1
|
Li Y, Lin Y, Yi Y, Zhu N, Cui X, Li X. COVID-19 Vaccination and Transient Increase in CD4/CD8 Cell Counts in People with HIV: Evidence from China. Vaccines (Basel) 2024; 12:1365. [PMID: 39772028 PMCID: PMC11680300 DOI: 10.3390/vaccines12121365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025] Open
Abstract
Objectives: Accumulating evidence has confirmed the efficacy and safety of COVID-19 vaccines against SARS-CoV-2 infection. However, the effect of COVID-19 vaccination on immuno-virological parameters in people with HIV (PWH) is uncertain. Methods: A total of 372 PWH treated at Beijing Ditan Hospital were included. Unvaccinated PWH were matched 1:3 with vaccinated PWH using a propensity score matching algorithm. Differences in immuno-virological markers between the matched groups were analyzed. The Wilcoxon signed rank test was used to test for changes in CD4 and CD8 counts and HIV viral load over two months around vaccination. In addition, we investigated the long-term changes in HIV-related markers in different vaccination dose groups and in the entire vaccinated population. Results: Vaccinated PWH had a higher CD4/CD8 ratio (0.64 (0.49, 0.78) vs. 0.80 (0.56, 1.03), p = 0.037) than unvaccinated PWH within a two-month window after the third dose. There were 337 PWH who received COVID-19 vaccination, and 73.9% (n = 249) received three doses of vaccine. We observed a transient increase in CD4 count and CD4/CD8 ratio within a two-month window after vaccination, especially after the second dose (CD4 count: 583.5 (428.5, 706.8) vs. 618.0 (452.0, 744.0), p = 0.018; CD4/CD8 ratio: 0.70 (0.50, 0.91) vs. 0.71 (0.53, 0.96), p < 0.001)) and the third dose (CD4 count: 575.5 (435.5, 717.0) vs. 577.5 (440.8, 754.8), p = 0.001; CD4/CD8 ratio: 0.70 (0.52, 0.93) vs. 0.79 (0.53, 1.00), p < 0.001)). Recent CD4 counts and CD4/CD8 ratios were lower than after COVID-19 but remained higher than before COVID-19 in vaccinated PWH. In addition, COVID-19 vaccination had no negative effect on HIV viral load. Conclusions: A transient increase in CD4 count and CD4/CD8 ratio was observed after COVID-19 vaccination. However, the enhanced cellular immune response induced by vaccination may diminish over time and return to normal levels. There is no adverse effect of vaccination on HIV viral load.
Collapse
Affiliation(s)
- Yanyan Li
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; (Y.L.); (N.Z.); (X.C.)
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Yingying Lin
- Center of Integrative Medicine, Peking University Ditan Teaching Hospital, Beijing 100015, China;
| | - Yunyun Yi
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, PLA General Hospital, Beijing 100853, China;
| | - Na Zhu
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; (Y.L.); (N.Z.); (X.C.)
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Xinyu Cui
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; (Y.L.); (N.Z.); (X.C.)
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Xin Li
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; (Y.L.); (N.Z.); (X.C.)
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
- Center of Integrative Medicine, Peking University Ditan Teaching Hospital, Beijing 100015, China;
| |
Collapse
|
2
|
Vergori A, Cozzi-Lepri A, Tavelli A, Mazzotta V, Azzini AM, Gagliardini R, Mastrorosa I, Latini A, Pellicanò G, Taramasso L, Ceccherini-Silberstein F, Giannella M, Tacconelli E, Marchetti G, Monforte AD, Antinori A. SARS-CoV-2 mRNA vaccination and short-term changes in viral load and CD4/CD8 T-cell counts in people living with HIV. Int J Infect Dis 2024; 144:107065. [PMID: 38643867 DOI: 10.1016/j.ijid.2024.107065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/23/2024] Open
Abstract
OBJECTIVES To investigate whether SARS-CoV-2 messenger RNA (mRNA) vaccination has an impact on HIV-related viro-immunological parameters. METHODS People with HIV (PWH) in the VAXICONA-ORCHESTRA cohort who received one or more doses of SARS-CoV-2 mRNA vaccine and for whom paired measures of immuno-virological markers (viral load, clusters of differentiation [CD]4, and CD8 count 1 month before and after a vaccine dose [VD]) were available were included. Paired t-test and generalized estimating equation linear regression analyses were used to study changes over ± 1 month around the VD. Subgroup analyses were performed. RESULTS A total of 510 PWH were enrolled: the median age was 55 years (interquartile range 46-60 years), the CD4 and CD8 count were 489 (287-719) and 790 (59-1104) cells/mm3, respectively, and 81% received three VDs. After a median of 28 (3-53) days from VD, CD4 count increased by +15 cells/mm3 (SD ± 129.7, P = 0.001) and CD8 by +12 (±250.5, P = 0.199) and the viral load decreased by -0.11 log10 (±0.88, P = 0.001). Similar results were observed after restricting the analysis to viro-suppressed PWH, with CD4 ≤200/mm3, more than 6 months of antiretroviral therapy before VD and after excluding previous COVID-19. CONCLUSIONS A small significant increase in CD4 count and a negligible drop in HIV RNA were observed. Our findings are consistent with the hypothesis that SARS-CoV-2 mRNA vaccine can prime CD4 T spike-specific cells, even in the more immuno-compromised PWH.
Collapse
Affiliation(s)
- Alessandra Vergori
- HIV/AIDS Unit, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy.
| | - Alessandro Cozzi-Lepri
- Centre for Clinical Research, Epidemiology, Modelling and Evaluation (CREME), Institute for Global Health, UCL, London, UK
| | | | - Valentina Mazzotta
- HIV/AIDS Unit, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Anna Maria Azzini
- Division of Infectious Diseases, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Roberta Gagliardini
- HIV/AIDS Unit, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Ilaria Mastrorosa
- HIV/AIDS Unit, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Alessandra Latini
- STI/HIV Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Giovanni Pellicanò
- Department of Human Pathology of the Adult and the Developmental Age "G. Barresi", University of Messina, Messina, Italy
| | - Lucia Taramasso
- Infectious Diseases Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Maddalena Giannella
- Infectious Diseases Unit, IRCCS Univesity Hospital of Bologna, Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Evelina Tacconelli
- Division of Infectious Diseases, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Giulia Marchetti
- Clinic of Infectious Diseases, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Antonella d'Arminio Monforte
- Clinic of Infectious Diseases, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Andrea Antinori
- HIV/AIDS Unit, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| |
Collapse
|
3
|
Duncan MC, Omondi FH, Kinloch NN, Lapointe HR, Speckmaier S, Moran-Garcia N, Lawson T, DeMarco ML, Simons J, Holmes DT, Lowe CF, Bacani N, Sereda P, Barrios R, Harris M, Romney MG, Montaner JS, Brumme CJ, Brockman MA, Brumme ZL. Effects of COVID-19 mRNA vaccination on HIV viremia and reservoir size. AIDS 2024; 38:1120-1130. [PMID: 38224350 PMCID: PMC11139238 DOI: 10.1097/qad.0000000000003841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/03/2024] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
OBJECTIVE The immunogenic nature of coronavirus disease 2019 (COVID-19) mRNA vaccines led to some initial concern that these could stimulate the HIV reservoir. We analyzed changes in plasma HIV loads (pVL) and reservoir size following COVID-19 mRNA vaccination in 62 people with HIV (PWH) receiving antiretroviral therapy (ART), and analyzed province-wide trends in pVL before and after the mass vaccination campaign. DESIGN Longitudinal observational cohort and province-wide analysis. METHODS Sixty-two participants were sampled prevaccination, and one month after their first and second COVID-19 immunizations. Vaccine-induced anti-SARS-CoV-2-Spike antibodies in serum were measured using the Roche Elecsys Anti-S assay. HIV reservoirs were quantified using the intact proviral DNA assay; pVL were measured using the cobas 6800 (lower limit of quantification: 20 copies/ml). The province-wide analysis included all 290 401 pVL performed in British Columbia, Canada between 2012 and 2022. RESULTS Prevaccination, the median intact reservoir size was 77 [interquartile range (IQR): 20-204] HIV copies/million CD4 + T-cells, compared to 74 (IQR: 27-212) and 65 (IQR: 22-174) postfirst and -second dose, respectively (all comparisons P > 0.07). Prevaccination, 82% of participants had pVL <20 copies/ml (max: 110 copies/ml), compared to 79% postfirst dose (max: 183 copies/ml) and 85% postsecond dose (max: 79 copies/ml) ( P > 0.4). There was no evidence that the magnitude of the vaccine-elicited anti-SARS-CoV-2-Spike immune response influenced pVL nor changes in reservoir size ( P > 0.6). We found no evidence linking the COVID-19 mass vaccination campaign to population-level increases in detectable pVL frequency among all PWH in the province, nor among those who maintained pVL suppression on ART. CONCLUSION We found no evidence that COVID-19 mRNA vaccines induced changes in HIV reservoir size nor plasma viremia.
Collapse
Affiliation(s)
- Maggie C. Duncan
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
| | - F. Harrison Omondi
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
| | - Natalie N. Kinloch
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
| | - Hope R. Lapointe
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
| | - Sarah Speckmaier
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
| | | | - Tanya Lawson
- Division of Medical Microbiology and Virology, St. Paul's Hospital, Vancouver, Canada
| | - Mari L. DeMarco
- Department of Pathology and Laboratory Medicine, Providence Healthcare, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Janet Simons
- Department of Pathology and Laboratory Medicine, Providence Healthcare, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Daniel T. Holmes
- Department of Pathology and Laboratory Medicine, Providence Healthcare, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Christopher F. Lowe
- Division of Medical Microbiology and Virology, St. Paul's Hospital, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, Providence Healthcare, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Nic Bacani
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
| | - Paul Sereda
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
| | - Rolando Barrios
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, Canada
| | - Marianne Harris
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
- Department of Family Practice, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Marc G. Romney
- Division of Medical Microbiology and Virology, St. Paul's Hospital, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, Providence Healthcare, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Julio S.G. Montaner
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Chanson J. Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Mark A. Brockman
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Zabrina L. Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
| |
Collapse
|
4
|
Søndergaard MH, Thavarajah JJ, Churchill Henson H, Wejse CM. SARS-CoV-2 vaccine immunogenicity for people living with HIV: A systematic review and meta-analysis. HIV Med 2024; 25:16-37. [PMID: 37731375 DOI: 10.1111/hiv.13537] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 08/08/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND Previous publications on the immunogenicity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines in people living with HIV (PLWH) have reported inconsistent results. Additionally, a meta-analysis investigating the immunogenicity in PLWH after the third SARS-CoV-2 vaccine dose is lacking. In this article we aim to provide a systematic review and a meta-analysis studying the immunogenicity of SARS-CoV-2 vaccines in PLWH and to identify potential drivers for antibody response in PLWH. METHODS We used three databases (PubMed, Embase and Web of Science) to conduct our review. Studies with information on numbers of PLWH producing immunoglobulin G (IgG) antibodies or neutralizing antibodies were included. RESULTS The meta-analysis included 59 studies and illustrated a pooled serological response of 87.09% in the 10 343 PLWH after they received a SARS-CoV-2 vaccine. High CD4 T-cell counts and low viral load indicated that the study populations had HIV that was well treated, despite varying in location. The pooled effect increased to 91.62% for 8053 PLWH when excluding studies that used inactivated vaccines (BBIBP-CorV and CoronaVac). For the third vaccine dose, the pooled effect was 92.35% for 1974 PLWH. Additionally, weighted linear regression models demonstrated weak relationships between CD4 T-cell count, percentages of people with undetectable HIV load, and age compared with the percentages of PLWH producing a serological response. However, more research is needed to determine the effect of those factors on SARS-CoV-2 vaccine immunogenicity in PLWH. CONCLUSION SARS-CoV-2 vaccines show a favourable effect on immunogenicity in PLWH. However, the results are not ideal. This meta-analysis suggests that a third SARS-CoV-2 vaccine dose and good HIV treatment procedures are vital to induce a good immunogenicity in PLWH.
Collapse
Affiliation(s)
| | | | | | - Christian Morberg Wejse
- GloHAU, Center for Global Health, Department of Public Health, Aarhus University, Aarhus C, Region Midtjylland, Denmark
- Department of Infectious Diseases, Clinical Medicine, Aarhus University Hospital, Aarhus N, Denmark
| |
Collapse
|
5
|
Qu MM, Song B, Yang BP, Wang Z, Yu M, Zhang Y, Zhang C, Song JW, Fan X, Xu R, Zhang JY, Zhou CB, Du F, Wang FS, Huang HH, Jiao YM. Effect of SARS-CoV-2 Breakthrough Infection on HIV Reservoirs and T-Cell Immune Recovery in 3-Dose Vaccinated People Living with HIV. Viruses 2023; 15:2427. [PMID: 38140668 PMCID: PMC10748120 DOI: 10.3390/v15122427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
People living with human immunodeficiency virus (PLWH) are a vulnerable population with a higher risk of severe coronavirus disease 2019 (COVID-19); therefore, vaccination is recommended as a priority. Data on viral reservoirs and immunologic outcomes for PLWH breakthrough infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are currently limited. In this study, we investigated the effects of SARS-CoV-2 breakthrough infection on hematological parameters, human immunodeficiency virus (HIV) reservoir size, and T-cell recovery in PLWH receiving antiretroviral therapy (ART) after SARS-CoV-2 booster vaccination. The results indicated that during breakthrough infection, booster vaccination with homologous and heterologous vaccines was safe in PLWH after receiving two doses of inactivated vaccination. The absolute CD4 counts decreased in the heterologous group, whereas the CD8 counts decreased in the homologous booster group after breakthrough infection in PLWH. Breakthrough infection increased HIV reservoirs and was associated with increased T-cell activation in PLWH who received virally suppressed ART and a 3-dose vaccination. According to our data, the breakthrough infection of SARS-CoV-2 may put PLWH at a greater risk for increased HIV reservoirs, even if these individuals were virally suppressed with ART after 3-dose SARS-CoV-2 vaccination.
Collapse
Affiliation(s)
- Meng-Meng Qu
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing 100039, China; (M.-M.Q.)
| | - Bing Song
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing 100039, China; (M.-M.Q.)
| | - Bao-Peng Yang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing 100039, China; (M.-M.Q.)
| | - Zerui Wang
- Department of Gastroenterology, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Minrui Yu
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing 100039, China; (M.-M.Q.)
| | - Yi Zhang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing 100039, China; (M.-M.Q.)
| | - Chao Zhang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing 100039, China; (M.-M.Q.)
| | - Jin-Wen Song
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing 100039, China; (M.-M.Q.)
| | - Xing Fan
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing 100039, China; (M.-M.Q.)
| | - Ruonan Xu
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing 100039, China; (M.-M.Q.)
| | - Ji-Yuan Zhang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing 100039, China; (M.-M.Q.)
| | - Chun-Bao Zhou
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing 100039, China; (M.-M.Q.)
| | - Fengxia Du
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing 100039, China
| | - Fu-Sheng Wang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing 100039, China; (M.-M.Q.)
| | - Hui-Huang Huang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing 100039, China; (M.-M.Q.)
| | - Yan-Mei Jiao
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing 100039, China; (M.-M.Q.)
| |
Collapse
|
6
|
Cheng MQ, Li R, Weng ZY, Song G. Immunogenicity and effectiveness of COVID-19 booster vaccination among people living with HIV: a systematic review and meta-analysis. Front Med (Lausanne) 2023; 10:1275843. [PMID: 37877024 PMCID: PMC10591097 DOI: 10.3389/fmed.2023.1275843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/18/2023] [Indexed: 10/26/2023] Open
Abstract
Background The effect of booster vaccinations with the coronavirus virus disease (COVID-19) vaccine on people living with HIV (PLWH) remains unknown. In this study, we aimed to investigate the immunogenicity and effectiveness of booster doses of the COVID-19 vaccine in PLWH. Methods Literature research was done through the PubMed, Embase, Cochrane Review, and Web of Science databases up to 4 July 2023. Pooled estimates were calculated and compared using the DerSimonian and Laird method for a random effects model. Randomized control trials and observational studies were both considered for inclusion. Results We included 35 eligible studies covering 30,154 PLWH. The pooled immune response rate (IRR) of PLWH after the COVID-19 booster vaccination was 97.25% (95% confidence interval [CI], 93.81-99.49), and similar to healthy control (HC) (risk ratio [RR] = 0.98, 95% CI, 0.96-1.00). The pooled IRR for PLWH with CD4+ T-cell counts ≤ 200 was 86.27 (95% CI, 65.35-99.07). For Omicron variants, the pooled IRR for PLWH after booster dose was 74.07% (95% CI, 58.83-89.30), and the risk of IRR was reduced by 10% in PLWH compared with HC (RR = 0.90, 95% CI, 0.80-1.00). The T-cell immune response of PLWH was found to be comparable to HC (p ≥ 0.05). Subgroup analyses revealed that mRNA vaccines produced a relatively high IRR in PLWH compared to other vaccines. In addition, the results showed that booster vaccination appeared to further reduce the risk of COVID-19-related infections, hospitalizations, and deaths compared with the primary vaccination. Conclusion It was shown that booster vaccination with the COVID-19 vaccine provided a high IRR in PLWH and still produced a desirable moderate IRR in PLWH with a CD4+ T-cell count of ≤ 200. Importantly, the humoral and T-cell responses to booster vaccination in PLWH were comparable to HC, and similar results were observed with the SARS-CoV-2 Omicron variant. Our review strongly emphasizes the effect of mRNA vaccine booster vaccination in PLWH on eliciting desirable protective IRR. Furthermore, booster vaccination appears to further reduce the risk of COVID-19 infection, hospitalization, and death in PLWH compared to primary vaccination. However, more evidence is needed to confirm its effectiveness.
Collapse
Affiliation(s)
- Meng-Qun Cheng
- Department of Reproductive Medicine, The Puer People's Hospital, Pu'er, China
| | - Rong Li
- Department of Pharmacy, The Puer People's Hospital, Pu'er, China
| | - Zhi-Ying Weng
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Gao Song
- Department of Pharmacy, The Puer People's Hospital, Pu'er, China
| |
Collapse
|
7
|
Duncan MC, Omondi FH, Kinloch NN, Lapointe HR, Speckmaier S, Moran-Garcia N, Lawson T, DeMarco ML, Simons J, Holmes DT, Lowe CF, Bacani N, Sereda P, Barrios R, Harris M, Romney MG, Montaner JSG, Brumme CJ, Brockman MA, Brumme ZL. Effects of COVID-19 mRNA vaccination on HIV viremia and reservoir size. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.08.23296718. [PMID: 37873490 PMCID: PMC10593027 DOI: 10.1101/2023.10.08.23296718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Objective The immunogenic nature of COVID-19 mRNA vaccines led to some initial concern that these could stimulate the HIV reservoir. We analyzed changes in plasma HIV loads (pVL) and reservoir size following COVID-19 mRNA vaccination in 62 people with HIV (PWH) receiving antiretroviral therapy (ART), and analyzed province-wide trends in pVL before and after the mass vaccination campaign. Design Longitudinal observational cohort and province-wide analysis. Methods 62 participants were sampled pre-vaccination, and one month after their first and second COVID-19 immunizations. Vaccine-induced anti-SARS-CoV-2-Spike antibodies in serum were measured using the Roche Elecsys Anti-S assay. HIV reservoirs were quantified using the Intact Proviral DNA Assay; pVL were measured using the cobas 6800 (LLOQ:20 copies/mL). The province-wide analysis included all 290,401 pVL performed in British Columbia, Canada between 2012-2022. Results Pre-vaccination, the median intact reservoir size was 77 (IQR:20-204) HIV copies/million CD4+ T-cells, compared to 74 (IQR:27-212) and 65 (IQR:22-174) post-first and -second dose, respectively (all comparisons p>0.07). Pre-vaccination, 82% of participants had pVL<20 copies/mL (max:110 copies/mL), compared to 79% post-first dose (max:183 copies/mL) and 85% post-second dose (max:79 copies/mL) (p>0.4). The magnitude of the vaccine-elicited anti-SARS-CoV-2-Spike antibody response did not correlate with changes in reservoir size nor detectable pVL frequency (p>0.6). We found no evidence linking the COVID-19 mass vaccination campaign to population-level increases in detectable pVL frequency among all PWH in the province, nor among those who maintained pVL suppression on ART. Conclusion We found no evidence that COVID-19 mRNA vaccines induced changes in HIV reservoir size nor plasma viremia.
Collapse
Affiliation(s)
- Maggie C Duncan
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
| | - F Harrison Omondi
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
| | - Natalie N Kinloch
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
| | - Hope R Lapointe
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
| | - Sarah Speckmaier
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
| | | | - Tanya Lawson
- Division of Medical Microbiology and Virology, St. Paul's Hospital, Vancouver, Canada
| | - Mari L DeMarco
- Department of Pathology and Laboratory Medicine, Providence Health Care, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Janet Simons
- Department of Pathology and Laboratory Medicine, Providence Health Care, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Daniel T Holmes
- Department of Pathology and Laboratory Medicine, Providence Health Care, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Christopher F Lowe
- Division of Medical Microbiology and Virology, St. Paul's Hospital, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, Providence Health Care, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Nic Bacani
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
| | - Paul Sereda
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
| | - Rolando Barrios
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, Canada
| | - Marianne Harris
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
- Department of Family Practice, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Marc G Romney
- Division of Medical Microbiology and Virology, St. Paul's Hospital, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, Providence Health Care, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Julio S G Montaner
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Chanson J Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Mark A Brockman
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Zabrina L Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
| |
Collapse
|