1
|
Maddali P, Ambesi A, McKeown-Longo PJ. Induction of pro-inflammatory genes by fibronectin DAMPs in three fibroblast cell lines: Role of TAK1 and MAP kinases. PLoS One 2023; 18:e0286390. [PMID: 37228128 DOI: 10.1371/journal.pone.0286390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/13/2023] [Indexed: 05/27/2023] Open
Abstract
Changes in the organization and structure of the fibronectin matrix are believed to contribute to dysregulated wound healing and subsequent tissue inflammation and tissue fibrosis. These changes include an increase in the EDA isoform of fibronectin as well as the mechanical unfolding of fibronectin type III domains. In previous studies using embryonic foreskin fibroblasts, we have shown that fibronectin's EDA domain (FnEDA) and the partially unfolded first Type III domain (FnIII-1c) function as Damage Associated Molecular Pattern (DAMP) molecules to stimulate the induction of inflammatory cytokines by serving as agonists for Toll-Like Receptor-4 (TLR4). However, the role of signaling molecules downstream of TLR-4 such as TGF-β Activated Kinase 1 (TAK1) and Mitogen activated protein kinases (MAPK) in regulating the expression of fibronectin DAMP induced inflammatory genes in specific cell types is not known. In the current study, we evaluate the molecular steps regulating the fibronectin driven induction of inflammatory genes in three human fibroblast cell lines: embryonic foreskin, adult dermal, and adult kidney. The fibronectin derived DAMPs each induce the phosphorylation and activation of TAK1 which results in the activation of two downstream signaling arms, IKK/NF-κB and MAPK. Using the specific inhibitor 5Z-(7)-Oxozeanol as well as siRNA, we show TAK1 to be a crucial signaling mediator in the release of cytokines in response to fibronectin DAMPs in all three cell types. Finally, we show that FnEDA and FnIII-1c induce several pro-inflammatory cytokines whose expression is dependent on both TAK1 and JNK MAPK and highlight cell-type specific differences in the gene-expression profiles of the fibroblast cell-lines.
Collapse
Affiliation(s)
- Pranav Maddali
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, New York, United States of America
| | - Anthony Ambesi
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, New York, United States of America
| | - Paula J McKeown-Longo
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, New York, United States of America
| |
Collapse
|
2
|
He J, Steffen JH, Thulstrup PW, Pedersen JN, Sauerland MB, Otzen DE, Hawkins CL, Gourdon P, Davies MJ, Hägglund P. Anastellin impacts on the processing of extracellular matrix fibronectin and stimulates release of cytokines from coronary artery smooth muscle cells. Sci Rep 2022; 12:22051. [PMID: 36543832 PMCID: PMC9772232 DOI: 10.1038/s41598-022-26359-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Anastellin, a recombinant protein fragment from the first type III module of fibronectin, mimics a partially unfolded intermediate implicated in the assembly of fibronectin fibrils. Anastellin influences the structure of fibronectin and initiates in vitro fibrillation, yielding "superfibronectin", a polymer with enhanced cell-adhesive properties. This ability is absent in an anastellin double mutant, L37AY40A. Here we demonstrate that both wild-type and L37AY40A anastellin affect fibronectin processing within the extracellular matrix (ECM) of smooth muscle cells. Fibronectin fibrils are diminished in the ECM from cells treated with anastellin, but are partially rescued by supplementation with plasma fibronectin in cell media. Proteomic analyses reveal that anastellin also impacts on the processing of other ECM proteins, with increased collagen and decreased laminin detected in media from cells exposed to wild-type anastellin. Moreover, both anastellin forms stimulate release of inflammatory cytokines, including interleukin 6. At the molecular level, L37AY40A does not exhibit major perturbations of structural features relative to wild-type anastellin, though the mutant showed differences in heparin binding characteristics. These findings indicate that wild-type and L37AY40A anastellin share similar molecular features but elicit slightly different, but partially overlapping, responses in smooth muscle cells resulting in altered secretion of cytokines and proteins involved in ECM processing.
Collapse
Affiliation(s)
- Jianfei He
- grid.5254.60000 0001 0674 042XDepartment of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas Hyld Steffen
- grid.5254.60000 0001 0674 042XDepartment of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Waaben Thulstrup
- grid.5254.60000 0001 0674 042XDepartment of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Jannik Nedergaard Pedersen
- grid.7048.b0000 0001 1956 2722Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark ,grid.432104.0Present Address: Arla Foods Ingredients Group P/S, Sønderupvej 26, 6920 Videbæk, Denmark
| | - Max B. Sauerland
- grid.5254.60000 0001 0674 042XDepartment of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Daniel E. Otzen
- grid.7048.b0000 0001 1956 2722Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Clare L. Hawkins
- grid.5254.60000 0001 0674 042XDepartment of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pontus Gourdon
- grid.5254.60000 0001 0674 042XDepartment of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael J. Davies
- grid.5254.60000 0001 0674 042XDepartment of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Per Hägglund
- grid.5254.60000 0001 0674 042XDepartment of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Pham K, Frost S, Parikh K, Puvvula N, Oeung B, Heinrich EC. Inflammatory gene expression during acute high‐altitude exposure. J Physiol 2022; 600:4169-4186. [PMID: 35875936 PMCID: PMC9481729 DOI: 10.1113/jp282772] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/22/2022] [Indexed: 11/08/2022] Open
Abstract
Abstract The molecular signalling pathways that regulate inflammation and the response to hypoxia share significant crosstalk and appear to play major roles in high‐altitude acclimatization and adaptation. Several studies demonstrate increases in circulating candidate inflammatory markers during acute high‐altitude exposure, but significant gaps remain in our understanding of how inflammation and immune function change at high altitude and whether these responses contribute to high‐altitude pathologies, such as acute mountain sickness. To address this, we took an unbiased transcriptomic approach, including RNA sequencing and direct digital mRNA detection with NanoString, to identify changes in the inflammatory profile of peripheral blood throughout 3 days of high‐altitude acclimatization in healthy sea‐level residents (n = 15; five women). Several inflammation‐related genes were upregulated on the first day of high‐altitude exposure, including a large increase in HMGB1 (high mobility group box 1), a damage‐associated molecular pattern (DAMP) molecule that amplifies immune responses during tissue injury. Differentially expressed genes on the first and third days of acclimatization were enriched for several inflammatory pathways, including nuclear factor‐κB and Toll‐like receptor (TLR) signalling. Indeed, both TLR4 and LY96, which encodes the lipopolysaccharide binding protein (MD‐2), were upregulated at high altitude. Finally, FASLG and SMAD7 were associated with acute mountain sickness scores and peripheral oxygen saturation levels on the first day at high altitude, suggesting a potential role of immune regulation in response to high‐altitude hypoxia. These results indicate that acute high‐altitude exposure upregulates inflammatory signalling pathways and might sensitize the TLR4 signalling pathway to subsequent inflammatory stimuli.
![]() Key points Inflammation plays a crucial role in the physiological response to hypoxia. High‐altitude hypoxia exposure causes alterations in the inflammatory profile that might play an adaptive or maladaptive role in acclimatization. In this study, we characterized changes in the inflammatory profile following acute high‐altitude exposure. We report upregulation of novel inflammation‐related genes in the first 3 days of high‐altitude exposure, which might play a role in immune system sensitization. These results provide insight into how hypoxia‐induced inflammation might contribute to high‐altitude pathologies and exacerbate inflammatory responses in critical illnesses associated with hypoxaemia.
Collapse
Affiliation(s)
- Kathy Pham
- Division of Biomedical Sciences School of Medicine University of California Riverside Riverside CA USA
| | - Shyleen Frost
- Division of Biomedical Sciences School of Medicine University of California Riverside Riverside CA USA
| | - Keval Parikh
- Division of Biomedical Sciences School of Medicine University of California Riverside Riverside CA USA
| | - Nikhil Puvvula
- Division of Biomedical Sciences School of Medicine University of California Riverside Riverside CA USA
| | - Britney Oeung
- Division of Biomedical Sciences School of Medicine University of California Riverside Riverside CA USA
| | - Erica C. Heinrich
- Division of Biomedical Sciences School of Medicine University of California Riverside Riverside CA USA
| |
Collapse
|
4
|
Fibronectin Functions as a Selective Agonist for Distinct Toll-like Receptors in Triple-Negative Breast Cancer. Cells 2022; 11:cells11132074. [PMID: 35805158 PMCID: PMC9265717 DOI: 10.3390/cells11132074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/17/2022] [Accepted: 06/25/2022] [Indexed: 02/04/2023] Open
Abstract
The microenvironment of tumors is characterized by structural changes in the fibronectin matrix, which include increased deposition of the EDA isoform of fibronectin and the unfolding of the fibronectin Type III domains. The impact of these structural changes on tumor progression is not well understood. The fibronectin EDA (FnEDA) domain and the partially unfolded first Type III domain of fibronectin (FnIII-1c) have been identified as endogenous damage-associated molecular pattern molecules (DAMPs), which induce innate immune responses by serving as agonists for Toll-Like Receptors (TLRs). Using two triple-negative breast cancer (TNBC) cell lines MDA-MB-468 and MDA-MB-231, we show that FnEDA and FnIII-1c induce the pro-tumorigenic cytokine, IL-8, by serving as agonists for TLR5 and TLR2, the canonical receptors for bacterial flagellin and lipoprotein, respectively. We also find that FnIII-1c is not recognized by MDA-MB-468 cells but is recognized by MDA-MB-231 cells, suggesting a cell type rather than ligand specific utilization of TLRs. As IL-8 plays a major role in the progression of TNBC, these studies suggest that tumor-induced structural changes in the fibronectin matrix promote an inflammatory microenvironment conducive to metastatic progression.
Collapse
|
5
|
Cyclic-AMP Increases Nuclear Actin Monomer Which Promotes Proteasomal Degradation of RelA/p65 Leading to Anti-Inflammatory Effects. Cells 2022; 11:cells11091414. [PMID: 35563720 PMCID: PMC9101168 DOI: 10.3390/cells11091414] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/05/2022] [Accepted: 04/14/2022] [Indexed: 12/04/2022] Open
Abstract
The second messenger, cAMP has potent immunosuppressive and anti-inflammatory actions. These have been attributed, in part, to the ability of cAMP-induced signals to interfere with the function of the proinflammatory transcription factor Nuclear Factor-kappa B (NF-κB). However, the mechanisms underlying the modulation of NF-κB activity by cAMP remain unclear. Here we demonstrate an important role for cAMP-mediated increase in nuclear actin monomer levels in inhibiting NF-κB activity. Elevated cAMP or forced expression of a nuclear localised polymerisation defective actin mutant (NLS-ActinR62D) inhibited basal and TNFα induced mRNA levels of NF-κB-dependent genes and NF-κB-dependent reporter gene activity. Elevated cAMP or NLS-ActinR62D did not affect NF-κB nuclear translocation but did reduce total cellular and nuclear RelA/p65 levels. Preventing the cAMP-induced increase in nuclear actin monomer, either by expressing a nuclear localised active mutant of the actin polymerising protein mDIA, silencing components of the nuclear actin import complex IPO9 and CFL1 or overexpressing the nuclear export complex XPO6, rescued RelA/p65 levels and NF-κB reporter gene activity in forskolin-stimulated cells. Elevated cAMP or NLS-ActinR62D reduced the half-life of RelA/p65, which was reversed by the proteasome inhibitor MG132. Accordingly, forskolin stimulated association of RelA/p65 with ubiquitin affinity beads, indicating increased ubiquitination of RelA/p65 or associated proteins. Taken together, our data demonstrate a novel mechanism underlying the anti-inflammatory effects of cAMP and highlight the important role played by nuclear actin in the regulation of inflammation.
Collapse
|
6
|
McKeown-Longo PJ, Higgins PJ. Hyaluronan, Transforming Growth Factor β, and Extra Domain A-Fibronectin: A Fibrotic Triad. Adv Wound Care (New Rochelle) 2021; 10:137-152. [PMID: 32667849 DOI: 10.1089/wound.2020.1192] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Significance: Inflammation is a critical aspect of injury repair. Nonresolving inflammation, however, is perpetuated by the local generation of extracellular matrix-derived damage-associated molecular pattern molecules (DAMPs), such as the extra domain A (EDA) isoform of fibronectin and hyaluronic acid (HA) that promote the eventual acquisition of a fibrotic response. DAMPs contribute to the inflammatory environment by engaging Toll-like, integrin, and CD44 receptors while stimulating transforming growth factor (TGF)-β signaling to activate a fibroinflammatory genomic program leading to the development of chronic disease. Recent Advances: Signaling through TLR4, CD44, and the TGF-β pathways impact the amplitude and duration of the innate immune response to endogenous DAMPs synthesized in the context of tissue injury. New evidence indicates that crosstalk among these three networks regulates phase transitions as well as the repertoire of expressed genes in the wound healing program determining, thereby, repair outcomes. Clarifying the molecular mechanisms underlying pathway integration is necessary for the development of novel therapeutics to address the spectrum of fibroproliferative diseases that result from maladaptive tissue repair. Critical Issues: There is an increasing appreciation for the role of DAMPs as causative factors in human fibroinflammatory disease regardless of organ site. Defining the involved intermediates essential for the development of targeted therapies is a daunting effort, however, since various classes of DAMPs activate different direct and indirect signaling pathways. Cooperation between two matrix-derived DAMPs, HA, and the EDA isoform of fibronectin, is discussed in this review as is their synergy with the TGF-β network. This information may identify nodes of signal intersection amenable to therapeutic intervention. Future Directions: Clarifying mechanisms underlying the DAMP/growth factor signaling nexus may provide opportunities to engineer the fibroinflammatory response to injury and, thereby, wound healing outcomes. The identification of shared and unique DAMP/growth factor-activated pathways is critical to the design of optimized tissue repair therapies while preserving the host response to bacterial pathogens.
Collapse
Affiliation(s)
- Paula J. McKeown-Longo
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, New York, USA
| | - Paul J. Higgins
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, New York, USA
| |
Collapse
|
7
|
Narayanankutty A. Toll-like Receptors as a Novel Therapeutic Target for Natural Products Against Chronic Diseases. Curr Drug Targets 2020; 20:1068-1080. [PMID: 30806312 DOI: 10.2174/1389450120666190222181506] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/25/2019] [Accepted: 02/14/2019] [Indexed: 02/08/2023]
Abstract
Toll-like receptors (TLR) are one among the initial responders of the immune system which participate in the activation inflammatory processes. Several different types of TLR such as TLR2, TLR4, TLR7 and TLR9 have been identified in various cell types, each having distinct ligands like lipids, lipoproteins, nucleic acids and proteins. Though its prime concern is xenobiotic defences, TLR signalling has also recognized as an activator of inflammation and associated development of chronic degenerative disorders (CDDs) including obesity, type 2 diabetes mellitus (T2DM), fatty liver disease, cardiovascular and neurodegenerative disorders as well as various types of cancers. Numerous drugs are in use to prevent these disorders, which specifically inhibit different pathways associated with the development of CDDs. Compared to these drug targets, inhibition of TLR, which specifically responsible for the inflammatory insults has proven to be a better drug target. Several natural products have emerged as inhibitors of CDDs, which specifically targets TLR signalling, among these, many are in the clinical trials. This review is intended to summarize the recent progress on TLR association with CDDs and to list possible use of natural products, their combinations and their synthetic derivative in the prevention of TLR-driven CDD development.
Collapse
Affiliation(s)
- Arunaksharan Narayanankutty
- Post Graduate & Research Department of Zoology, St. Joseph's College (Autonomous), Devagiri, Calicut, Kerala, 680 555, India
| |
Collapse
|
8
|
Luo X, Gao ZX, Lin SW, Tong ML, Liu LL, Lin LR, Ke WJ, Yang TC. Recombinant Treponema pallidum protein Tp0136 promotes fibroblast migration by modulating MCP-1/CCR2 through TLR4. J Eur Acad Dermatol Venereol 2020; 34:862-872. [PMID: 31856347 DOI: 10.1111/jdv.16162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/12/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Chancre self-healing is an important clinical feature in the early stages of syphilis infection. Wound healing may involve an important mechanism by the migration of fibroblasts filling the injured lesion. However, the specific mechanism underlying this process is still unknown. OBJECTIVES We aimed to analyse the role of Tp0136 in the migration of fibroblasts and the related mechanism. METHODS The migration ability of fibroblasts was detected by a wound-healing assay. RT-PCR and ELISA detected the expression of MCP-1, IL-6 and MMP-9. TLR4 expression was detected by RT-PCR. The protein levels of CCR2 and relevant signalling pathway molecules were measured by Western blotting. RESULTS Tp0136 significantly promoted fibroblast migration. Subsequently, the levels of MCP-1 and its receptor CCR2 were increased in this process. The migration of fibroblasts was significantly inhibited by an anti-MCP-1 neutralizing antibody or CCR2 inhibitors. Furthermore, studies demonstrated that Tp0136 could activate the ERK/JNK/PI3K/NF-κB signalling pathways through TLR4 activity and that signalling pathways inhibitors could weaken MCP-1 secretion and fibroblast migration. CONCLUSIONS These findings demonstrate that Tp0136 promotes the migration of fibroblasts by inducing MCP-1/CCR2 expression through signalling involving the TLR4, ERK, JNK, PI3K and NF-κB signalling pathways, which could contribute to the mechanism of chancre self-healing in syphilis.
Collapse
Affiliation(s)
- X Luo
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Z-X Gao
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - S-W Lin
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - M-L Tong
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China.,Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - L-L Liu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China.,Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - L-R Lin
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China.,Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - W-J Ke
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - T-C Yang
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China.,Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|