1
|
Zhang L, Zhao Y, Fan X, Liu D, Geng Y. Effects of continuous negative pressure suction combined with autologous platelet-rich gel on the levels of CRP, IL-6, wound healing and length of stay in clients with diabetic foot. Transfus Apher Sci 2024; 63:103989. [PMID: 39151301 DOI: 10.1016/j.transci.2024.103989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/26/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
OBJECTIVE Continuous passive pressure suction and APG gel therapy effect diabetic foot IL-6, CRP, wound healing, and hospitalization. METHODS Clinicopathological data from 102 diabetic foot ulcer patients treated at our institution between March 2018 and May 2022 was examined. Tables generated 51 joint and controlling teams randomly. The observation team received passive pressure suction and APG gel whereas the controlled team received conventional treatment. Teams monitored therapy outcomes, adverse responses, wound healing, hospital stay, and costs. Both teams compared blood uric acid, cystatin C, homocysteine, and serum IL-6, IL-10, and CRP before and after medication. RESULTS The joint team had higher hospitalization costs, shorter stays, and faster wound healing than the controlled team. Diaparity was significant (P < 0.05). The united team worked 100 %, unlike the controlling team. This difference was significant (P < 0.05). Both teams showed significant decreases in CRP, IL-6, and IL-10 levels after therapy (P < 0.05). After therapy, both the combined and controlled teams had substantial differences in blood CRP, IL-6, and IL-10 levels (P < 0.05). Both teams had significantly decreased uric acid, cystatin C, and homocysteine after treatment. The combined team showed significantly decreased uric acid, cystatin C, homocysteine levels following therapy compared to the control team (P < 0.05). CONCLUSION The joint team experienced considerably fewer adverse events (3.92 % vs. 17.65 %) than the controls team (P < 0.05). Permanent passive pressure suction and APG gel therapy lower inflammatory response, blood uric acid, cystatin C, and homocysteine, speeding wound healing, reducing side effects.
Collapse
Affiliation(s)
- Lan Zhang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing City 400060, China
| | - Yuan Zhao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing City 400060, China
| | - Xiaoyun Fan
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing City 400060, China
| | - Dongliang Liu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing City 400060, China.
| | - Yan Geng
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing City 400060, China.
| |
Collapse
|
2
|
Wang F, Zhang X, Zhang J, Xu Q, Yu X, Xu A, Yi C, Bian X, Shao S. Recent advances in the adjunctive management of diabetic foot ulcer: Focus on noninvasive technologies. Med Res Rev 2024; 44:1501-1544. [PMID: 38279968 DOI: 10.1002/med.22020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/15/2023] [Accepted: 01/10/2024] [Indexed: 01/29/2024]
Abstract
Diabetic foot ulcer (DFU) is one of the most costly and serious complications of diabetes. Treatment of DFU is usually challenging and new approaches are required to improve the therapeutic efficiencies. This review aims to update new and upcoming adjunctive therapies with noninvasive characterization for DFU, focusing on bioactive dressings, bioengineered tissues, mesenchymal stem cell (MSC) based therapy, platelet and cytokine-based therapy, topical oxygen therapy, and some repurposed drugs such as hypoglycemic agents, blood pressure medications, phenytoin, vitamins, and magnesium. Although the mentioned therapies may contribute to the improvement of DFU to a certain extent, most of the evidence come from clinical trials with small sample size and inconsistent selections of DFU patients. Further studies with high design quality and adequate sample sizes are necessitated. In addition, no single approach would completely correct the complex pathogenesis of DFU. Reasonable selection and combination of these techniques should be considered.
Collapse
Affiliation(s)
- Fen Wang
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Xiaoling Zhang
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Jing Zhang
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Qinqin Xu
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Xuefeng Yu
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Anhui Xu
- Division of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengla Yi
- Division of Trauma Surgery, Tongji Hospital, Tongji Medical College, Wuhan, China
| | - Xuna Bian
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Shiying Shao
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| |
Collapse
|
3
|
Sharma AD, Jarman EH, Kuppalli K, Murphy MJ, Longaker MT, Gurtner G, Fox PM. Successful topical treatment of human biofilms using multiple antibiotic elution from a collagen-rich hydrogel. Sci Rep 2024; 14:5621. [PMID: 38454046 PMCID: PMC10920629 DOI: 10.1038/s41598-024-54477-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
Chronic non-healing wounds significantly strain modern healthcare systems, affecting 1-2% of the population in developed countries with costs ranging between $28.1 and $96.8 billion annually. Additionally, it has been established that chronic wounds resulting from comorbidities, such as peripheral vascular disease and diabetes mellitus, tend to be polymicrobial in nature. Treatment of polymicrobial chronic wounds with oral and IV antibiotics can result in antimicrobial resistance, leading to more difficult-to-treat wounds. Ideally, chronic ulcers would be topically treated with antibiotic combinations tailored to the microbiome of a patient's wound. We have previously shown that a topical collagen-rich hydrogel (cHG) can elute single antibiotics to inhibit bacterial growth in a manner that is nontoxic to mammalian cells. Here, we analyzed the microbiology of cultures taken from human patients diagnosed with diabetes mellitus suffering from chronic wounds present for more than 6 weeks. Additionally, we examined the safety of the elution of multiple antibiotics from collagen-rich hydrogel in mammalian cells in vivo. Finally, we aimed to create tailored combinations of antibiotics impregnated into cHG to successfully target and treat infections and eradicate biofilms cultured from human chronic diabetic wound tissue. We found that the majority of human chronic wounds in our study were polymicrobial in nature. The elution of multiple antibiotics from cHG was well-tolerated in mammalian cells, making it a potential topical treatment of the polymicrobial chronic wound. Finally, combinations of antibiotics tailored to each patient's microbiome eluted from a collagen-rich hydrogel successfully treated bacterial cultures isolated from patient samples via an in vitro assay.
Collapse
Affiliation(s)
- Ayushi D Sharma
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Division of Plastic & Reconstructive Surgery, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Division of Plastic & Reconstructive Surgery, Baylor Scott & White Medical Center, Temple, TX, USA
| | - Evan H Jarman
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Division of Plastic & Reconstructive Surgery, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Krutika Kuppalli
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthew J Murphy
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael T Longaker
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Geoffrey Gurtner
- Department of Surgery, The University of Arizona College of Medicine, Tuscon, AZ, USA
| | - Paige M Fox
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.
- Division of Plastic & Reconstructive Surgery, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| |
Collapse
|
4
|
Sharma AD, Jarman EH, Fox PM. Scoping Review of Hydrogel Therapies in the Treatment of Diabetic Chronic Wounds. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2023; 11:e4984. [PMID: 37250833 PMCID: PMC10219739 DOI: 10.1097/gox.0000000000004984] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/09/2023] [Indexed: 05/31/2023]
Abstract
Chronic diabetic wounds are a significant issue that can be treated with topical hydrogel therapies. The aim of this study was to review the different compositions of hydrogel that have been developed and analyze their clinical relevance in the treatment of chronic diabetic wounds. Methods We conducted a scoping review in which twelve articles were selected for review after applying relevant inclusion and exclusion criteria using a two-reviewer strategy. Data extracted from these studies was used to answer the following research question: What is the composition of hydrogels used to treat chronic diabetic wounds and how effective are they? Results We analyzed five randomized controlled trials, two retrospective studies, three reviews, and two case reports. Hydrogel compositions discussed included mesenchymal stem cell sheets, carbomer, collagen, and alginate hydrogels, as well as hydrogels embedded with platelet-derived growth factor. Synthetic hydrogels, largely composed of carbomers, were found to have high levels of evidence supporting their wound healing properties, though few articles described their routine use in a clinical setting. Collagen hydrogels dominate the present-day hydrogel market in the clinical treatment of chronic diabetic wounds. The augmentation of hydrogels with therapeutic biomaterials is a new field of hydrogel research, with studies demonstrating promising early in vitro and in vivo animal studies demonstrating promising early results for in vitro and in vivo animal investigations. Conclusions Current research supports hydrogels as a promising topical therapy in the treatment of chronic diabetic wounds. Augmenting Food & Drug Administration-approved hydrogels with therapeutic substances remains an interesting early area of investigation.
Collapse
Affiliation(s)
- Ayushi D. Sharma
- From the Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, Calif
- Division of Plastic & Reconstructive Surgery, Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif
- Creighton University School of Medicine, Phoenix, Ariz
| | - Evan H. Jarman
- From the Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, Calif
- Division of Plastic & Reconstructive Surgery, Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif
| | - Paige M. Fox
- From the Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, Calif
- Division of Plastic & Reconstructive Surgery, Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif
| |
Collapse
|
5
|
Awasthi A, Vishwas S, Gulati M, Corrie L, Kaur J, Khursheed R, Alam A, Alkhayl FF, Khan FR, Nagarethinam S, Kumar R, Arya K, Kumar B, Chellappan DK, Gupta G, Dua K, Singh SK. Expanding arsenal against diabetic wounds using nanomedicines and nanomaterials: Success so far and bottlenecks. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Kaur G, Narayanan G, Garg D, Sachdev A, Matai I. Biomaterials-Based Regenerative Strategies for Skin Tissue Wound Healing. ACS APPLIED BIO MATERIALS 2022; 5:2069-2106. [PMID: 35451829 DOI: 10.1021/acsabm.2c00035] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Skin tissue wound healing proceeds through four major stages, including hematoma formation, inflammation, and neo-tissue formation, and culminates with tissue remodeling. These four steps significantly overlap with each other and are aided by various factors such as cells, cytokines (both anti- and pro-inflammatory), and growth factors that aid in the neo-tissue formation. In all these stages, advanced biomaterials provide several functional advantages, such as removing wound exudates, providing cover, transporting oxygen to the wound site, and preventing infection from microbes. In addition, advanced biomaterials serve as vehicles to carry proteins/drug molecules/growth factors and/or antimicrobial agents to the target wound site. In this review, we report recent advancements in biomaterials-based regenerative strategies that augment the skin tissue wound healing process. In conjunction with other medical sciences, designing nanoengineered biomaterials is gaining significant attention for providing numerous functionalities to trigger wound repair. In this regard, we highlight the advent of nanomaterial-based constructs for wound healing, especially those that are being evaluated in clinical settings. Herein, we also emphasize the competence and versatility of the three-dimensional (3D) bioprinting technique for advanced wound management. Finally, we discuss the challenges and clinical perspective of various biomaterial-based wound dressings, along with prospective future directions. With regenerative strategies that utilize a cocktail of cell sources, antimicrobial agents, drugs, and/or growth factors, it is expected that significant patient-specific strategies will be developed in the near future, resulting in complete wound healing with no scar tissue formation.
Collapse
Affiliation(s)
- Gurvinder Kaur
- Materials Science and Sensor Applications, Central Scientific Instruments Organization, Chandigarh 160030, India
| | - Ganesh Narayanan
- Fiber and Polymer Science Program, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Deepa Garg
- Materials Science and Sensor Applications, Central Scientific Instruments Organization, Chandigarh 160030, India
| | - Abhay Sachdev
- Materials Science and Sensor Applications, Central Scientific Instruments Organization, Chandigarh 160030, India
| | - Ishita Matai
- Department of Biotechnology, School of Biological Sciences, Amity University Punjab, Mohali 140306, India
| |
Collapse
|
7
|
de Sousa GP, Fontenele MKA, da Rocha RB, Cardoso VS. Update of Topical Interventions for Healing Diabetic Ulcers-A Systematic Review. INT J LOW EXTR WOUND 2021; 22:222-234. [PMID: 33949242 DOI: 10.1177/15347346211013189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
There are a variety of dressings for wound healing. For this reason, research can assist in the choice and proper use of the intervention. This current view of the effectiveness of dressing on diabetic foot ulcers (DFUs) in patients with type 2 diabetes mellitus. This study is a systematic review of clinical trials selected in 4 databases: PubMed, Scopus, Web of Science, and Cochrane. Studies without language restriction, published between 2009 and 2020, were included. The search resulted in the identification of 5651 articles, of which 58 met all inclusion criteria. Among these, 2 biomaterials (D-acellular dermal matrix and keratinocyte) and phenytoin were highlighted for achieving healing rates of 100% and 95.82% ± 2.22%, respectively. The literature presents several alternatives with different actions, cure rates, reduction rates, and varied cost benefits. The growth in the use of biomaterials for the treatment of DFU can be seen in this study.
Collapse
Affiliation(s)
- Geice P de Sousa
- Center of Medical Specialties, Parnaíba, Piauí, Brazil.,School of Physical Therapy, 67823Federal University of Piauí, Parnaíba, Piauí, Brazil
| | - Maria K A Fontenele
- Center of Medical Specialties, Parnaíba, Piauí, Brazil.,School of Physical Therapy, 67823Federal University of Piauí, Parnaíba, Piauí, Brazil
| | - Rebeca B da Rocha
- Center of Medical Specialties, Parnaíba, Piauí, Brazil.,Postgraduate Program in Biomedical Sciences, 67823Federal University of Piauí, Parnaíba, Piauí, Brazil
| | - Vinicius S Cardoso
- Center of Medical Specialties, Parnaíba, Piauí, Brazil.,School of Physical Therapy, 67823Federal University of Piauí, Parnaíba, Piauí, Brazil.,Postgraduate Program in Biomedical Sciences, 67823Federal University of Piauí, Parnaíba, Piauí, Brazil
| |
Collapse
|
8
|
Toleubayev M, Dmitriyeva M, Kozhakhmetov S, Sabitova A. Efficacy of erythropoietin for wound healing: A systematic review of the literature. Ann Med Surg (Lond) 2021; 65:102287. [PMID: 33948167 PMCID: PMC8079955 DOI: 10.1016/j.amsu.2021.102287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/25/2022] Open
Abstract
Objectives To systematically review the available literature on the efficacy of erythropoietin for wound healing in human patients. Design The review was reported following Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. A descriptive-analytical method was used to analyse and integrate review findings. Data sources A primary search of electronic databases was performed using a combination of search terms related to the following areas of interest: ‘efficacy’, ‘erythropoietin’ and ‘wound healing’. A secondary search of the grey literature was conducted in addition to checking the reference list of included studies and review papers. Results Seven distinct studies involving 150 patients met the inclusion criteria for the review. The included studies suggest that topical and subcutaneous application of erythropoietin improves the wound healing process via faster re-epithelialization and reducing wound area and depth. Conclusions There were a limited number of studies and a great degree of heterogeneity of evidence due to differences in the course of concomitant illness, wound aetiology, and the time and dosing regimens adopted. Further research adopting validated and consistent outcome measures is recommended to determine the efficacy and safety of erythropoietin for wound healing. Topical and subcutaneous application of erythropoietin improves the wound healing process in human patients. Topical and subcutaneous application of erythropoietin contributes to reducing wound area and depth in human patients. Topical and subcutaneous application of erythropoietin has the potential to prevent wounds from becoming chronic.
Collapse
Affiliation(s)
- Medet Toleubayev
- Department of Plastic Surgery, Astana Medical University, Nur-Sultan, Kazakhstan
| | - Mariya Dmitriyeva
- Department of Plastic Surgery, Astana Medical University, Nur-Sultan, Kazakhstan
| | - Saken Kozhakhmetov
- Department of Plastic Surgery, Astana Medical University, Nur-Sultan, Kazakhstan
| | - Alina Sabitova
- Unit for Social and Community Psychiatry, WHO Collaborating Centre for Mental Health Service Development, Queen Mary University of London, London, UK
| |
Collapse
|
9
|
Toleubayev M, Dmitriyeva M, Kozhakhmetov S, Igissinov N, Turebayev M, Omarbekov A, Adaibayev K, Shakenov A, Izimbergenov M. Regenerative Properties of Recombinant Human Erythropoietin in the Wound Healing. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.5813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND: Erythropoietin (EPO) is the main stimulator of erythropoiesis, but EPO also has non-hematopoietic effects. The recent data show the positive effects of EPO on tissue regeneration.
AIM: This review aims to know highlights the pathophysiological mechanisms of EPO at different stages of tissue regeneration, and possible clinical applications in wound healing.
METHODS: A review of the literature considering reviews, clinical studies, original papers, and articles from electronic data has been used.
RESULTS: Analysis of animal studies and several clinical trials using EPO in context of wound healing revealed that EPO has a positive effect on all stages of regeneration process and may be a promising therapeutic strategy for the treatment of chronic wounds.
CONCLUSION: An improved understanding of the functions and regulatory mechanisms of EPO in the context of wound healing may lead to new considerations of this growth hormone for its regular clinical application in patients.
Collapse
|
10
|
Hamed S, Ullmann Y, Belokopytov M, Shoufani A, Kabha H, Masri S, Feldbrin Z, Kogan L, Kruchevsky D, Najjar R, Liu PY, Kerihuel JC, Akita S, Teot L. Topical Erythropoietin Accelerates Wound Closure in Patients with Diabetic Foot Ulcers: A Prospective, Multicenter, Single-Blind, Randomized, Controlled Trial. Rejuvenation Res 2021; 24:251-261. [PMID: 33504262 DOI: 10.1089/rej.2020.2397] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The diabetic foot ulcer (DFU) is a major disabling complication of diabetes mellitus. Growing evidence suggests that topical erythropoietin (EPO) can promote wound healing. The aim of this study is to clinically assess the efficacy of a proprietary topical EPO-containing hydrogel for treating DFUs. We conducted a randomized, controlled trial in 20 patients with DFUs. After a 14-day screening period, the DFUs of 20 eligible participants who fulfilled the inclusion criteria were randomly assigned (1:1) to either a 12-week of daily treatment with topical EPO and standard-of-care (SOC) or SOC treatment alone. The DFUs were assessed weekly until week 12. The primary outcome was 75% ulcer closure or higher. After 12 weeks of treatment, 75% ulcer closure was achieved in 6 of the 10 patients whose DFUs were treated with topical EPO and in one of the 8 patients whose DFUs were treated with SOC alone. The mean area of the DFUs that were treated with topical EPO and SOC was significantly smaller than those treated with SOC alone (1.2 ± 1.4 cm2 vs. 4.2 ± 3.4 cm2; p = 0.023). Re-epithelialization was faster in the topically EPO-treated DFUs than in the SOC-treated DFUs. There were no treatment-related adverse events. We conclude that topical EPO is a promising treatment for promoting the healing of DFUs. Clinical Trial Registration number: NCT02361931.
Collapse
Affiliation(s)
- Saher Hamed
- Department of Research and Development, Remedor Biomed Ltd., Nazareth Illit, Israel
| | - Yehuda Ullmann
- Department of Plastic and Reconstructive Surgery, Rambam Health Care Campus, Haifa, Israel
| | - Mark Belokopytov
- Department of Research and Development, Remedor Biomed Ltd., Nazareth Illit, Israel
| | - Aziz Shoufani
- Department of Plastic Surgery and General Surgery, Emek Medical Center, Afula, Israel
| | - Hoda Kabha
- Department of Research and Development, Remedor Biomed Ltd., Nazareth Illit, Israel
| | - Suher Masri
- Department of Research and Development, Remedor Biomed Ltd., Nazareth Illit, Israel
| | - Zeev Feldbrin
- Diabetes Foot Care Unit, Wolfson Medical Center, Holon, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Leonid Kogan
- Department of Plastic Surgery, Western Galilee Medical Center, Nahariya, Israel
| | - Danny Kruchevsky
- Department of Plastic and Reconstructive Surgery, Rambam Health Care Campus, Haifa, Israel
| | - Roger Najjar
- Department of Plastic Surgery, Western Galilee Medical Center, Nahariya, Israel
| | - Paul Y Liu
- Department of Plastic Surgery, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | | | - Sadanori Akita
- Department Wound Care and Plastic and Reconstructive Surgery, Fukuoka University, Fukuoka, Japan
| | - Luc Teot
- Department of Plastic and Reconstructive Surgery and Wound Healing, Montpellier University Hospital, Lapeyronie, Montpellier, France
| |
Collapse
|