored the underlying mechanisms by which inflammation affects the occurrence and development of cancer. The pro- or anti-tumor effects of these inflammatory factors such as interleukin, interferon, chemokine, inflammasome, and extracellular matrix are discussed. Since FDA-approved anti-inflammation drugs like aspirin show obvious anti-tumor effects, these drugs have unique advantages due to their relatively fewer side effects with long-term use compared to chemotherapy drugs. The characteristics make them promising candidates for cancer chemoprevention. Overall, this review discusses the role of these inflammatory molecules in carcinogenesis of cancer and new inflammation molecules-directed therapeutic opportunities, ranging from cytokine inhibitors/agonists, inflammasome inhibitors, some inhibitors that have already been or are expected to be applied in clinical practice, as well as recent discoveries of the anti-tumor effect of non-steroidal anti-inflammatory drugs and steroidal anti-inflammatory drugs. The advantages and disadvantages of their application in cancer chemoprevention are also discussed.
Collapse
Affiliation(s)
- Yifei Xie
- Department of Pathology and Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China
| | - Fangfang Liu
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450007, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China
| | - Yunfei Wu
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yuer Zhu
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yanan Jiang
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450007, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China
| | - Qiong Wu
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450007, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China
| | - Zigang Dong
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China.
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450007, China.
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China.
| | - Kangdong Liu
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China.
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450007, China.
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
2
|
Yang S, Zou Y, Zhong C, Zhou Z, Peng X, Tang C. Dual role of pyroptosis in liver diseases: mechanisms, implications, and therapeutic perspectives. Front Cell Dev Biol 2025; 13:1522206. [PMID: 39917567 PMCID: PMC11798966 DOI: 10.3389/fcell.2025.1522206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/10/2025] [Indexed: 02/09/2025] Open
Abstract
Pyroptosis, a form of programmed cell death induced by inflammasome with a mechanism distinct from that of apoptosis, occurs via one of the three pathway types: classical, non-classical, and granzyme A/B-dependent pyroptosis pathways. Pyroptosis is implicated in various diseases, notably exhibiting a dual role in liver diseases. It facilitates the clearance of damaged hepatocytes, preventing secondary injury, and triggers immune responses to eliminate pathogens and damaged cells. Conversely, excessive pyroptosis intensifies inflammatory responses, exacerbates hepatocyte damage and promotes the activation and proliferation of hepatic stellate cells, accelerating liver fibrosis. Furthermore, by sustaining an inflammatory state, impacts the survival and proliferation of cancer cells. This review comprehensively summarizes the dual role of pyroptosis in liver diseases and its therapeutic strategies, offering new theoretical foundations and practical guidance for preventing and treating of liver diseases.
Collapse
Affiliation(s)
| | | | | | - Zuoqiong Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| | - Xiyang Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| | - Changfa Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| |
Collapse
|
3
|
Ren D, Ye X, Chen R, Jia X, He X, Tao J, Jin T, Wu S, Zhang H. Activation and evasion of inflammasomes during viral and microbial infection. Cell Mol Life Sci 2025; 82:56. [PMID: 39833559 PMCID: PMC11753444 DOI: 10.1007/s00018-025-05575-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/31/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025]
Abstract
The inflammasome is a cytoplasmic multiprotein complex that induces the maturation of the proinflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18) or pyroptosis by activating caspases, which play critical roles in regulating inflammation, cell death, and various cellular processes. Multiple studies have shown that the inflammasome is a key regulator of the host defence response against pathogen infections. During the process of pathogenic microbe invasion into host cells, the host's innate immune system recognizes these microbes by activating inflammasomes, triggering inflammatory responses to clear the microbes and initiate immune responses. Moreover, microbial pathogens have evolved various mechanisms to inhibit or evade the activation of inflammasomes. Therefore, we review the interactions between viruses and microbes with inflammasomes during the invasion process, highlight the molecular mechanisms of inflammasome activation induced by microbial pathogen infection, and highlight the corresponding strategies that pathogens employ to evade inflammasome activity. Finally, we also discuss potential therapeutic strategies for the treatment of pathogenic microbial infections via the targeting of inflammasomes and their products.
Collapse
Affiliation(s)
- Dan Ren
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China
| | - Xiaoou Ye
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China
| | - Ruiming Chen
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China
| | - Xiuzhi Jia
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China
| | - Xianhong He
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China
| | - Jinhui Tao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, People's Republic of China
| | - Tengchuan Jin
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China.
- Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, People's Republic of China.
| | - Songquan Wu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China.
| | - Hongliang Zhang
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China.
| |
Collapse
|
4
|
Li Y, Qiang R, Cao Z, Wu Q, Wang J, Lyu W. NLRP3 Inflammasomes: Dual Function in Infectious Diseases. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:407-417. [PMID: 39102612 PMCID: PMC11299487 DOI: 10.4049/jimmunol.2300745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 06/11/2024] [Indexed: 08/07/2024]
Abstract
The Nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome has been the most distinctive polymer protein complex. After recognizing the endogenous and exogenous danger signals, NLRP3 can cause inflammation by pyroptosis and secretion of mature, bioactive forms of IL-1β and IL-18. The NLRP3 inflammasome is essential in the genesis and progression of infectious illnesses. Herein, we provide a comprehensive review of the NLRP3 inflammasome in infectious diseases, focusing on its two-sided effects. As an essential part of host defense with a protective impact, abnormal NLRP3 inflammasome activation, however, result in a systemic high inflammatory response, leading to subsequent damage. In addition, scientific evidence of small molecules, biologics, and phytochemicals acting on the NLRP3 inflammasome has been reviewed. We believe that the NLRP3 inflammasome helps us understand the pathological mechanism of different stages of infectious diseases and that inhibitors targeting the NLRP3 inflammasome will become a new and valuable research direction for the treatment of infectious diseases.
Collapse
Affiliation(s)
- Yanbo Li
- Department of Infectious Diseases, Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing
| | - Rui Qiang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine Shunyi Hospital, Beijing, China
| | - Zhengmin Cao
- Department of Infectious Diseases, Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing
| | - Qingjuan Wu
- Department of Infectious Diseases, Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing
| | - Jiuchong Wang
- Department of Infectious Diseases, Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing
| | - Wenliang Lyu
- Department of Infectious Diseases, Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing
| |
Collapse
|
5
|
Wan P, Yang G, Cheng Q, Zhang X, Yue Z, Li M, Liu C, Yi Q, Jia Y, Liu J, Xing X, Sun B, Li Y. The role of inflammasome in chronic viral hepatitis. Front Cell Infect Microbiol 2024; 14:1382029. [PMID: 38817443 PMCID: PMC11137247 DOI: 10.3389/fcimb.2024.1382029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/02/2024] [Indexed: 06/01/2024] Open
Abstract
Infections of hepatotropic viruses cause a wide array of liver diseases including acute hepatitis, chronic hepatitis and the consequently developed cirrhosis and hepatocellular carcinoma (HCC). Among the five classical hepatotropic viruses, hepatitis B virus (HBV) and hepatitis C virus (HCV) usually infect human persistently and cause chronic hepatitis, leading to major troubles to humanity. Previous studies have revealed that several types of inflammasomes are involved in the infections of HBV and HCV. Here, we summarize the current knowledge about their roles in hepatitis B and C. NLRP3 inflammasome can be activated and regulated by HBV and HCV. It is found to exert antiviral function or mediates inflammatory response in viral infections depending on different experimental models. Besides NLRP3 inflammasome, IFI16 and AIM2 inflammasomes participate in the pathological process of hepatitis B, and NALP3 inflammasome may sense HCV infection in hepatocytes. The inflammasomes affect the pathological process of viral hepatitis through its downstream secretion of inflammatory cytokines interleukin-1β (IL-1β) and IL-18 or induction of pyroptosis resulting from cleaved gasdermin D (GSDMD). However, the roles of inflammasomes in different stages of viral infection remains mainly unclear. More proper experimental models of viral hepatitis should be developed for specific studies in future, so that we can understand more about the complexity of inflammasome regulation and multifunction of inflammasomes and their downstream effectors during HBV and HCV infections.
Collapse
Affiliation(s)
- Pin Wan
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Ge Yang
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Qi Cheng
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Xuelong Zhang
- Institute of Medical Microbiology, Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Zhaoyang Yue
- Institute of Medical Microbiology, Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Moran Li
- Institute of Medical Microbiology, Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Chunlin Liu
- Institute of Medical Microbiology, Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Qian Yi
- Institute of Medical Microbiology, Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Yaling Jia
- Institute of Medical Microbiology, Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Jinbiao Liu
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, China
| | - Xiwen Xing
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Binlian Sun
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Yongkui Li
- Institute of Medical Microbiology, Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| |
Collapse
|
6
|
Li Y, Yang Y, Li T, Wang Z, Gao C, Deng R, Ma F, Li X, Ma L, Tian R, Li H, Zhu H, Zeng L, Gao Y, Lv G, Niu J, Crispe IN, Tu Z. Activation of AIM2 by hepatitis B virus results in antiviral immunity that suppresses hepatitis C virus during coinfection. J Virol 2023; 97:e0109023. [PMID: 37787533 PMCID: PMC10617567 DOI: 10.1128/jvi.01090-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/28/2023] [Indexed: 10/04/2023] Open
Abstract
IMPORTANCE Clinical data suggest that Hepatitis C virus (HCV) levels are generally lower in Hepatitis B virus (HBV) co-infected patients, but the mechanism is unknown. Here, we show that HBV, but not HCV, activated absent in melanoma-2. This in turn results in inflammasome-mediated cleavage of pro-IL-18, leading to an innate immune activation cascade that results in increased interferon-γ, suppressing both viruses.
Collapse
Affiliation(s)
- Yongqi Li
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yang Yang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Tianyang Li
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhengmin Wang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Chunfeng Gao
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Rilin Deng
- Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Institute of Pathogen Biology and Immunology of College of Biology, Hunan University, Changsha, Hunan, China
| | - Faxiang Ma
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xinyang Li
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Licong Ma
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Renyun Tian
- Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Institute of Pathogen Biology and Immunology of College of Biology, Hunan University, Changsha, Hunan, China
| | - Huiyi Li
- Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Institute of Pathogen Biology and Immunology of College of Biology, Hunan University, Changsha, Hunan, China
| | - Haizhen Zhu
- Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Institute of Pathogen Biology and Immunology of College of Biology, Hunan University, Changsha, Hunan, China
| | - Lei Zeng
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yanhang Gao
- Institute of Liver Diseases, The First Hospital of Jilin University, Changchun , Jilin, China
| | - Guoyue Lv
- Institute of Liver Diseases, The First Hospital of Jilin University, Changchun , Jilin, China
| | - Junqi Niu
- Institute of Liver Diseases, The First Hospital of Jilin University, Changchun , Jilin, China
| | - Ian Nicholas Crispe
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Zhengkun Tu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
- Institute of Liver Diseases, The First Hospital of Jilin University, Changchun , Jilin, China
| |
Collapse
|
7
|
Fan Z, Chen R, Yin W, Xie X, Wang S, Hao C. Effects of AIM2 and IFI16 on Infectious Diseases and Inflammation. Viral Immunol 2023; 36:438-448. [PMID: 37585649 DOI: 10.1089/vim.2023.0044] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023] Open
Abstract
Both absent in melanoma 2 (AIM2) and interferon-inducible protein 16 (IFI16) are intracellular innate immune receptors that recognize double-stranded DNA released during pathogenic infection, leading to the assembly of the inflammasome. The assembly of the inflammasome results in the secretion of bioactive interleukin (IL)-1β and IL-18 and induces cell death through an inflammatory process called pyroptosis. Although the AIM2 inflammasome is generally harmful in the context of some aseptic inflammatory illnesses, it plays a protective role in infectious diseases. During inflammatory processes, there is competition between IFI16 and AIM2. In this review, we explore the impacts of IFI16 and AIM2 in infectious disease and aseptic inflammation, respectively, and how they compete.
Collapse
Affiliation(s)
- Zhen Fan
- Department of Stomatology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, P.R. China
| | - Rui Chen
- Department of Stomatology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, P.R. China
| | - Wen Yin
- Department of Stomatology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, P.R. China
| | - Xiaomei Xie
- Department of Stomatology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, P.R. China
| | - Shan Wang
- Department of Oral Pathology, School of Stomatology, Hainan Medical University, Haikou, P.R. China
- Department of Stomatology, The Second Affiliated Hospital of Hainan Medical University, Haikou, P.R. China
| | - Chunbo Hao
- Department of Stomatology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, P.R. China
| |
Collapse
|
8
|
Wu N, Zheng C, Xu J, Ma S, Jia H, Yan M, An F, Zhou Y, Qi J, Bian H. Race between virus and inflammasomes: inhibition or escape, intervention and therapy. Front Cell Infect Microbiol 2023; 13:1173505. [PMID: 37465759 PMCID: PMC10351387 DOI: 10.3389/fcimb.2023.1173505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/17/2023] [Indexed: 07/20/2023] Open
Abstract
The inflammasome is a multiprotein complex that further regulates cell pyroptosis and inflammation by activating caspase-1. The assembly and activation of inflammasome are associated with a variety of diseases. Accumulative studies have shown that inflammasome is a key modulator of the host's defense response to viral infection. Indeed, it has been established that activation of inflammasome occurs during viral infection. At the same time, the host has evolved a variety of corresponding mechanisms to inhibit unnecessary inflammasome activation. Therefore, here, we review and summarize the latest research progress on the interaction between inflammosomes and viruses, highlight the assembly and activation of inflammosome in related cells after viral infection, as well as the corresponding molecular regulatory mechanisms, and elucidate the effects of this activation on virus immune escape and host innate and adaptive immune defenses. Finally, we also discuss the potential therapeutic strategies to prevent and/or ameliorate viral infection-related diseases via targeting inflammasomes and its products.
Collapse
Affiliation(s)
- Nijin Wu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chunzhi Zheng
- Shandong Provincial Hospital for Skin Diseases and Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jiarui Xu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shujun Ma
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Huimin Jia
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Meizhu Yan
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Fuxiang An
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yi Zhou
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jianni Qi
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Hongjun Bian
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
9
|
Huang Z, Xu X, Li J, Gu L, Yue Y, Sun F, Zhang X, Zhang T, Liu Y. RIG-I contributes to dsDNA-induced innate immune activation in human brain microvascular endothelial cells. Mol Immunol 2022; 152:78-85. [PMID: 36306644 DOI: 10.1016/j.molimm.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/30/2022] [Accepted: 10/19/2022] [Indexed: 11/21/2022]
Abstract
Human brain microvascular epithelial cells (HBMECs) play a pivotal role in maintaining the stability of the blood-brain barrier (BBB), a potent physiological barrier to prevent the invasion of exotic pathogens. Our previous study indicated that polyI:C, an analog of double-stranded RNA (dsRNA), could initiate the TLR3/IFNs antiviral signaling pathway in HBMECs. However, the response of HBMECs to dsDNA remains unclear. In this study, we demonstrated that a dsDNA mimic, poly(dA:dT), could induce the production of a series of antiviral factors, including IFN-β, IFN-λ1, and ISGs. Furthermore, the poly(dA:dT)-activated HBMECs could effectively restrain HSV-1 replication. In addition, we found that RIG-I rather than cGAS and IFI16 had a more crucial role in sensing poly(dA:dT). These observations indicate that HBMECs possess a dsDNA sensing system, and RIG-I may partly contribute to the dsDNA-induced antiviral innate immunity.
Collapse
Affiliation(s)
- Zicheng Huang
- College of Life Sciences and Health, Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
| | - Xiqiu Xu
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510120, China
| | - Jiapeng Li
- College of Life Sciences and Health, Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China; College of Science, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
| | - Lixing Gu
- College of Life Sciences and Health, Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China; College of Science, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
| | - Yunqiang Yue
- College of Life Sciences and Health, Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
| | - Fan Sun
- College of Life Sciences and Health, Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
| | - Xiaoyu Zhang
- College of Life Sciences and Health, Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
| | - Tongcun Zhang
- College of Life Sciences and Health, Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China.
| | - Yu Liu
- College of Life Sciences and Health, Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China.
| |
Collapse
|
10
|
Pucinelli CM, Lima RB, Almeida LKY, Lucisano MP, Córdoba AZ, Marchesan JT, da Silva LAB, da Silva RAB. Interferon-gamma inducible protein 16 and type I interferon receptors expression in experimental apical periodontitis induced in wild-type mice. Int Endod J 2022; 55:1042-1052. [PMID: 35869806 DOI: 10.1111/iej.13802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/30/2022]
Abstract
AIM The aim of this study was to evaluate the IFI16 and IFN-α/β receptors expression during the genesis and development of experimental apical periodontitis (AP) in mice teeth. METHODOLOGY Apical periodontitis was induced in the lower first molars of 40 C57BL/6 mice. They were divided according to the experimental periods 2, 7, 14, 21 and 42 days (n = 8 per group). Five animals were used as a control group (without AP). Specimens were submitted to histological processing for description of the inflammatory process, immunostaining for the presence/absence and localization of IFI16 and IFN-α/β receptors (qualitative and semi-quantitative analysis) and tartrate-resistant acid phosphatase (TRAP) histoenzimology. RESULTS The results showed a gradual development of AP over the experimental times. The expression of IFI16 was noticeably more exacerbated in the experimental early period (day 2) whilst the lowest expression was observed in the control group (p = .02). For IFN-α/β receptors, a higher intensity staining was observed 42 days after AP induction, that was statistically different from the control group (p = .02). In addition, the number of TRAP-positive cells was higher on the later periods (days 21 and 42; p < .001). CONCLUSION IFI16 protein expression was highest during the early periods after AP induction in mice teeth, whilst IFN-α/β receptor expression was highest after AP became established.
Collapse
Affiliation(s)
- Carolina Maschietto Pucinelli
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Ricardo B Lima
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Lana K Y Almeida
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Marilia P Lucisano
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Amily Z Córdoba
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Julie T Marchesan
- Department of Periodontology, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Lea A B da Silva
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Raquel A B da Silva
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
11
|
Wallace HL, Russell RS. Promiscuous Inflammasomes: The False Dichotomy of RNA/DNA Virus-Induced Inflammasome Activation and Pyroptosis. Viruses 2022; 14:2113. [PMID: 36298668 PMCID: PMC9609106 DOI: 10.3390/v14102113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 07/30/2023] Open
Abstract
It is well-known that viruses activate various inflammasomes, which can initiate the programmed cell death pathway known as pyroptosis, subsequently leading to cell lysis and release of inflammatory cytokines IL-1β and IL-18. This pathway can be triggered by various sensors, including, but not limited to, NLRP3, AIM2, IFI16, RIG-I, and NLRC4. Many viruses are known either to activate or inhibit inflammasomes as a part of the innate immune response or as a mechanism of pathogenesis. Early research in the field of virus-induced pyroptosis suggested a dichotomy, with RNA viruses activating the NLRP3 inflammasome and DNA viruses activating the AIM2 inflammasome. More recent research has shown that this dichotomy may not be as distinct as once thought. It seems many viruses activate multiple inflammasome sensors. Here, we detail which viruses fit the dichotomy as well as many that appear to defy this clearly false dichotomy. It seems likely that most, if not all, viruses activate multiple inflammasome sensors, and future research should focus on expanding our understanding of inflammasome activation in a variety of tissue types as well as virus activation of multiple inflammasomes, challenging biases that stemmed from early literature in this field. Here, we review primarily research performed on human viruses but also include details regarding animal viruses whenever possible.
Collapse
|
12
|
Rossi C, Salvati A, Distaso M, Campani D, Raggi F, Biancalana E, Tricò D, Brunetto MR, Solini A. The P2X7R-NLRP3 and AIM2 Inflammasome Platforms Mark the Complexity/Severity of Viral or Metabolic Liver Damage. Int J Mol Sci 2022; 23:ijms23137447. [PMID: 35806450 PMCID: PMC9267345 DOI: 10.3390/ijms23137447] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/26/2022] [Accepted: 06/30/2022] [Indexed: 12/03/2022] Open
Abstract
P2X7R-NLRP3 and AIM2 inflammasomes activate caspase-1 and the release of cytokines involved in viral-related liver disease. Little is known about their role in non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steato-hepatitis (NASH). We characterized the role of inflammasomes in NAFLD, NASH, and HCV. Gene expression and subcellular localization of P2X7R/P2X4R-NLRP3 and AIM2 inflammasome components were examined in histopathological preparations of 46 patients with biopsy-proven viral and metabolic liver disease using real-time PCR and immunofluorescence. P2X7R, P2X4R, and Caspase-1 are two- to five-fold more expressed in patients with NAFLD/NASH associated with chronic HCV infection than those with metabolic damage only (p ≤ 0.01 for all comparisons). The AIM2 inflammasome is 4.4 times more expressed in patients with chronic HCV infection, regardless of coexistent metabolic abnormalities (p = 0.0006). IL-2, a cytokine playing a pivotal role during chronic HCV infection, showed a similar expression in HCV and NASH patients (p = 0.77) but was virtually absent in NAFLD. The P2X7R-NLRP3 complex prevailed in infiltrating macrophages, while AIM2 was localized in Kupffer cells. Caspase-1 expression correlated with elastography-based liver fibrosis (r = 0.35, p = 0.02), whereas P2X7R, P2X4R, NRLP3, Caspase-1, and IL-2 expression correlated with circulating markers of disease severity. P2X7R and P2X4R play a major role in liver inflammation accompanying chronic HCV infection, especially when combined with metabolic damage, while AIM2 is specifically expressed in chronic viral hepatitis. We describe for the first time the hepatic expression of IL-2 in NASH, so far considered a peculiarity of HCV-related liver damage.
Collapse
Affiliation(s)
- Chiara Rossi
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Via Roma 67, I-56126 Pisa, Italy; (C.R.); (M.D.); (F.R.)
| | - Antonio Salvati
- Azienda Ospedaliero-Universitaria Pisana, I-56126 Pisa, Italy;
| | - Mariarosaria Distaso
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Via Roma 67, I-56126 Pisa, Italy; (C.R.); (M.D.); (F.R.)
| | - Daniela Campani
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, I-56126 Pisa, Italy;
| | - Francesco Raggi
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Via Roma 67, I-56126 Pisa, Italy; (C.R.); (M.D.); (F.R.)
| | - Edoardo Biancalana
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, I-56126 Pisa, Italy; (E.B.); (D.T.)
| | - Domenico Tricò
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, I-56126 Pisa, Italy; (E.B.); (D.T.)
| | - Maurizia Rossana Brunetto
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, I-56126 Pisa, Italy; (E.B.); (D.T.)
- Correspondence: (M.R.B.); (A.S.); Tel.: +39-050-996857 (M.R.B.); +39-050-993482 (A.S.); Fax: +39-050-553235 (A.S.)
| | - Anna Solini
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Via Roma 67, I-56126 Pisa, Italy; (C.R.); (M.D.); (F.R.)
- Correspondence: (M.R.B.); (A.S.); Tel.: +39-050-996857 (M.R.B.); +39-050-993482 (A.S.); Fax: +39-050-553235 (A.S.)
| |
Collapse
|
13
|
Huérfano S, Šroller V, Bruštíková K, Horníková L, Forstová J. The Interplay between Viruses and Host DNA Sensors. Viruses 2022; 14:v14040666. [PMID: 35458396 PMCID: PMC9027975 DOI: 10.3390/v14040666] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
DNA virus infections are often lifelong and can cause serious diseases in their hosts. Their recognition by the sensors of the innate immune system represents the front line of host defence. Understanding the molecular mechanisms of innate immunity responses is an important prerequisite for the design of effective antivirotics. This review focuses on the present state of knowledge surrounding the mechanisms of viral DNA genome sensing and the main induced pathways of innate immunity responses. The studies that have been performed to date indicate that herpesviruses, adenoviruses, and polyomaviruses are sensed by various DNA sensors. In non-immune cells, STING pathways have been shown to be activated by cGAS, IFI16, DDX41, or DNA-PK. The activation of TLR9 has mainly been described in pDCs and in other immune cells. Importantly, studies on herpesviruses have unveiled novel participants (BRCA1, H2B, or DNA-PK) in the IFI16 sensing pathway. Polyomavirus studies have revealed that, in addition to viral DNA, micronuclei are released into the cytosol due to genotoxic stress. Papillomaviruses, HBV, and HIV have been shown to evade DNA sensing by sophisticated intracellular trafficking, unique cell tropism, and viral or cellular protein actions that prevent or block DNA sensing. Further research is required to fully understand the interplay between viruses and DNA sensors.
Collapse
|
14
|
You H, Qin S, Zhang F, Hu W, Li X, Liu D, Kong F, Pan X, Zheng K, Tang R. Regulation of Pattern-Recognition Receptor Signaling by HBX During Hepatitis B Virus Infection. Front Immunol 2022; 13:829923. [PMID: 35251017 PMCID: PMC8891514 DOI: 10.3389/fimmu.2022.829923] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/24/2022] [Indexed: 12/16/2022] Open
Abstract
As a small DNA virus, hepatitis B virus (HBV) plays a pivotal role in the development of various liver diseases, including hepatitis, cirrhosis, and liver cancer. Among the molecules encoded by this virus, the HBV X protein (HBX) is a viral transactivator that plays a vital role in HBV replication and virus-associated diseases. Accumulating evidence so far indicates that pattern recognition receptors (PRRs) are at the front-line of the host defense responses to restrict the virus by inducing the expression of interferons and various inflammatory factors. However, depending on HBX, the virus can control PRR signaling by modulating the expression and activity of essential molecules involved in the toll-like receptor (TLR), retinoic acid inducible gene I (RIG-I)-like receptor (RLR), and NOD-like receptor (NLR) signaling pathways, to not only facilitate HBV replication, but also promote the development of viral diseases. In this review, we provide an overview of the mechanisms that are linked to the regulation of PRR signaling mediated by HBX to inhibit innate immunity, regulation of viral propagation, virus-induced inflammation, and hepatocarcinogenesis. Given the importance of PRRs in the control of HBV replication, we propose that a comprehensive understanding of the modulation of cellular factors involved in PRR signaling induced by the viral protein may open new avenues for the treatment of HBV infection.
Collapse
Affiliation(s)
- Hongjuan You
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Suping Qin
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Fulong Zhang
- Imaging Department, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Wei Hu
- Nanjing Drum Tower Hospital Group Suqian Hospital, The Affiliate Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Xiaocui Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Dongsheng Liu
- Nanjing Drum Tower Hospital Group Suqian Hospital, The Affiliate Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Fanyun Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Xiucheng Pan
- Department of Infectious Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
15
|
Bai R, Lang Y, Shao J, Deng Y, Refuhati R, Cui L. The Role of NLRP3 Inflammasome in Cerebrovascular Diseases Pathology and Possible Therapeutic Targets. ASN Neuro 2021; 13:17590914211018100. [PMID: 34053242 PMCID: PMC8168029 DOI: 10.1177/17590914211018100] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cerebrovascular diseases are pathological conditions involving impaired blood flow in the brain, primarily including ischaemic stroke, intracranial haemorrhage, and subarachnoid haemorrhage. The nucleotide-binding and oligomerisation (NOD) domain-like receptor (NLR) family pyrin domain (PYD)-containing 3 (NLRP3) inflammasome is a protein complex and a vital component of the immune system. Emerging evidence has indicated that the NLRP3 inflammasome plays an important role in cerebrovascular diseases. The function of the NLRP3 inflammasome in the pathogenesis of cerebrovascular diseases remains an interesting field of research. In this review, we first summarised the pathological mechanism of cerebrovascular diseases and the pathological mechanism of the NLRP3 inflammasome in aggravating atherosclerosis and cerebrovascular diseases. Second, we outlined signalling pathways through which the NLRP3 inflammasome participates in aggravating or mitigating cerebrovascular diseases. Reactive oxygen species (ROS)/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), ROS/thioredoxin-interacting protein (TXNIP) and purinergic receptor-7 (P2X7R) signalling pathways can activate the NLRP3 inflammasome; activation of the NLRP3 inflammasome can aggravate cerebrovascular diseases by mediating apoptosis and pyroptosis. Autophagy/mitochondrial autophagy, nuclear factor E2-related factor-2 (Nrf2), interferon (IFN)-β, sirtuin (SIRT), and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) reportedly alleviate cerebrovascular diseases by inhibiting NLRP3 inflammasome activation. Finally, we explored specific inhibitors of the NLRP3 inflammasome based on the two-step activation of the NLRP3 inflammasome, which can be developed as new drugs to treat cerebrovascular diseases.
Collapse
Affiliation(s)
- Rongrong Bai
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yue Lang
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jie Shao
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yu Deng
- Department of Hepatopancreatobiliary Surgery, The First Hospital of Jilin University, Changchun, China
| | - Reyisha Refuhati
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Li Cui
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
16
|
Transcriptome Classification Reveals Molecular Subgroups in Patients with Hepatitis B Virus. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:5543747. [PMID: 33859718 PMCID: PMC8028738 DOI: 10.1155/2021/5543747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/27/2021] [Accepted: 03/09/2021] [Indexed: 12/28/2022]
Abstract
Hepatitis B virus (HBV) specifically infects hepatocytes, which can cause progressive liver fibrosis and a significantly increased risk of liver cancer. Multiple studies indicated host genetic, virological, and immunological factors could affect the HBV infection. However, the underlying mechanism involved in HBV infection remained unclear. Based on the analysis of gene expression data of 124 HBV patients (GEO accession: GSE84044), molecular subgroups of patients infected with hepatitis B virus were identified in this study, including C1, C2, and C3 groups. The age, fiber, degree of chemical and inflammation, and gene expression difference were also compared among the three sampling groups. Furthermore, the liver index was calculated using 93 liver-specific genes. The liver-specific gene expression in different molecular subgroups of HBV patients was thoroughly analyzed and then was compared with fibrosis and inflammation levels. Results showed that the C2 group was the youngest and the C3 group had the highest degree of fibrosis and inflammation. Enrichment analysis showed that metabolism-related pathways were mainly expressed in the C1 and C2 groups, and inflammation-related pathways and proteoglycans in cancer were highly expressed in the C1 and C3 groups. The liver index was higher in the C2 group than in the C1 and C3 groups, and it was the lowest in the C3 group. Macrophage M1/M2 and neutrophils were significantly different in the three groups. M1 was mainly abundant in the C3 group, and M2 and neutrophils were mainly abundant in the C2 group. This study provides novel information to understand the mechanisms of HBV infection in chronic hepatitis B (CHB) patients.
Collapse
|
17
|
Kumar V. The Trinity of cGAS, TLR9, and ALRs Guardians of the Cellular Galaxy Against Host-Derived Self-DNA. Front Immunol 2021; 11:624597. [PMID: 33643304 PMCID: PMC7905024 DOI: 10.3389/fimmu.2020.624597] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022] Open
Abstract
The immune system has evolved to protect the host from the pathogens and allergens surrounding their environment. The immune system develops in such a way to recognize self and non-self and develops self-tolerance against self-proteins, nucleic acids, and other larger molecules. However, the broken immunological self-tolerance leads to the development of autoimmune or autoinflammatory diseases. Pattern-recognition receptors (PRRs) are expressed by immunological cells on their cell membrane and in the cytosol. Different Toll-like receptors (TLRs), Nod-like receptors (NLRs) and absent in melanoma-2 (AIM-2)-like receptors (ALRs) forming inflammasomes in the cytosol, RIG (retinoic acid-inducible gene)-1-like receptors (RLRs), and C-type lectin receptors (CLRs) are some of the PRRs. The DNA-sensing receptor cyclic GMP–AMP synthase (cGAS) is another PRR present in the cytosol and the nucleus. The present review describes the role of ALRs (AIM2), TLR9, and cGAS in recognizing the host cell DNA as a potent damage/danger-associated molecular pattern (DAMP), which moves out to the cytosol from its housing organelles (nucleus and mitochondria). The introduction opens with the concept that the immune system has evolved to recognize pathogens, the idea of horror autotoxicus, and its failure due to the emergence of autoimmune diseases (ADs), and the discovery of PRRs revolutionizing immunology. The second section describes the cGAS-STING signaling pathway mediated cytosolic self-DNA recognition, its evolution, characteristics of self-DNAs activating it, and its role in different inflammatory conditions. The third section describes the role of TLR9 in recognizing self-DNA in the endolysosomes during infections depending on the self-DNA characteristics and various inflammatory diseases. The fourth section discusses about AIM2 (an ALR), which also binds cytosolic self-DNA (with 80–300 base pairs or bp) that inhibits cGAS-STING-dependent type 1 IFN generation but induces inflammation and pyroptosis during different inflammatory conditions. Hence, this trinity of PRRs has evolved to recognize self-DNA as a potential DAMP and comes into action to guard the cellular galaxy. However, their dysregulation proves dangerous to the host and leads to several inflammatory conditions, including sterile-inflammatory conditions autoinflammatory and ADs.
Collapse
Affiliation(s)
- Vijay Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, St. Lucia, Brisbane, QLD, Australia.,School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St. Lucia, Brisbane, QLD, Australia
| |
Collapse
|
18
|
Saber S, Youssef ME, Sharaf H, Amin NA, El-Shedody R, Aboutouk FH, El-Galeel YA, El-Hefnawy A, Shabaka D, Khalifa A, Saleh RA, Osama D, El-Zoghby G, Gobba NA. BBG enhances OLT1177-induced NLRP3 inflammasome inactivation by targeting P2X7R/NLRP3 and MyD88/NF-κB signaling in DSS-induced colitis in rats. Life Sci 2021; 270:119123. [PMID: 33548287 DOI: 10.1016/j.lfs.2021.119123] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
Chronic ulceration of the colon is associated with the activation of TLR4/NF-κB and P2X7R/NLRP3 signaling pathways. We investigated the effect of individual or combined administration of BBG, a P2X7R blocker, and OLT1177, a selective NLRP3 inhibitor, in the dextran sodium sulfate-induced ulcerative colitis (UC) rat model. The ulcerative rats were treated orally with brilliant blue G (BBG) (50 mg/kg/day) or OLT1177 (200 mg/kg/day) or a combination of both. Myd88 and NF-κB levels were measured by ELISA, qRT-PCR, and immunohistochemical staining. Cytokines known to be associated with TLR4/NF-κB or P2X7R/NLRP3 signaling were measured by ELISA. P2X7R and NLRP3 expression were measured by ELISA and qRT-PCR. The administration of BBG or OLT1177 ameliorated the toxic effects of DSS on the colon as they restored normal colonic macroscopic and microscopic morphology. BBG administration, but not OLT1177, reduced the expression of Myd88, NF-κB, IL-6, and TNF-α in addition to lowering P2X7R and oxidative stress levels. Individual BBG or OLT1177 administration decreased NLRP3 inflammasome recruitment and subsequent activation of caspase-1, IL-1β, and IL-18. However, the combined administration of OLT1177 with BBG potentiated its inhibitory effect on the NLRP3, which was reflected by the additional suppressive effect on caspase-1, IL-1β, IL-18 levels. In conclusion, BBG/OLT1177 exhibited complementary effects and effectively ameliorated UC. This novel approach provides a basis for the clinical application of this combination for the treatment of IBDs and might also be promising for the pharmacological intervention of other NLRP3 inflammasome-dependent inflammatory conditions.
Collapse
Affiliation(s)
- Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt.
| | - Mahmoud E Youssef
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Hossam Sharaf
- Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Noha A Amin
- Department of Haematology, Theodor Bilharz Research Institute, Egypt
| | - Ruwyda El-Shedody
- Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Farah H Aboutouk
- Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Yumna Abd El-Galeel
- Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Amr El-Hefnawy
- Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Dina Shabaka
- Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Arwa Khalifa
- Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Renad A Saleh
- Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Donya Osama
- Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Ghada El-Zoghby
- Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Naglaa A Gobba
- Department of Pharmacology and Toxicology, College of Pharmacy, Misr University for Science and Technology, Egypt
| |
Collapse
|
19
|
Chen H, He G, Chen Y, Zhang X. Hepatitis B Virus Might Be Sensed by STING-Dependent DNA Sensors and Attenuates the Response of STING-Dependent DNA Sensing Pathway in Humans with Acute and Chronic Hepatitis B Virus Infection. Viral Immunol 2020; 33:642-651. [PMID: 33170089 DOI: 10.1089/vim.2020.0096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
DNA-dependent activator of interferon regulatory factors (DAIs), interferon gamma inducible protein 16 (IFI16), DEAD-box polypeptide 41 (DDX41), DNA-dependent protein kinase (DNA-PK), meiotic recombination 11 homolog A (MRE11), and cyclic GMP-AMP synthase (cGAS) have been identified as intracellular STING-dependent DNA sensors in recent years. Studies have shown that the DNA sensor-STING-interferon (IFN)-β pathway plays an important role in the defense against intracellular invasion of many DNA viruses. However, the intracellular recognition of hepatitis B virus (HBV) DNA by DNA sensors is still largely unclear. In this study, we aimed to determine whether the DNA sensor-STING pathway in peripheral blood mononuclear cells (PBMCs) can be activated by acute and chronic HBV infections in humans. We first evaluated the expression of these DNA sensors in PBMCs of acute and chronic HBV-infected patients by quantitative real-time polymerase chain reaction. We next compared the expression of the upregulated DNA sensor between monocytes and nonmonocytes to find its cellular source. Finally, by in vitro stimulation, we analyzed the IFN-β response of the DNA sensor-STING pathway in PBMCs and monocytes from chronic HBV-infected patients. The results showed that IFI16, DDX41, MRE11, and the adaptor STING were upregulated in chronic HBV-infected patients, whereas only IFI16 was upregulated in acute HBV-infected patients. However, IFN-β expression was not changed in PBMCs from acute and chronic HBV-infected patients. We next found IFI16 was mainly expressed in monocytes of acute and chronic hepatitis B patients. Finally, by stimulation of monocytes with VACV ds 70mer, a ligand for IFI16, we confirmed the attenuated response of the IFI16-STING pathway. Taken together, our results suggest that HBV might be sensed by DNA sensors in PBMCs of acute and chronic HBV-infected patients, and meanwhile HBV infection attenuates the response of the DNA sensor-STING pathway in PBMCs and monocytes, which may facilitate the persistence of HBV infection.
Collapse
Affiliation(s)
- Hongtao Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Infectious Diseases, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, China.,Key Laboratory of Pathogenic Microorganisms of Shenzhen, Shenzhen Institute of Respiratory Diseases, Shenzhen, China
| | - Guirong He
- Department of Clinical Laboratory, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, China
| | - Yue Chen
- Department of Clinical Laboratory, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, China
| | - Xiaoyong Zhang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
20
|
Jeffries AM, Marriott I. Cytosolic DNA Sensors and CNS Responses to Viral Pathogens. Front Cell Infect Microbiol 2020; 10:576263. [PMID: 33042875 PMCID: PMC7525022 DOI: 10.3389/fcimb.2020.576263] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/12/2020] [Indexed: 12/17/2022] Open
Abstract
Viral central nervous system (CNS) infections can lead to life threatening encephalitis and long-term neurological deficits in survivors. Resident CNS cell types, such as astrocytes and microglia, are known to produce key inflammatory and antiviral mediators following infection with neurotropic DNA viruses. However, the mechanisms by which glia mediate such responses remain poorly understood. Recently, a class of intracellular pattern recognition receptors (PRRs), collectively known as DNA sensors, have been identified in both leukocytic and non-leukocytic cell types. The ability of such DNA sensors to initiate immune mediator production and contribute to infection resolution in the periphery is increasingly recognized, but our understanding of their role in the CNS remains limited at best. In this review, we describe the evidence for the expression and functionality of DNA sensors in resident brain cells, with a focus on their role in neurotropic virus infections. The available data indicate that glia and neurons can constitutively express, and/or can be induced to express, various disparate DNA sensing molecules previously described in peripheral cell types. Furthermore, multiple lines of investigation suggest that these sensors are functional in resident CNS cells and are required for innate immune responses to viral infections. However, it is less clear whether DNA sensormediated glial responses are beneficial or detrimental, and the answer to this question appears to dependent on the context of the infection with regard to the identity of the pathogen, host cell type, and host species. Defining such parameters will be essential if we are to successfully target these molecules to limit damaging inflammation while allowing beneficial host responses to improve patient outcomes.
Collapse
Affiliation(s)
- Austin M Jeffries
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Ian Marriott
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC, United States
| |
Collapse
|
21
|
Lozano-Ruiz B, González-Navajas JM. The Emerging Relevance of AIM2 in Liver Disease. Int J Mol Sci 2020; 21:ijms21186535. [PMID: 32906750 PMCID: PMC7555176 DOI: 10.3390/ijms21186535] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 01/18/2023] Open
Abstract
Absent in melanoma 2 (AIM2) is a cytosolic receptor that recognizes double-stranded DNA (dsDNA) and triggers the activation of the inflammasome cascade. Activation of the inflammasome results in the maturation of inflammatory cytokines, such as interleukin (IL)-1 β and IL-18, and a form of cell death known as pyroptosis. Owing to the conserved nature of its ligand, AIM2 is important during immune recognition of multiple pathogens. Additionally, AIM2 is also capable of recognizing host DNA during cellular damage or stress, thereby contributing to sterile inflammatory diseases. Inflammation, either in response to pathogens or due to sterile cellular damage, is at the center of the most prevalent and life-threatening liver diseases. Therefore, during the last 15 years, the study of inflammasome activation in the liver has emerged as a new research area in hepatology. Here, we discuss the known functions of AIM2 in the pathogenesis of different hepatic diseases, including non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH), hepatitis B, liver fibrosis, and hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
- Beatriz Lozano-Ruiz
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain;
- Department of Pharmacology, Paediatrics and Organic Chemistry, University Miguel Hernández (UMH), 03550 San Juan, Alicante, Spain
| | - José M. González-Navajas
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain;
- Department of Pharmacology, Paediatrics and Organic Chemistry, University Miguel Hernández (UMH), 03550 San Juan, Alicante, Spain
- Networked Biomedical Research Center for Hepatic and Digestive Diseases (CIBERehd), Institute of Health Carlos III, 28029 Madrid, Spain
- Institute of Research, Development and Innovation in Healthcare Biotechnology in Elche (IDiBE), University Miguel Hernández, 03202 Elche, Alicante, Spain
- Correspondence: ; Tel.: +34-(965)-913-928
| |
Collapse
|
22
|
Chen C, Liu YH, Cheng SB, Wu SL, Zhai XJ. The hepatoprotective effects of XCHD and MgIG against methotrexate-induced liver injury and inflammation in rats through suppressing the activation of AIM2 inflammasomes. Pathol Res Pract 2020; 216:152875. [PMID: 32113793 DOI: 10.1016/j.prp.2020.152875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/17/2020] [Accepted: 02/11/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Recent studies have shown that drug-induced liver injury may be related to the immune response activated by drugs. A cytosolic dsDNA inflammasome called absent in melanoma 2 (AIM2) was found to be associated with aseptic inflammation. The present study aimed to explore the effects of on the liver injury and inflammation in methotrexate (Mtx)-induced rats. METHODS Sprague Dawley (SD) rats were selected and classified into 4 groups randomly, includes control group, Mtx group, Mtx-Xiaochaihu decoction (XCHD) group and Mtx-magnesium isoglycyrrhizinate (MgIG) group. Light microscopy was used to examine histological specimens after hematoxylin-eosin (HE) staining. The AST levels in liver tissue and blood serum ALT in the rats were assessed with enzyme linked immunosorbent assay (ELISA). Then AIM2 expression and inflammatory factors, including caspase-1, IL-18, and IL-1β, in the liver biopsy specimens of rats were detected by immunohistochemistry. Furthermore, the correlation between inflammatory and AIM2 expression factors was comprehensively analyzed. RESULTS Functional and structural hepatotoxicity can be caused by the exposure to Mtx, which was supported by the improved biochemical marker levels and the worse histopathological changes in liver tissue. Compared with the Mtx group, the levels of liver enzymes ALT and AST, histological deterioration in the liver tissues were effectively decreased by XCHD and MgIG treatment, respectively. In addition, the expression of AIM2, caspase-1 and IL-1β was observably higher in the Mtx group, which was apparently inhibited in the Mtx-XCHD and Mtx-MgIG groups. There was no obvious change in IL-18 expression among four groups. AIM2 expression were positively associated with the severity of liver inflammation and had a higher relevance with caspase-1 expression. CONCLUSIONS AIM2 inflammasome in hepatocytes has a significant effect on the development of Mtx-induced liver injury, which can be ameliorated by both XCHD and MgIG treatment. The latent mechanism and potential signal pathway require further study.
Collapse
Affiliation(s)
- Chen Chen
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yi-Hui Liu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shu-Biao Cheng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - San-Lan Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xue-Jia Zhai
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
23
|
Rai RC. Host inflammatory responses to intracellular invaders: Review study. Life Sci 2019; 240:117084. [PMID: 31759040 DOI: 10.1016/j.lfs.2019.117084] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 12/13/2022]
Abstract
As soon as a pathogen invades through the physical barriers of its corresponding host, host mounts a series of protective immune response to get rid of the invading pathogen. Host's pattern recognition receptors (PRR), localized at the cellular surface, cytoplasm and also in the nucleus; recognises pathogen associated molecular patterns (PAMPs) and plays crucial role in directing the immune response to be specific. Inflammatory responses are among the earliest strategies to tackle the pathogen by the host and are tightly regulated by multiple molecular pathways. Inflammasomes are multi-subunit protein complex consisting of a receptor molecule viz. NLRP3, an adaptor molecule- Apoptosis-associated speck-like protein containing a CARD (ASC) and an executioner caspase. Upon infection and/or injury; inflammasome components assemble and oligomerizes leading to the auto cleavage of the pro-caspase-1 to its active form. The activated caspase-1 cleaves immature form of the pro-inflammatory cytokines to their mature form e.g. IL1-β and IL-18 which mount inflammatory response. Moreover, C-terminal end of the Gasdermin D molecule is also cleaved by the caspase-1. The activated N-terminal Gasdermin D molecule form pores in the infected cells leading to their pyroptosis. Hence, inflammasomes drive inflammation during infection and controls the establishment of the pathogen by mounting inflammatory response and activation of the pyroptotic cell death.
Collapse
Affiliation(s)
- Ramesh Chandra Rai
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
24
|
Sharma BR, Karki R, Kanneganti TD. Role of AIM2 inflammasome in inflammatory diseases, cancer and infection. Eur J Immunol 2019; 49:1998-2011. [PMID: 31372985 DOI: 10.1002/eji.201848070] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/22/2019] [Accepted: 07/31/2019] [Indexed: 12/23/2022]
Abstract
AIM2 is a cytosolic innate immune receptor which recognizes double-stranded DNA (dsDNA) released during cellular perturbation and pathogenic assault. AIM2 recognition of dsDNA leads to the assembly of a large multiprotein oligomeric complex termed the inflammasome. This inflammasome assembly leads to the secretion of bioactive interleukin-1β (IL-1β) and IL-18 and induction of an inflammatory form of cell death called pyroptosis. Sensing of dsDNA by AIM2 in the cytosol is crucial to mediate protection against the invading pathogens including bacteria, virus, fungi and parasites. AIM2 also responds to dsDNA released from damaged host cells, resulting in the secretion of the effector cytokines thereby driving the progression of sterile inflammatory diseases such as skin disease, neuronal disease, chronic kidney disease, cardiovascular disease and diabetes. Additionally, the protection mediated by AIM2 in the development of colorectal cancer depends on its ability to regulate epithelial cell proliferation and gut microbiota in maintaining intestinal homeostasis independently of the effector cytokines. In this review, we will highlight the recent progress on the role of the AIM2 inflammasome as a guardian of cellular integrity in modulating chronic inflammatory diseases, cancer and infection.
Collapse
Affiliation(s)
- Bhesh Raj Sharma
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rajendra Karki
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
25
|
Shi X, Wang L, Ren L, Li J, Li S, Cui Q, Li S. Dihydroartemisinin, an antimalarial drug, induces absent in melanoma 2 inflammasome activation and autophagy in human hepatocellular carcinoma HepG2215 cells. Phytother Res 2019; 33:1413-1425. [PMID: 30873702 DOI: 10.1002/ptr.6332] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 02/03/2019] [Accepted: 02/08/2019] [Indexed: 12/22/2022]
Abstract
As an effective antimalarial drug, Dihydroartemisinin (DHA) is readily isolated from the traditional Chinese medicine of Artemisia annua. DHA is not only an autophagy promoter but also a substance with strong antitumor efficiency. The relationship between autophagy and inflammasomes has been suggested in hepatocellular carcinoma (HCC). However, there are few reports describing relationships between inflammasomes and autophagy in HCC therapy. The present study demonstrated that DHA suppressed cell proliferation in HepG2215 cells in a dose- and time-dependent manner. The inhibitory activity is mediated by autophagy, in which reactive oxygen species (ROS) production induced nuclear and mitochondrial DNA damage. Then, DHA were first shown to promote AIM2/caspase-1 inflammasome. Compared with the DHA group, the autophagy inhibitor 3-MA significantly inhibited the expressions of activated Caspase-1, a pyroptotic marker proteins. Meanwhile, repression of mTOR by rapamycin promoted autophagy and AIM2/caspase-1 activation. The caspase-1 inhibitor Z-YVAD-FMK also notably blocked autophagy cell death characterized by the downexpression of Beclin-1 and LC3-II. Additionally, the study demonstrated that DHA suppressed pseudopodium formation and cell mobility. Therefore, we first reveal a novel mechanism that DHA promotes AIM2/caspase-1 inflammasome, which contributes to autophagy in HepG2215 cells. Moreover, nuclear and mitochondrial DNA damage was also involved in this process via ROS production.
Collapse
Affiliation(s)
- Xinli Shi
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Li Wang
- Laboratory of Organ Fibrosis Prophylaxis and Treatment by Combine Traditional Chinese and Western Medicine, Research Center of Combine Traditional Chinese and Western Medicine, Clinical Laboratory, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Laifeng Ren
- Department of Immunology, Affiliated Cancer Hospital of Shanxi Medical University and Shanxi Cancer Hospital, Taiyuan, China
| | - Jianchun Li
- Laboratory of Organ Fibrosis Prophylaxis and Treatment by Combine Traditional Chinese and Western Medicine, Research Center of Combine Traditional Chinese and Western Medicine, Clinical Laboratory, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Shenghao Li
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Qingzhuo Cui
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Sheng Li
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| |
Collapse
|