1
|
Yao Z, Liang M, Zhu S. Infectious factors in myocarditis: a comprehensive review of common and rare pathogens. Egypt Heart J 2024; 76:64. [PMID: 38789885 PMCID: PMC11126555 DOI: 10.1186/s43044-024-00493-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Myocarditis is a significant health threat today, with infectious agents being the most common cause. Accurate diagnosis of the etiology of infectious myocarditis is crucial for effective treatment. MAIN BODY Infectious myocarditis can be caused by viruses, prokaryotes, parasites, and fungi. Viral infections are typically the primary cause. However, some rare opportunistic pathogens can also damage heart muscle cells in patients with immunodeficiencies, neoplasms and those who have undergone heart surgery. CONCLUSIONS This article reviews research on common and rare pathogens of infectious myocarditis, emphasizing the complexity of its etiology, with the aim of helping clinicians make an accurate diagnosis of infectious myocarditis.
Collapse
Affiliation(s)
- Zongjie Yao
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qindao, China.
| | - Mingjun Liang
- Department of Intensive Care Medicine, Shanghai Six People's Hospital Affilicated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Simin Zhu
- Wuhan Third Hospital-Tongren Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Yadav SK, Gawargi FI, Hasan MH, Tandon R, Upton JW, Mishra PK. Differential effects of CMV infection on the viability of cardiac cells. Cell Death Discov 2023; 9:111. [PMID: 37012234 PMCID: PMC10070260 DOI: 10.1038/s41420-023-01408-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
Cytomegalovirus (CMV) is a widely prevalent herpesvirus that reaches seroprevalence rates of up to 95% in several parts of the world. The majority of CMV infections are asymptomatic, albeit they have severe detrimental effects on immunocompromised individuals. Congenital CMV infection is a leading cause of developmental abnormalities in the USA. CMV infection is a significant risk factor for cardiovascular diseases in individuals of all ages. Like other herpesviruses, CMV regulates cell death for its replication and establishes and maintains a latent state in the host. Although CMV-mediated regulation of cell death is reported by several groups, it is unknown how CMV infection affects necroptosis and apoptosis in cardiac cells. Here, we infected primary cardiomyocytes, the contractile cells in the heart, and primary cardiac fibroblasts with wild-type and cell-death suppressor deficient mutant CMVs to determine how CMV regulates necroptosis and apoptosis in cardiac cells. Our results reveal that CMV infection prevents TNF-induced necroptosis in cardiomyocytes; however, the opposite phenotype is observed in cardiac fibroblasts. CMV infection also suppresses inflammation, reactive oxygen species (ROS) generation, and apoptosis in cardiomyocytes. Furthermore, CMV infection improves mitochondrial biogenesis and viability in cardiomyocytes. We conclude that CMV infection differentially affects the viability of cardiac cells.
Collapse
Affiliation(s)
- Santosh K Yadav
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Flobater I Gawargi
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mohammad H Hasan
- Department of Cell and Molecular Biology, Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, MS, USA
| | - Ritesh Tandon
- Department of Cell and Molecular Biology, Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jason W Upton
- Department of Biological Sciences, Auburn University, Alabama, AL, USA
| | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
3
|
Bonavita CM, White TM, Francis J, Farrell HE, Davis-Poynter NJ, Cardin RD. The Viral G-Protein-Coupled Receptor Homologs M33 and US28 Promote Cardiac Dysfunction during Murine Cytomegalovirus Infection. Viruses 2023; 15:711. [PMID: 36992420 PMCID: PMC10054303 DOI: 10.3390/v15030711] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous pathogen that infects the majority of the world population and causes lifelong latent infection. HCMV has been shown to exacerbate cardiovascular diseases, including myocarditis, vascular sclerosis, and transplant vasculopathy. Recently, we have shown that murine CMV (MCMV) recapitulates the cardiovascular dysfunction observed in patients with HCMV-induced myocarditis. To understand the viral mechanisms involved in CMV-induced heart dysfunction, we further characterized cardiac function in response to MCMV and examined virally encoded G-protein-coupled receptor homologs (vGPCRs) US28 and M33 as potential factors that promote infection in the heart. We hypothesized that the CMV-encoded vGPCRs could exacerbate cardiovascular damage and dysfunction. Three viruses were used to evaluate the role of vGPCRs in cardiac dysfunction: wild-type MCMV, a M33-deficient virus (∆M33), and a virus with the M33 open reading frame (ORF) replaced with US28, an HCMV vGPCR (i.e., US28+). Our in vivo studies revealed that M33 plays a role in promoting cardiac dysfunction by increasing viral load and heart rate during acute infection. During latency, ΔM33-infected mice demonstrated reduced calcification, altered cellular gene expression, and less cardiac hypertrophy compared with wild-type MCMV-infected mice. Ex vivo viral reactivation from hearts was less efficient in ΔM33-infected animals. HCMV protein US28 expression restored the ability of the M33-deficient virus to reactivate from the heart. US28+ MCMV infection caused damage to the heart comparable with wild-type MCMV infection, suggesting that the US28 protein is sufficient to complement the function of M33 in the heart. Altogether, these data suggest a role for vGPCRs in viral pathogenesis in the heart and thus suggest that vGPCRs promote long-term cardiac damage and dysfunction.
Collapse
Affiliation(s)
- Cassandra M. Bonavita
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Timothy M. White
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Joseph Francis
- Department of Comparative Biological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Helen E. Farrell
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane 4072, Australia
| | | | - Rhonda D. Cardin
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
4
|
White TM, Bonavita CM, Stanfield BA, Farrell HE, Davis-Poynter NJ, Cardin RD. The CMV-encoded G protein-coupled receptors M33 and US28 play pleiotropic roles in immune evasion and alter host T cell responses. Front Immunol 2022; 13:1047299. [PMID: 36569845 PMCID: PMC9768342 DOI: 10.3389/fimmu.2022.1047299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Human cytomegalovirus (HCMV) is a global health threat due to its ubiquity and lifelong persistence in infected people. During latency, host CD8+ T cell responses to HCMV continue to increase in a phenomenon known as memory inflation. We used murine CMV (MCMV) as a model for HCMV to characterize the memory inflation response to wild-type MCMV (KP) and a latency-defective mutant (ΔM33stop), which lacks M33, an MCMV chemokine receptor homolog. M33 is essential for normal reactivation from latency and this was leveraged to determine whether reactivation in vivo contributes to T cell memory inflation. Methods Mice were infected with wild-type or mutant MCMV and T cell responses were analyzed by flow cytometry at acute and latent time points. Ex vivo reactivation and cytotoxicity assays were carried out to further investigate immunity and virus replication. Quantitative reverse-transcriptase polymerase chain reaction (q-RTPCR) was used to examine gene expression during reactivation. MHC expression on infected cells was analyzed by flow cytometry. Finally, T cells were depleted from latently-infected B cell-deficient mice to examine the in vivo difference in reactivation between wild-type and ΔM33stop. Results We found that ΔM33stop triggers memory inflation specific for peptides derived from the immediate-early protein IE1 but not the early protein m164, in contrast to wild-type MCMV. During ex vivo reactivation, gene expression in DM33stop-infected lung tissues was delayed compared to wild-type virus. Normal gene expression was partially rescued by substitution of the HCMV US28 open reading frame in place of the M33 gene. In vivo depletion of T cells in immunoglobulin heavy chain-knockout mice resulted in reactivation of wild-type MCMV, but not ΔM33stop, confirming the role of M33 during reactivation from latency. Further, we found that M33 induces isotype-specific downregulation of MHC class I on the cell surface suggesting previously unappreciated roles in immune evasion. Discussion Our results indicate that M33 is more polyfunctional than previously appreciated. In addition to its role in reactivation, which had been previously described, we found that M33 alters viral gene expression, host T cell memory inflation, and MHC class I expression. US28 was able to partially complement most functions of M33, suggesting that its role in HCMV infection may be similarly pleotropic.
Collapse
Affiliation(s)
- Timothy M. White
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Cassandra M. Bonavita
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Brent A. Stanfield
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Helen E. Farrell
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | | | - Rhonda D. Cardin
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA, United States,*Correspondence: Rhonda D. Cardin,
| |
Collapse
|
5
|
White TM, Stanfield BA, Bonavita CM, Rudd JS, Cardin RD. Development of a mouse salivary gland-derived mesenchymal cell line for immunological studies of murine cytomegalovirus. PLoS One 2022; 17:e0265479. [PMID: 35976883 PMCID: PMC9385033 DOI: 10.1371/journal.pone.0265479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/01/2022] [Indexed: 11/18/2022] Open
Abstract
The salivary glands are a crucial site of replication for human cytomegalovirus (HCMV) and its murine counterpart, murine cytomegalovirus (MCMV). Studies of MCMV often involve the use of BALB/c strain mice, but most in vitro assays are carried out in the NIH 3T3 cell line, which is derived from Swiss Albino mice. This report describes a BALB/c-derived mouse salivary gland cell line immortalized using the SV40 large T antigen. Cells stained positive for PDGFR1 and negative for E-cadherin and PECAM-1, indicating mesenchymal origin. This cell line, which has been named murine salivary gland mesenchymal (mSGM), shows promise as a tool for ex vivo immunological assays due to its MHC haplotype match with the BALB/c mouse strain. In addition, plaque assays using mSGM rather than NIH 3T3 cells are significantly more sensitive for detecting low concentrations of MCMV particles. Finally, it is demonstrated that mSGM cells express all 3 BALB/c MHC class I isotypes and are susceptible to T cell-mediated ex vivo cytotoxicity assays, leading to many possible uses in immunological studies of MCMV.
Collapse
Affiliation(s)
- Timothy M. White
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Brent A. Stanfield
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Cassandra M. Bonavita
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Jared S. Rudd
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Rhonda D. Cardin
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
6
|
Cristescu CV, Alain S, Ruță SM. The Role of CMV Infection in Primary Lesions, Development and Clinical Expression of Atherosclerosis. J Clin Med 2022; 11:jcm11133832. [PMID: 35807114 PMCID: PMC9267753 DOI: 10.3390/jcm11133832] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 02/01/2023] Open
Abstract
The number of deaths related to cardiovascular disease is increasing every year, despite all available therapies and the aggressive campaigns for lifestyle modification and prevention of risk factors. Atherosclerosis is a complex process underlying cardiovascular disease. Cytomegalovirus (CMV) is often associated to atherosclerosis and its clinical expression such as coronary heart disease, stroke, or peripheral artery disease. CMV infection may promote acute atherosis within placentas from women with preeclampsia and it may also accelerate atherosclerosis in HIV-infected and organ-transplanted patients. This review focuses on the current scientific evidence for the role of CMV infection in the development of acute atherosis and atherosclerosis from placentation throughout life.
Collapse
Affiliation(s)
- Carmen Valentina Cristescu
- School of Advanced Studies of the Romanian Academy (SCOSAAR), Romanian Academy, 010071 Bucharest, Romania
- National Center for Cytomegalovirus Research, UMR 1092, 87042 Limoges, France;
- Correspondence:
| | - Sophie Alain
- National Center for Cytomegalovirus Research, UMR 1092, 87042 Limoges, France;
| | - Simona Maria Ruță
- Virology Department, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania
| |
Collapse
|
7
|
Establishment of a novel myocarditis mouse model based on cyclosporine A. Genes Genomics 2022; 44:1593-1605. [PMID: 35666459 DOI: 10.1007/s13258-022-01267-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/03/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Myocarditis is a myocardial injury that can easily cause adolescent death. Traditional research models of animal invasion with viral components, lipopolysaccharide (LPS) or porcine myocardial myosin, among others, have the shortcomings of potential biological safety hazards and high animal mortality. OBJECTIVE To explore the construction of a novel myocarditis model with cyclosporine A and the potential genes and pathways associated with it. METHODS BALB/c mice were used in this study, and cyclosporin A and LPS were injected into the peritoneal cavity of mice. The successful establishment of the model was assessed by detecting serum myocardial injury markers and inflammatory factors levels, HE, IHC staining, and RT-qPCR methods. Key genes were obtained using the GSE35182 dataset from the GEO database and validated with the RT-qPCR method. RESULTS We found that a large number of inflammatory cells infiltrated the myocardium of mice in each group of Cyclosporin A constructed model, while the expression of inflammatory factor indicators was increased, and this model has the characteristics of high degree of local inflammation in myocardial tissue, low mortality, and safe and non-toxic treatment. Using GSE35182 data, we selected 18 Hub genes and validated Hub genes in myocardial tissue with RT-qPCR and found that multiple signaling pathways such as Toll-likereceptor signaling pathway(TLRs), Rap1 signal pathway(Rap1), and Chemokine signaling pathway may be involved in the development of myocarditis. CONCLUSION Cyclosporin A can construct a new myocarditis model, and TLRs, Chemokines and Rap1 signaling pathways may be the core pathways of myocarditis.
Collapse
|
8
|
Characterization of murine cytomegalovirus infection and induction of calcification in Murine Aortic Vascular Smooth Muscle Cells (MOVAS). J Virol Methods 2021; 297:114270. [PMID: 34461152 DOI: 10.1016/j.jviromet.2021.114270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023]
Abstract
Human cytomegalovirus (HCMV) is a widespread pathogen that causes lifelong latent infection in the majority of the world population. HCMV is associated with increased incidence and severity of many cardiovascular diseases including myocarditis, atherosclerosis, and transplant vasculopathy. Due to the species-restricted nature of cytomegalovirus infection, murine cytomegalovirus (MCMV) is a useful model that recapitulates many of the features of HCMV infection of the cardiovascular system. While in vivo MCMV studies are able to answer many questions regarding pathogenesis of infection, in vitro experiments using cell lines are useful tools to further understand the potential underlying mechanisms. In this study, we characterize MCMV infection of the murine aortic smooth muscle cell line (MOVAS). Our findings demonstrate that MOVAS cells are permissive for MCMV infection, form plaques under carboxymethyl cellulose overlay, and produce progeny virus similar to NIH 3T3 murine embryonic fibroblasts. In addition, MCMV infection induces calcification in MOVAS cells similar to that seen in the epicardium of MCMV-infected hearts. We conclude that MOVAS cells are a useful in vitro tool for studying CMV-mediated cardiac calcification.
Collapse
|
9
|
Bonavita CM, Cardin RD. Don't Go Breaking My Heart: MCMV as a Model for HCMV-Associated Cardiovascular Diseases. Pathogens 2021; 10:619. [PMID: 34069957 PMCID: PMC8157551 DOI: 10.3390/pathogens10050619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/25/2022] Open
Abstract
Human Cytomegalovirus (HCMV) is a widespread pathogen that causes lifelong latent infection and is associated with the exacerbation of chronic inflammatory diseases in seropositive individuals. Of particular impact, HCMV infection is known to worsen many cardiovascular diseases including myocarditis, atherosclerosis, hypertension, and transplant vasculopathy. Due to its similarity to HCMV, murine CMV (MCMV) is an appropriate model to understand HCMV-induced pathogenesis in the heart and vasculature. MCMV shares similar sequence homology and recapitulates much of the HCMV pathogenesis, including HCMV-induced cardiovascular diseases. This review provides insight into HCMV-associated cardiovascular diseases and the murine model of MCMV infection, which has been used to study the viral pathogenesis and mechanisms contributing to cardiovascular diseases. Our new functional studies using echocardiography demonstrate tachycardia and hypertrophy in the mouse, similar to HCMV-induced myocarditis in humans. For the first time, we show long term heart dysfunction and that MCMV reactivates from latency in the heart, which raises the intriguing idea that HCMV latency and frequent virus reactivation perturbs long term cardiovascular function.
Collapse
Affiliation(s)
| | - Rhonda D. Cardin
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
| |
Collapse
|